whether to include the 3 fully-connected
layers at the top of the network.
weights
one of None (random initialization),
"imagenet" (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor
optional Keras tensor
(i.e. output of layers.Input())
to use as image input for the model.
input_shape
optional shape tuple, only to be specified
if include_top is False (otherwise the input shape
has to be (224, 224, 3)
(with channels_last data format) or
(3, 224, 224) (with "channels_first" data format).
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. (200, 200, 3) would be one valid value.
pooling
Optional pooling mode for feature extraction
when include_top is False.
None means that the output of the model will be
the 4D tensor output of the
last convolutional block.
avg means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
max means that global max pooling will
be applied.
classes
optional number of classes to classify images
into, only to be specified if include_top is True, and
if no weights argument is specified.
classifier_activation
A str or callable. The activation function to
use on the "top" layer. Ignored unless include_top=True. Set
classifier_activation=None to return the logits of the "top"
layer. When loading pretrained weights, classifier_activation can
only be None or "softmax".
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.applications.VGG19\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/applications/vgg19.py#L20-L234) |\n\nInstantiates the VGG19 model.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.vgg19.VGG19`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG19)\n\n\u003cbr /\u003e\n\n tf.keras.applications.VGG19(\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n input_shape=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax'\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-------------------------------------------------------------------------------------------|\n| - [Neural style transfer](https://www.tensorflow.org/tutorials/generative/style_transfer) |\n\n#### Reference:\n\n- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015)\n\nFor image classification use cases, see\n[this page for detailed examples](https://keras.io/api/applications/#usage-examples-for-image-classification-models).\n\nFor transfer learning use cases, make sure to read the\n[guide to transfer learning \\& fine-tuning](https://keras.io/guides/transfer_learning/).\n\nThe default input size for this model is 224x224.\n| **Note:** each Keras Application expects a specific kind of input preprocessing. For VGG19, call [`keras.applications.vgg19.preprocess_input`](../../../tf/keras/applications/vgg19/preprocess_input) on your inputs before passing them to the model. [`vgg19.preprocess_input`](../../../tf/keras/applications/vgg19/preprocess_input) will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `include_top` | whether to include the 3 fully-connected layers at the top of the network. |\n| `weights` | one of `None` (random initialization), `\"imagenet\"` (pre-training on ImageNet), or the path to the weights file to be loaded. |\n| `input_tensor` | optional Keras tensor (i.e. output of [`layers.Input()`](../../../tf/keras/Input)) to use as image input for the model. |\n| `input_shape` | optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `\"channels_first\"` data format). It should have exactly 3 input channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A model instance. ||\n\n\u003cbr /\u003e"]]