tf.compat.v1.orthogonal_initializer
Stay organized with collections
Save and categorize content based on your preferences.
Initializer that generates an orthogonal matrix.
tf.compat.v1.orthogonal_initializer(
gain=1.0,
seed=None,
dtype=tf.dtypes.float32
)
If the shape of the tensor to initialize is two-dimensional, it is initialized
with an orthogonal matrix obtained from the QR decomposition of a matrix of
random numbers drawn from a normal distribution.
If the matrix has fewer rows than columns then the output will have orthogonal
rows. Otherwise, the output will have orthogonal columns.
If the shape of the tensor to initialize is more than two-dimensional,
a matrix of shape (shape[0] * ... * shape[n - 2], shape[n - 1])
is initialized, where n
is the length of the shape vector.
The matrix is subsequently reshaped to give a tensor of the desired shape.
Args |
gain
|
multiplicative factor to apply to the orthogonal matrix
|
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. If not provided use the initializer
dtype.
|
partition_info
|
Optional information about the possible partitioning of a
tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.orthogonal_initializer\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/init_ops.py#L895-L963) |\n\nInitializer that generates an orthogonal matrix.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.initializers.orthogonal`](https://www.tensorflow.org/api_docs/python/tf/compat/v1/orthogonal_initializer)\n\n\u003cbr /\u003e\n\n tf.compat.v1.orthogonal_initializer(\n gain=1.0,\n seed=None,\n dtype=../../../tf/dtypes#float32\n )\n\nIf the shape of the tensor to initialize is two-dimensional, it is initialized\nwith an orthogonal matrix obtained from the QR decomposition of a matrix of\nrandom numbers drawn from a normal distribution.\nIf the matrix has fewer rows than columns then the output will have orthogonal\nrows. Otherwise, the output will have orthogonal columns.\n\nIf the shape of the tensor to initialize is more than two-dimensional,\na matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])`\nis initialized, where `n` is the length of the shape vector.\nThe matrix is subsequently reshaped to give a tensor of the desired shape.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|------------------------------------------------------------------------------------------------------------------------------------------|\n| `gain` | multiplicative factor to apply to the orthogonal matrix |\n| `seed` | A Python integer. Used to create random seeds. See [`tf.compat.v1.set_random_seed`](../../../tf/compat/v1/set_random_seed) for behavior. |\n| `dtype` | Default data type, used if no `dtype` argument is provided when calling the initializer. Only floating point types are supported. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| References ---------- ||\n|---|---|\n| [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) ([pdf](https://arxiv.org/pdf/1312.6120.pdf)) ||\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/init_ops.py#L75-L94) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|-----------------------------------------------------------------------|\n| `config` | A Python dictionary. It will typically be the output of `get_config`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An Initializer instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/init_ops.py#L962-L963) \n\n get_config()\n\nReturns the configuration of the initializer as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/init_ops.py#L931-L960) \n\n __call__(\n shape, dtype=None, partition_info=None\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|------------------|--------------------------------------------------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. If not provided use the initializer dtype. |\n| `partition_info` | Optional information about the possible partitioning of a tensor. |\n\n\u003cbr /\u003e"]]