tf.keras.ops.gelu
Stay organized with collections
Save and categorize content based on your preferences.
Gaussian Error Linear Unit (GELU) activation function.
tf.keras.ops.gelu(
x, approximate=True
)
If approximate
is True
, it is defined as:
f(x) = 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))
Or if approximate
is False
, it is defined as:
f(x) = x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))
,
where P(X) ~ N(0, 1)
.
Args |
x
|
Input tensor.
|
approximate
|
Approximate version of GELU activation. Defaults to True .
|
Returns |
A tensor with the same shape as x .
|
Example:
x = np.array([-1., 0., 1.])
x_gelu = keras.ops.gelu(x)
print(x_gelu)
array([-0.15865525, 0., 0.84134475], shape=(3,), dtype=float64)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.gelu\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/nn.py#L470-L498) |\n\nGaussian Error Linear Unit (GELU) activation function.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.nn.gelu`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/gelu)\n\n\u003cbr /\u003e\n\n tf.keras.ops.gelu(\n x, approximate=True\n )\n\nIf `approximate` is `True`, it is defined as:\n`f(x) = 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))`\n\nOr if `approximate` is `False`, it is defined as:\n`f(x) = x * P(X \u003c= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`,\nwhere `P(X) ~ N(0, 1)`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------|\n| `x` | Input tensor. |\n| `approximate` | Approximate version of GELU activation. Defaults to `True`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor with the same shape as `x`. ||\n\n\u003cbr /\u003e\n\n#### Example:\n\n x = np.array([-1., 0., 1.])\n x_gelu = keras.ops.gelu(x)\n print(x_gelu)\n array([-0.15865525, 0., 0.84134475], shape=(3,), dtype=float64)"]]