The shape of the input data per sequence id. E.g. if shape=(2,),
each example must contain 2 * sequence_length values.
default_value
A single value compatible with dtype that is used for
padding the sparse data into a dense Tensor.
dtype
The type of values.
normalizer_fn
If not None, a function that can be used to normalize the
value of the tensor after default_value is applied for parsing.
Normalizer function takes the input Tensor as its argument, and returns
the output Tensor. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
even though the most common use case of this function is normalization, it
can be used for any kind of Tensorflow transformations.
Returns
A SequenceNumericColumn.
Raises
TypeError
if any dimension in shape is not an int.
ValueError
if any dimension in shape is not a positive integer.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.feature_column.sequence_numeric_column\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/feature_column/sequence_feature_column.py#L336-L397) |\n\nReturns a feature column that represents sequences of numeric data. (deprecated)\n| **Warning:** tf.feature_column is not recommended for new code. Instead, feature preprocessing can be done directly using either [Keras preprocessing\n| layers](https://www.tensorflow.org/guide/migrate/migrating_feature_columns) or through the one-stop utility [`tf.keras.utils.FeatureSpace`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/FeatureSpace) built on top of them. See the [migration guide](https://tensorflow.org/guide/migrate) for details.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.feature_column.sequence_numeric_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/sequence_numeric_column)\n\n\u003cbr /\u003e\n\n tf.feature_column.sequence_numeric_column(\n key,\n shape=(1,),\n default_value=0.0,\n dtype=../../tf/dtypes#float32,\n normalizer_fn=None\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use Keras preprocessing layers instead, either directly or via the [`tf.keras.utils.FeatureSpace`](../../tf/keras/utils/FeatureSpace) utility. Each of `tf.feature_column.*` has a functional equivalent in `tf.keras.layers` for feature preprocessing when training a Keras model.\n\n#### Example:\n\n temperature = sequence_numeric_column('temperature')\n columns = [temperature]\n\n features = tf.io.parse_example(..., features=make_parse_example_spec(columns))\n sequence_feature_layer = SequenceFeatures(columns)\n sequence_input, sequence_length = sequence_feature_layer(features)\n sequence_length_mask = tf.sequence_mask(sequence_length)\n\n rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)\n rnn_layer = tf.keras.layers.RNN(rnn_cell)\n outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `key` | A unique string identifying the input features. |\n| `shape` | The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. |\n| `default_value` | A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. |\n| `dtype` | The type of values. |\n| `normalizer_fn` | If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `SequenceNumericColumn`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------------------------------------------|\n| `TypeError` | if any dimension in shape is not an int. |\n| `ValueError` | if any dimension in shape is not a positive integer. |\n| `ValueError` | if `dtype` is not convertible to [`tf.float32`](../../tf#float32). |\n\n\u003cbr /\u003e"]]