tf.train.Feature
Stay organized with collections
Save and categorize content based on your preferences.
Used in tf.train.Example
protos. Contains a list of values.
Used in the notebooks
An Example
proto is a representation of the following python type:
Dict[str,
Union[List[bytes],
List[int64],
List[float]]]
This proto implements the Union
.
The contained list can be one of three types:
int_feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))
float_feature = tf.train.Feature(
float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))
bytes_feature = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[b"abc", b"1234"]))
example = tf.train.Example(
features=tf.train.Features(feature={
'my_ints': int_feature,
'my_floats': float_feature,
'my_bytes': bytes_feature,
}))
Use tf.io.parse_example
to extract tensors from a serialized Example
proto:
tf.io.parse_example(
example.SerializeToString(),
features = {
'my_ints': tf.io.RaggedFeature(dtype=tf.int64),
'my_floats': tf.io.RaggedFeature(dtype=tf.float32),
'my_bytes': tf.io.RaggedFeature(dtype=tf.string)})
{'my_bytes': <tf.Tensor: shape=(2,), dtype=string,
numpy=array([b'abc', b'1234'], dtype=object)>,
'my_floats': <tf.Tensor: shape=(4,), dtype=float32,
numpy=array([1., 2., 3., 4.], dtype=float32)>,
'my_ints': <tf.Tensor: shape=(4,), dtype=int64,
numpy=array([1, 2, 3, 4])>}
Attributes |
bytes_list
|
BytesList bytes_list
|
float_list
|
FloatList float_list
|
int64_list
|
Int64List int64_list
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.train.Feature\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/core/example/feature.proto) |\n\nUsed in [`tf.train.Example`](../../tf/train/Example) protos. Contains a list of values.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.train.Feature`](https://www.tensorflow.org/api_docs/python/tf/train/Feature)\n\n\u003cbr /\u003e\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [TFRecord and tf.train.Example](https://www.tensorflow.org/tutorials/load_data/tfrecord) - [Graph-based Neural Structured Learning in TFX](https://www.tensorflow.org/tfx/tutorials/tfx/neural_structured_learning) - [Feature Engineering using TFX Pipeline and TensorFlow Transform](https://www.tensorflow.org/tfx/tutorials/tfx/penguin_tft) - [Graph regularization for sentiment classification using synthesized graphs](https://www.tensorflow.org/neural_structured_learning/tutorials/graph_keras_lstm_imdb) - [Preprocessing data with TensorFlow Transform](https://www.tensorflow.org/tfx/tutorials/transform/census) |\n\nAn `Example` proto is a representation of the following python type: \n\n Dict[str,\n Union[List[bytes],\n List[int64],\n List[float]]]\n\nThis proto implements the `Union`.\n\nThe contained list can be one of three types:\n\n- [`tf.train.BytesList`](../../tf/train/BytesList)\n- [`tf.train.FloatList`](../../tf/train/FloatList)\n- [`tf.train.Int64List`](../../tf/train/Int64List)\n\n int_feature = tf.train.Feature(\n int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))\n float_feature = tf.train.Feature(\n float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))\n bytes_feature = tf.train.Feature(\n bytes_list=tf.train.BytesList(value=[b\"abc\", b\"1234\"]))\n\n example = tf.train.Example(\n features=tf.train.Features(feature={\n 'my_ints': int_feature,\n 'my_floats': float_feature,\n 'my_bytes': bytes_feature,\n }))\n\nUse [`tf.io.parse_example`](../../tf/io/parse_example) to extract tensors from a serialized `Example` proto: \n\n tf.io.parse_example(\n example.SerializeToString(),\n features = {\n 'my_ints': tf.io.RaggedFeature(dtype=tf.int64),\n 'my_floats': tf.io.RaggedFeature(dtype=tf.float32),\n 'my_bytes': tf.io.RaggedFeature(dtype=tf.string)})\n {'my_bytes': \u003ctf.Tensor: shape=(2,), dtype=string,\n numpy=array([b'abc', b'1234'], dtype=object)\u003e,\n 'my_floats': \u003ctf.Tensor: shape=(4,), dtype=float32,\n numpy=array([1., 2., 3., 4.], dtype=float32)\u003e,\n 'my_ints': \u003ctf.Tensor: shape=(4,), dtype=int64,\n numpy=array([1, 2, 3, 4])\u003e}\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------------|------------------------|\n| `bytes_list` | `BytesList bytes_list` |\n| `float_list` | `FloatList float_list` |\n| `int64_list` | `Int64List int64_list` |\n\n\u003cbr /\u003e"]]