tf.keras.datasets.cifar10.load_data
Stay organized with collections
Save and categorize content based on your preferences.
Loads the CIFAR10 dataset.
tf.keras.datasets.cifar10.load_data()
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
This is a dataset of 50,000 32x32 color training images and 10,000 test
images, labeled over 10 categories. See more info at the
CIFAR homepage.
The classes are:
Label |
Description |
0 |
airplane |
1 |
automobile |
2 |
bird |
3 |
cat |
4 |
deer |
5 |
dog |
6 |
frog |
7 |
horse |
8 |
ship |
9 |
truck |
Returns |
Tuple of NumPy arrays: (x_train, y_train), (x_test, y_test) .
|
x_train
: uint8
NumPy array of grayscale image data with shapes
(50000, 32, 32, 3)
, containing the training data. Pixel values range
from 0 to 255.
y_train
: uint8
NumPy array of labels (integers in range 0-9)
with shape (50000, 1)
for the training data.
x_test
: uint8
NumPy array of grayscale image data with shapes
(10000, 32, 32, 3)
, containing the test data. Pixel values range
from 0 to 255.
y_test
: uint8
NumPy array of labels (integers in range 0-9)
with shape (10000, 1)
for the test data.
Example:
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
assert x_train.shape == (50000, 32, 32, 3)
assert x_test.shape == (10000, 32, 32, 3)
assert y_train.shape == (50000, 1)
assert y_test.shape == (10000, 1)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.datasets.cifar10.load_data\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/datasets/cifar10.py#L13-L99) |\n\nLoads the CIFAR10 dataset. \n\n tf.keras.datasets.cifar10.load_data()\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|\n| - [Working with preprocessing layers](https://www.tensorflow.org/guide/keras/preprocessing_layers) | - [Convolutional Neural Network (CNN)](https://www.tensorflow.org/tutorials/images/cnn) |\n\nThis is a dataset of 50,000 32x32 color training images and 10,000 test\nimages, labeled over 10 categories. See more info at the\n[CIFAR homepage](https://www.cs.toronto.edu/%7Ekriz/cifar.html).\n\n#### The classes are:\n\n| Label | Description |\n|-------|-------------|\n| 0 | airplane |\n| 1 | automobile |\n| 2 | bird |\n| 3 | cat |\n| 4 | deer |\n| 5 | dog |\n| 6 | frog |\n| 7 | horse |\n| 8 | ship |\n| 9 | truck |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. ||\n\n\u003cbr /\u003e\n\n**`x_train`** : `uint8` NumPy array of grayscale image data with shapes\n`(50000, 32, 32, 3)`, containing the training data. Pixel values range\nfrom 0 to 255.\n\n**`y_train`** : `uint8` NumPy array of labels (integers in range 0-9)\nwith shape `(50000, 1)` for the training data.\n\n**`x_test`** : `uint8` NumPy array of grayscale image data with shapes\n`(10000, 32, 32, 3)`, containing the test data. Pixel values range\nfrom 0 to 255.\n\n**`y_test`** : `uint8` NumPy array of labels (integers in range 0-9)\nwith shape `(10000, 1)` for the test data.\n\n#### Example:\n\n (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()\n assert x_train.shape == (50000, 32, 32, 3)\n assert x_test.shape == (10000, 32, 32, 3)\n assert y_train.shape == (50000, 1)\n assert y_test.shape == (10000, 1)"]]