tf.train.FeatureList
Stay organized with collections
Save and categorize content based on your preferences.
Mainly used as part of a tf.train.SequenceExample
.
Contains a list of tf.train.Feature
s.
The tf.train.SequenceExample
proto can be thought of as a
proto implementation of the following python type:
# tf.train.Feature
Feature = Union[List[bytes],
List[int64],
List[float]]
# tf.train.FeatureList
FeatureList = List[Feature]
# tf.train.FeatureLists
FeatureLists = Dict[str, FeatureList]
class SequenceExample(typing.NamedTuple):
context: Dict[str, Feature]
feature_lists: FeatureLists
This proto implements the List[Feature]
portion.
Attributes |
feature
|
repeated Feature feature
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.train.FeatureList\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/core/example/feature.proto) |\n\nMainly used as part of a [`tf.train.SequenceExample`](../../tf/train/SequenceExample).\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.train.FeatureList`](https://www.tensorflow.org/api_docs/python/tf/train/FeatureList)\n\n\u003cbr /\u003e\n\nContains a list of [`tf.train.Feature`](../../tf/train/Feature)s.\n\nThe [`tf.train.SequenceExample`](../../tf/train/SequenceExample) proto can be thought of as a\nproto implementation of the following python type: \n\n # tf.train.Feature\n Feature = Union[List[bytes],\n List[int64],\n List[float]]\n\n # tf.train.FeatureList\n FeatureList = List[Feature]\n\n # tf.train.FeatureLists\n FeatureLists = Dict[str, FeatureList]\n\n class SequenceExample(typing.NamedTuple):\n context: Dict[str, Feature]\n feature_lists: FeatureLists\n\nThis proto implements the `List[Feature]` portion.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-----------|----------------------------|\n| `feature` | `repeated Feature feature` |\n\n\u003cbr /\u003e"]]