This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:
importnumpyasnpdefmy_func(arg):arg=tf.convert_to_tensor(arg,dtype=tf.float32)returntf.matmul(arg,arg)+arg# The following calls are equivalent.value_1=my_func(tf.constant([[1.0,2.0],[3.0,4.0]]))value_2=my_func([[1.0,2.0],[3.0,4.0]])value_3=my_func(np.array([[1.0,2.0],[3.0,4.0]],dtype=np.float32))
This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.
Args
value
An object whose type has a registered Tensor conversion function.
dtype
Optional element type for the returned tensor. If missing, the type
is inferred from the type of value.
name
Optional name to use if a new Tensor is created.
preferred_dtype
Optional element type for the returned tensor, used when
dtype is None. In some cases, a caller may not have a dtype in mind when
converting to a tensor, so preferred_dtype can be used as a soft
preference. If the conversion to preferred_dtype is not possible, this
argument has no effect.
dtype_hint
same meaning as preferred_dtype, and overrides it.
Returns
A Tensor based on value.
Raises
TypeError
If no conversion function is registered for value to dtype.
RuntimeError
If a registered conversion function returns an invalid value.
ValueError
If the value is a tensor not of given dtype in graph mode.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.convert_to_tensor\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/framework/tensor_conversion.py#L33-L93) |\n\nConverts the given `value` to a `Tensor`. \n\n tf.compat.v1.convert_to_tensor(\n value, dtype=None, name=None, preferred_dtype=None, dtype_hint=None\n ) -\u003e ../../../tf/Tensor\n\nThis function converts Python objects of various types to `Tensor`\nobjects. It accepts `Tensor` objects, numpy arrays, Python lists,\nand Python scalars. For example: \n\n import numpy as np\n\n def my_func(arg):\n arg = tf.convert_to_tensor(arg, dtype=tf.float32)\n return tf.matmul(arg, arg) + arg\n\n # The following calls are equivalent.\n value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))\n value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])\n value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))\n\nThis function can be useful when composing a new operation in Python\n(such as `my_func` in the example above). All standard Python op\nconstructors apply this function to each of their Tensor-valued\ninputs, which allows those ops to accept numpy arrays, Python lists,\nand scalars in addition to `Tensor` objects.\n| **Note:** This function diverges from default Numpy behavior for `float` and `string` types when `None` is present in a Python list or scalar. Rather than silently converting `None` values, an error will be thrown.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `value` | An object whose type has a registered `Tensor` conversion function. |\n| `dtype` | Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. |\n| `name` | Optional name to use if a new `Tensor` is created. |\n| `preferred_dtype` | Optional element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. |\n| `dtype_hint` | same meaning as preferred_dtype, and overrides it. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` based on `value`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|-----------------------------------------------------------------|\n| `TypeError` | If no conversion function is registered for `value` to `dtype`. |\n| `RuntimeError` | If a registered conversion function returns an invalid value. |\n| `ValueError` | If the `value` is a tensor not of given `dtype` in graph mode. |\n\n\u003cbr /\u003e"]]