tf.keras.utils.array_to_img
Stay organized with collections
Save and categorize content based on your preferences.
Converts a 3D NumPy array to a PIL Image instance.
tf.keras.utils.array_to_img(
x, data_format=None, scale=True, dtype=None
)
Used in the notebooks
Example:
from PIL import Image
img = np.random.random(size=(100, 100, 3))
pil_img = keras.utils.array_to_img(img)
Args |
x
|
Input data, in any form that can be converted to a NumPy array.
|
data_format
|
Image data format, can be either "channels_first" or
"channels_last" . Defaults to None , in which case the global
setting keras.backend.image_data_format() is used (unless you
changed it, it defaults to "channels_last" ).
|
scale
|
Whether to rescale the image such that minimum and maximum values
are 0 and 255 respectively. Defaults to True .
|
dtype
|
Dtype to use. None means the global setting
keras.backend.floatx() is used (unless you changed it, it
defaults to "float32" ). Defaults to None .
|
Returns |
A PIL Image instance.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.utils.array_to_img\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/utils/image_utils.py#L35-L107) |\n\nConverts a 3D NumPy array to a PIL Image instance.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.preprocessing.image.array_to_img`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/array_to_img)\n\n\u003cbr /\u003e\n\n tf.keras.utils.array_to_img(\n x, data_format=None, scale=True, dtype=None\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Image segmentation](https://www.tensorflow.org/tutorials/images/segmentation) - [Semantic Segmentation with Model Garden](https://www.tensorflow.org/tfmodels/vision/semantic_segmentation) - [Adversarial regularization for image classification](https://www.tensorflow.org/neural_structured_learning/tutorials/adversarial_keras_cnn_mnist) |\n\n#### Example:\n\n from PIL import Image\n img = np.random.random(size=(100, 100, 3))\n pil_img = keras.utils.array_to_img(img)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | Input data, in any form that can be converted to a NumPy array. |\n| `data_format` | Image data format, can be either `\"channels_first\"` or `\"channels_last\"`. Defaults to `None`, in which case the global setting [`keras.backend.image_data_format()`](../../../tf/keras/backend/image_data_format) is used (unless you changed it, it defaults to `\"channels_last\"`). |\n| `scale` | Whether to rescale the image such that minimum and maximum values are 0 and 255 respectively. Defaults to `True`. |\n| `dtype` | Dtype to use. `None` means the global setting [`keras.backend.floatx()`](../../../tf/keras/backend/floatx) is used (unless you changed it, it defaults to `\"float32\"`). Defaults to `None`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A PIL Image instance. ||\n\n\u003cbr /\u003e"]]