tf.keras.applications.NASNetLarge
Stay organized with collections
Save and categorize content based on your preferences.
Instantiates a NASNet model in ImageNet mode.
tf.keras.applications.NASNetLarge(
input_shape=None,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation='softmax'
)
Reference:
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at ~/.keras/keras.json
.
Args |
input_shape
|
Optional shape tuple, only to be specified
if include_top is False (otherwise the input shape
has to be (331, 331, 3) for NASNetLarge.
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. (224, 224, 3) would be one valid value.
|
include_top
|
Whether to include the fully-connected
layer at the top of the network.
|
weights
|
None (random initialization) or
imagenet (ImageNet weights). For loading imagenet weights,
input_shape should be (331, 331, 3)
|
input_tensor
|
Optional Keras tensor (i.e. output of
layers.Input() )
to use as image input for the model.
|
pooling
|
Optional pooling mode for feature extraction
when include_top is False .
None means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
avg means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
max means that global max pooling will
be applied.
|
classes
|
Optional number of classes to classify images
into, only to be specified if include_top is True , and
if no weights argument is specified.
|
classifier_activation
|
A str or callable. The activation function to
use on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top"
layer. When loading pretrained weights, classifier_activation
can only be None or "softmax" .
|
Returns |
A Keras model instance.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.applications.NASNetLarge\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/applications/nasnet.py#L406-L488) |\n\nInstantiates a NASNet model in ImageNet mode.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.nasnet.NASNetLarge`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/NASNetLarge)\n\n\u003cbr /\u003e\n\n tf.keras.applications.NASNetLarge(\n input_shape=None,\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax'\n )\n\n#### Reference:\n\n- [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012) (CVPR 2018)\n\nOptionally loads weights pre-trained on ImageNet.\nNote that the data format convention used by the model is\nthe one specified in your Keras config at `~/.keras/keras.json`.\n| **Note:** each Keras Application expects a specific kind of input preprocessing. For NASNet, call [`keras.applications.nasnet.preprocess_input`](../../../tf/keras/applications/nasnet/preprocess_input) on your inputs before passing them to the model.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_shape` | Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(331, 331, 3)` for NASNetLarge. It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. |\n| `include_top` | Whether to include the fully-connected layer at the top of the network. |\n| `weights` | `None` (random initialization) or `imagenet` (ImageNet weights). For loading `imagenet` weights, `input_shape` should be (331, 331, 3) |\n| `input_tensor` | Optional Keras tensor (i.e. output of [`layers.Input()`](../../../tf/keras/Input)) to use as image input for the model. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | Optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A Keras model instance. ||\n\n\u003cbr /\u003e"]]