tf.raw_ops.CacheDataset
Stay organized with collections
Save and categorize content based on your preferences.
Creates a dataset that caches elements from input_dataset
.
tf.raw_ops.CacheDataset(
input_dataset,
filename,
output_types,
output_shapes,
metadata='',
name=None
)
A CacheDataset will iterate over the input_dataset, and store tensors. If the
cache already exists, the cache will be used. If the cache is inappropriate
(e.g. cannot be opened, contains tensors of the wrong shape / size), an error
will the returned when used.
Args |
input_dataset
|
A Tensor of type variant .
|
filename
|
A Tensor of type string .
A path on the filesystem where we should cache the dataset. Note: this
will be a directory.
|
output_types
|
A list of tf.DTypes that has length >= 1 .
|
output_shapes
|
A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 .
|
metadata
|
An optional string . Defaults to "" .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type variant .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.CacheDataset\n\n\u003cbr /\u003e\n\nCreates a dataset that caches elements from `input_dataset`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.CacheDataset`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/CacheDataset)\n\n\u003cbr /\u003e\n\n tf.raw_ops.CacheDataset(\n input_dataset,\n filename,\n output_types,\n output_shapes,\n metadata='',\n name=None\n )\n\nA CacheDataset will iterate over the input_dataset, and store tensors. If the\ncache already exists, the cache will be used. If the cache is inappropriate\n(e.g. cannot be opened, contains tensors of the wrong shape / size), an error\nwill the returned when used.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------|\n| `input_dataset` | A `Tensor` of type `variant`. |\n| `filename` | A `Tensor` of type `string`. A path on the filesystem where we should cache the dataset. Note: this will be a directory. |\n| `output_types` | A list of `tf.DTypes` that has length `\u003e= 1`. |\n| `output_shapes` | A list of shapes (each a [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`) that has length `\u003e= 1`. |\n| `metadata` | An optional `string`. Defaults to `\"\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `variant`. ||\n\n\u003cbr /\u003e"]]