tf.compat.v1.math.angle
Stay organized with collections
Save and categorize content based on your preferences.
Returns the element-wise argument of a complex (or real) tensor.
tf.compat.v1.math.angle(
input, name=None
)
Given a tensor input
, this operation returns a tensor of type float
that
is the argument of each element in input
considered as a complex number.
The elements in input
are considered to be complex numbers of the form
\(a + bj\), where a is the real part and b is the imaginary part.
If input
is real then b is zero by definition.
The argument returned by this function is of the form \(atan2(b, a)\).
If input
is real, a tensor of all zeros is returned.
For example:
input = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j], dtype=tf.complex64)
tf.math.angle(input).numpy()
# ==> array([2.0131705, 1.056345 ], dtype=float32)
Args |
input
|
A Tensor . Must be one of the following types: float , double ,
complex64 , complex128 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type float32 or float64 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.math.angle\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/math_ops.py#L863-L902) |\n\nReturns the element-wise argument of a complex (or real) tensor. \n\n tf.compat.v1.math.angle(\n input, name=None\n )\n\nGiven a tensor `input`, this operation returns a tensor of type `float` that\nis the argument of each element in `input` considered as a complex number.\n\nThe elements in `input` are considered to be complex numbers of the form\n\\\\(a + bj\\\\), where *a* is the real part and *b* is the imaginary part.\nIf `input` is real then *b* is zero by definition.\n\nThe argument returned by this function is of the form \\\\(atan2(b, a)\\\\).\nIf `input` is real, a tensor of all zeros is returned.\n\n#### For example:\n\n input = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j], dtype=tf.complex64)\n tf.math.angle(input).numpy()\n # ==\u003e array([2.0131705, 1.056345 ], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|-----------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `float`, `double`, `complex64`, `complex128`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `float32` or `float64`. ||\n\n\u003cbr /\u003e"]]