tf.keras.ops.digitize
Stay organized with collections
Save and categorize content based on your preferences.
Returns the indices of the bins to which each value in x
belongs.
tf.keras.ops.digitize(
x, bins
)
Args |
x
|
Input array to be binned.
|
bins
|
Array of bins. It has to be one-dimensional and monotonically
increasing.
|
Returns |
Output array of indices, of same shape as x .
|
Example:
x = np.array([0.0, 1.0, 3.0, 1.6])
bins = np.array([0.0, 3.0, 4.5, 7.0])
keras.ops.digitize(x, bins)
array([1, 1, 2, 1])
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.digitize\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/numpy.py#L1948-L1968) |\n\nReturns the indices of the bins to which each value in `x` belongs.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.numpy.digitize`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/digitize)\n\n\u003cbr /\u003e\n\n tf.keras.ops.digitize(\n x, bins\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------|\n| `x` | Input array to be binned. |\n| `bins` | Array of bins. It has to be one-dimensional and monotonically increasing. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output array of indices, of same shape as `x`. ||\n\n\u003cbr /\u003e\n\n#### Example:\n\n x = np.array([0.0, 1.0, 3.0, 1.6])\n bins = np.array([0.0, 3.0, 4.5, 7.0])\n keras.ops.digitize(x, bins)\n array([1, 1, 2, 1])"]]