tf.strings.to_number
Stay organized with collections
Save and categorize content based on your preferences.
Converts each string in the input Tensor to the specified numeric type.
tf.strings.to_number(
input,
out_type=tf.dtypes.float32
,
name=None
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
(Note that int32 overflow results in an error while float overflow
results in a rounded value.)
Examples:
tf.strings.to_number("1.55")
<tf.Tensor: shape=(), dtype=float32, numpy=1.55>
tf.strings.to_number("3", tf.int32)
<tf.Tensor: shape=(), dtype=int32, numpy=3>
Args |
input
|
A Tensor of type string .
|
out_type
|
An optional tf.DType from: tf.float32, tf.float64, tf.int32,
tf.int64 . Defaults to tf.float32 .
The numeric type to interpret each string in string_tensor as.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type out_type .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.strings.to_number\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/string_ops.py#L462-L488) |\n\nConverts each string in the input Tensor to the specified numeric type. \n\n tf.strings.to_number(\n input,\n out_type=../../tf/dtypes#float32,\n name=None\n )\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Introduction to Tensors](https://www.tensorflow.org/guide/tensor) - [Migrating Keras 2 code to multi-backend Keras 3](https://www.tensorflow.org/guide/keras/migrating_to_keras_3) - [Signatures in TensorFlow Lite](https://www.tensorflow.org/lite/guide/signatures) | - [Robust machine learning on streaming data using Kafka and Tensorflow-IO](https://www.tensorflow.org/io/tutorials/kafka) - [TensorFlow 2 TPUEmbeddingLayer: Quick Start](https://www.tensorflow.org/recommenders/examples/tpu_embedding_layer) - [Sending Different Data To Particular Clients With tff.federated_select](https://www.tensorflow.org/federated/tutorials/federated_select) |\n\n(Note that int32 overflow results in an error while float overflow\nresults in a rounded value.)\n\n#### Examples:\n\n tf.strings.to_number(\"1.55\")\n \u003ctf.Tensor: shape=(), dtype=float32, numpy=1.55\u003e\n tf.strings.to_number(\"3\", tf.int32)\n \u003ctf.Tensor: shape=(), dtype=int32, numpy=3\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor` of type `string`. |\n| `out_type` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.float32, tf.float64, tf.int32, tf.int64`. Defaults to `tf.float32`. The numeric type to interpret each string in `string_tensor` as. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `out_type`. ||\n\n\u003cbr /\u003e"]]