tf.keras.ops.vdot
Stay organized with collections
Save and categorize content based on your preferences.
Return the dot product of two vectors.
tf.keras.ops.vdot(
x1, x2
)
If the first argument is complex, the complex conjugate of the first
argument is used for the calculation of the dot product.
Multidimensional tensors are flattened before the dot product is taken.
Args |
x1
|
First input tensor. If complex, its complex conjugate is taken
before calculation of the dot product.
|
x2
|
Second input tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.vdot\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/numpy.py#L5252-L5271) |\n\nReturn the dot product of two vectors.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.numpy.vdot`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/vdot)\n\n\u003cbr /\u003e\n\n tf.keras.ops.vdot(\n x1, x2\n )\n\nIf the first argument is complex, the complex conjugate of the first\nargument is used for the calculation of the dot product.\n\nMultidimensional tensors are flattened before the dot product is taken.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------|-------------------------------------------------------------------------------------------------------|\n| `x1` | First input tensor. If complex, its complex conjugate is taken before calculation of the dot product. |\n| `x2` | Second input tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor. ||\n\n\u003cbr /\u003e"]]