tf.raw_ops.MatrixLogarithm
Stay organized with collections
Save and categorize content based on your preferences.
Computes the matrix logarithm of one or more square matrices:
tf.raw_ops.MatrixLogarithm(
input, name=None
)
\(log(exp(A)) = A\)
This op is only defined for complex matrices. If A is positive-definite and
real, then casting to a complex matrix, taking the logarithm and casting back
to a real matrix will give the correct result.
This function computes the matrix logarithm using the Schur-Parlett algorithm.
Details of the algorithm can be found in Section 11.6.2 of:
Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008.
ISBN 978-0-898716-46-7.
The input is a tensor of shape [..., M, M]
whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the exponential for all input submatrices [..., :, :]
.
Args |
input
|
A Tensor . Must be one of the following types: complex64 , complex128 .
Shape is [..., M, M] .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.MatrixLogarithm\n\nComputes the matrix logarithm of one or more square matrices:\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.MatrixLogarithm`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/MatrixLogarithm)\n\n\u003cbr /\u003e\n\n tf.raw_ops.MatrixLogarithm(\n input, name=None\n )\n\n\\\\(log(exp(A)) = A\\\\)\n\nThis op is only defined for complex matrices. If A is positive-definite and\nreal, then casting to a complex matrix, taking the logarithm and casting back\nto a real matrix will give the correct result.\n\nThis function computes the matrix logarithm using the Schur-Parlett algorithm.\nDetails of the algorithm can be found in Section 11.6.2 of:\nNicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008.\nISBN 978-0-898716-46-7.\n\nThe input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions\nform square matrices. The output is a tensor of the same shape as the input\ncontaining the exponential for all input submatrices `[..., :, :]`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|----------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `complex64`, `complex128`. Shape is `[..., M, M]`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `input`. ||\n\n\u003cbr /\u003e"]]