Detects whether an image is a BMP, GIF, JPEG, or PNG, and performs the
appropriate operation to convert the input bytes string into a Tensor of type
dtype.
Args
contents
A Tensor of type string. 0-D. The encoded image bytes.
channels
An optional int. Defaults to 0.
Number of color channels for the decoded image.
dtype
An optional tf.DType from: tf.uint8, tf.uint16, tf.float32. Defaults to tf.uint8.
The desired DType of the returned Tensor.
expand_animations
An optional bool. Defaults to True.
Controls the output shape of the returned op. If True, the returned op will
produce a 3-D tensor for PNG, JPEG, and BMP files; and a 4-D tensor for all
GIFs, whether animated or not. If, False, the returned op will produce a 3-D
tensor for all file types and will truncate animated GIFs to the first frame.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.DecodeImage\n\n\u003cbr /\u003e\n\nFunction for decode_bmp, decode_gif, decode_jpeg, and decode_png.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.DecodeImage`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DecodeImage)\n\n\u003cbr /\u003e\n\n tf.raw_ops.DecodeImage(\n contents,\n channels=0,\n dtype=../../tf/dtypes#uint8,\n expand_animations=True,\n name=None\n )\n\nDetects whether an image is a BMP, GIF, JPEG, or PNG, and performs the\nappropriate operation to convert the input bytes string into a Tensor of type\ndtype.\n| **Note:** decode_gif returns a 4-D array \\[num_frames, height, width, 3\\], as opposed to decode_bmp, decode_jpeg and decode_png, which return 3-D arrays \\[height, width, num_channels\\]. Make sure to take this into account when constructing your graph if you are intermixing GIF files with BMP, JPEG, and/or PNG files. Alternately, set the expand_animations argument of this function to False, in which case the op will return 3-dimensional tensors and will truncate animated GIF files to the first frame.\n| **Note:** If the first frame of an animated GIF does not occupy the entire canvas (maximum frame width x maximum frame height), then it fills the unoccupied areas (in the first frame) with zeros (black). For frames after the first frame that does not occupy the entire canvas, it uses the previous frame to fill the unoccupied areas.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `contents` | A `Tensor` of type `string`. 0-D. The encoded image bytes. |\n| `channels` | An optional `int`. Defaults to `0`. Number of color channels for the decoded image. |\n| `dtype` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.uint8, tf.uint16, tf.float32`. Defaults to [`tf.uint8`](../../tf#uint8). The desired DType of the returned Tensor. |\n| `expand_animations` | An optional `bool`. Defaults to `True`. Controls the output shape of the returned op. If True, the returned op will produce a 3-D tensor for PNG, JPEG, and BMP files; and a 4-D tensor for all GIFs, whether animated or not. If, False, the returned op will produce a 3-D tensor for all file types and will truncate animated GIFs to the first frame. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `dtype`. ||\n\n\u003cbr /\u003e"]]