tf.keras.layers.PReLU
Stay organized with collections
Save and categorize content based on your preferences.
Parametric Rectified Linear Unit activation layer.
Inherits From: Layer
, Operation
tf.keras.layers.PReLU(
alpha_initializer='Zeros',
alpha_regularizer=None,
alpha_constraint=None,
shared_axes=None,
**kwargs
)
f(x) = alpha * x for x < 0
f(x) = x for x >= 0
where alpha
is a learned array with the same shape as x.
Args |
alpha_initializer
|
Initializer function for the weights.
|
alpha_regularizer
|
Regularizer for the weights.
|
alpha_constraint
|
Constraint for the weights.
|
shared_axes
|
The axes along which to share learnable parameters for the
activation function. For example, if the incoming feature maps are
from a 2D convolution with output shape
(batch, height, width, channels) , and you wish to share parameters
across space so that each filter only has one set of parameters,
set shared_axes=[1, 2] .
|
**kwargs
|
Base layer keyword arguments, such as name and dtype .
|
Attributes |
input
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
output
|
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args |
config
|
A Python dictionary, typically the
output of get_config.
|
Returns |
A layer instance.
|
symbolic_call
View source
symbolic_call(
*args, **kwargs
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.layers.PReLU\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/layers/activations/prelu.py#L10-L99) |\n\nParametric Rectified Linear Unit activation layer.\n\nInherits From: [`Layer`](../../../tf/keras/Layer), [`Operation`](../../../tf/keras/Operation) \n\n tf.keras.layers.PReLU(\n alpha_initializer='Zeros',\n alpha_regularizer=None,\n alpha_constraint=None,\n shared_axes=None,\n **kwargs\n )\n\n#### Formula:\n\n f(x) = alpha * x for x \u003c 0\n f(x) = x for x \u003e= 0\n\nwhere `alpha` is a learned array with the same shape as x.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `alpha_initializer` | Initializer function for the weights. |\n| `alpha_regularizer` | Regularizer for the weights. |\n| `alpha_constraint` | Constraint for the weights. |\n| `shared_axes` | The axes along which to share learnable parameters for the activation function. For example, if the incoming feature maps are from a 2D convolution with output shape `(batch, height, width, channels)`, and you wish to share parameters across space so that each filter only has one set of parameters, set `shared_axes=[1, 2]`. |\n| `**kwargs` | Base layer keyword arguments, such as `name` and `dtype`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | Retrieves the input tensor(s) of a symbolic operation. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n| `output` | Retrieves the output tensor(s) of a layer. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L191-L213) \n\n @classmethod\n from_config(\n config\n )\n\nCreates a layer from its config.\n\nThis method is the reverse of `get_config`,\ncapable of instantiating the same layer from the config\ndictionary. It does not handle layer connectivity\n(handled by Network), nor weights (handled by `set_weights`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------------|\n| `config` | A Python dictionary, typically the output of get_config. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A layer instance. ||\n\n\u003cbr /\u003e\n\n### `symbolic_call`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L58-L70) \n\n symbolic_call(\n *args, **kwargs\n )"]]