tf.keras.applications.Xception
Stay organized with collections
Save and categorize content based on your preferences.
Instantiates the Xception architecture.
tf.keras.applications.Xception(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'
)
Reference:
For image classification use cases, see
this page for detailed examples.
For transfer learning use cases, make sure to read the
guide to transfer learning & fine-tuning.
The default input image size for this model is 299x299.
Args |
include_top
|
whether to include the 3 fully-connected
layers at the top of the network.
|
weights
|
one of None (random initialization),
"imagenet" (pre-training on ImageNet),
or the path to the weights file to be loaded.
|
input_tensor
|
optional Keras tensor
(i.e. output of layers.Input() )
to use as image input for the model.
|
input_shape
|
optional shape tuple, only to be specified
if include_top is False (otherwise the input shape
has to be (299, 299, 3) .
It should have exactly 3 inputs channels,
and width and height should be no smaller than 71.
E.g. (150, 150, 3) would be one valid value.
|
pooling
|
Optional pooling mode for feature extraction
when include_top is False .
None means that the output of the model will be
the 4D tensor output of the
last convolutional block.
avg means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
max means that global max pooling will
be applied.
|
classes
|
optional number of classes to classify images
into, only to be specified if include_top is True , and
if no weights argument is specified.
|
classifier_activation
|
A str or callable. The activation function to
use on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top"
layer. When loading pretrained weights, classifier_activation can
only be None or "softmax" .
|
Returns |
A model instance.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.applications.Xception\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/applications/xception.py#L19-L333) |\n\nInstantiates the Xception architecture.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.xception.Xception`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/Xception)\n\n\u003cbr /\u003e\n\n tf.keras.applications.Xception(\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n input_shape=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax'\n )\n\n#### Reference:\n\n- [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357) (CVPR 2017)\n\nFor image classification use cases, see\n[this page for detailed examples](https://keras.io/api/applications/#usage-examples-for-image-classification-models).\n\nFor transfer learning use cases, make sure to read the\n[guide to transfer learning \\& fine-tuning](https://keras.io/guides/transfer_learning/).\n\nThe default input image size for this model is 299x299.\n| **Note:** each Keras Application expects a specific kind of input preprocessing. For Xception, call [`keras.applications.xception.preprocess_input`](../../../tf/keras/applications/xception/preprocess_input) on your inputs before passing them to the model. [`xception.preprocess_input`](../../../tf/keras/applications/xception/preprocess_input) will scale input pixels between -1 and 1.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `include_top` | whether to include the 3 fully-connected layers at the top of the network. |\n| `weights` | one of `None` (random initialization), `\"imagenet\"` (pre-training on ImageNet), or the path to the weights file to be loaded. |\n| `input_tensor` | optional Keras tensor (i.e. output of [`layers.Input()`](../../../tf/keras/Input)) to use as image input for the model. |\n| `input_shape` | optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A model instance. ||\n\n\u003cbr /\u003e"]]