tf.raw_ops.AddManySparseToTensorsMap
Stay organized with collections
Save and categorize content based on your preferences.
Add an N
-minibatch SparseTensor
to a SparseTensorsMap
, return N
handles.
tf.raw_ops.AddManySparseToTensorsMap(
sparse_indices,
sparse_values,
sparse_shape,
container='',
shared_name='',
name=None
)
A SparseTensor
of rank R
is represented by three tensors: sparse_indices
,
sparse_values
, and sparse_shape
, where
sparse_indices.shape[1] == sparse_shape.shape[0] == R
An N
-minibatch of SparseTensor
objects is represented as a SparseTensor
having a first sparse_indices
column taking values between [0, N)
, where
the minibatch size N == sparse_shape[0]
.
The input SparseTensor
must have rank R
greater than 1, and the first
dimension is treated as the minibatch dimension. Elements of the SparseTensor
must be sorted in increasing order of this first dimension. The stored
SparseTensor
objects pointed to by each row of the output sparse_handles
will have rank R-1
.
The SparseTensor
values can then be read out as part of a minibatch by passing
the given keys as vector elements to TakeManySparseFromTensorsMap
. To ensure
the correct SparseTensorsMap
is accessed, ensure that the same
container
and shared_name
are passed to that Op. If no shared_name
is provided here, instead use the name of the Operation created by calling
AddManySparseToTensorsMap
as the shared_name
passed to
TakeManySparseFromTensorsMap
. Ensure the Operations are colocated.
Args |
sparse_indices
|
A Tensor of type int64 .
2-D. The indices of the minibatch SparseTensor .
sparse_indices[:, 0] must be ordered values in [0, N) .
|
sparse_values
|
A Tensor .
1-D. The values of the minibatch SparseTensor .
|
sparse_shape
|
A Tensor of type int64 .
1-D. The shape of the minibatch SparseTensor .
The minibatch size N == sparse_shape[0] .
|
container
|
An optional string . Defaults to "" .
The container name for the SparseTensorsMap created by this op.
|
shared_name
|
An optional string . Defaults to "" .
The shared name for the SparseTensorsMap created by this op.
If blank, the new Operation's unique name is used.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type int64 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.AddManySparseToTensorsMap\n\n\u003cbr /\u003e\n\nAdd an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.AddManySparseToTensorsMap`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/AddManySparseToTensorsMap)\n\n\u003cbr /\u003e\n\n tf.raw_ops.AddManySparseToTensorsMap(\n sparse_indices,\n sparse_values,\n sparse_shape,\n container='',\n shared_name='',\n name=None\n )\n\nA `SparseTensor` of rank `R` is represented by three tensors: `sparse_indices`,\n`sparse_values`, and `sparse_shape`, where\n\n`sparse_indices.shape[1] == sparse_shape.shape[0] == R`\n\nAn `N`-minibatch of `SparseTensor` objects is represented as a `SparseTensor`\nhaving a first `sparse_indices` column taking values between `[0, N)`, where\nthe minibatch size `N == sparse_shape[0]`.\n\nThe input `SparseTensor` must have rank `R` greater than 1, and the first\ndimension is treated as the minibatch dimension. Elements of the `SparseTensor`\nmust be sorted in increasing order of this first dimension. The stored\n`SparseTensor` objects pointed to by each row of the output `sparse_handles`\nwill have rank `R-1`.\n\nThe `SparseTensor` values can then be read out as part of a minibatch by passing\nthe given keys as vector elements to `TakeManySparseFromTensorsMap`. To ensure\nthe correct `SparseTensorsMap` is accessed, ensure that the same\n`container` and `shared_name` are passed to that Op. If no `shared_name`\nis provided here, instead use the *name* of the Operation created by calling\n`AddManySparseToTensorsMap` as the `shared_name` passed to\n`TakeManySparseFromTensorsMap`. Ensure the Operations are colocated.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `sparse_indices` | A `Tensor` of type `int64`. 2-D. The `indices` of the minibatch `SparseTensor`. `sparse_indices[:, 0]` must be ordered values in `[0, N)`. |\n| `sparse_values` | A `Tensor`. 1-D. The `values` of the minibatch `SparseTensor`. |\n| `sparse_shape` | A `Tensor` of type `int64`. 1-D. The `shape` of the minibatch `SparseTensor`. The minibatch size `N == sparse_shape[0]`. |\n| `container` | An optional `string`. Defaults to `\"\"`. The container name for the `SparseTensorsMap` created by this op. |\n| `shared_name` | An optional `string`. Defaults to `\"\"`. The shared name for the `SparseTensorsMap` created by this op. If blank, the new Operation's unique name is used. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `int64`. ||\n\n\u003cbr /\u003e"]]