[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.math.l2_normalize\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/nn_impl.py#L540-L596) |\n\nNormalizes along dimension `axis` using an L2 norm. (deprecated arguments)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.linalg.l2_normalize`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize), [`tf.nn.l2_normalize`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.linalg.l2_normalize`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize), [`tf.compat.v1.math.l2_normalize`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize), [`tf.compat.v1.nn.l2_normalize`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize)\n\n\u003cbr /\u003e\n\n tf.math.l2_normalize(\n x, axis=None, epsilon=1e-12, name=None, dim=None\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Universal Sentence Encoder](https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder) - [Universal Sentence Encoder-Lite demo](https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder_lite) - [TFP Release Notes notebook (0.11.0)](https://www.tensorflow.org/probability/examples/TFP_Release_Notebook_0_11_0) - [TFP Release Notes notebook (0.12.1)](https://www.tensorflow.org/probability/examples/TFP_Release_Notebook_0_12_1) |\n\n| **Deprecated:** SOME ARGUMENTS ARE DEPRECATED: `(dim)`. They will be removed in a future version. Instructions for updating: dim is deprecated, use axis instead\n\nFor a 1-D tensor with `axis = 0`, computes \n\n output = x / sqrt(max(sum(x**2), epsilon))\n\nFor `x` with more dimensions, independently normalizes each 1-D slice along\ndimension `axis`.\n\n1-D tensor example: \n\n \u003e\u003e\u003e x = tf.constant([3.0, 4.0])\n \u003e\u003e\u003e tf.math.l2_normalize(x).numpy()\n array([0.6, 0.8], dtype=float32)\n\n2-D tensor example: \n\n \u003e\u003e\u003e x = tf.constant([[3.0], [4.0]])\n \u003e\u003e\u003e tf.math.l2_normalize(x, 0).numpy()\n array([[0.6],\n [0.8]], dtype=float32)\n\n x = tf.constant([[3.0], [4.0]])\n tf.math.l2_normalize(x, 1).numpy()\n array([[1.],\n [1.]], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. |\n| `axis` | Dimension along which to normalize. A scalar or a vector of integers. |\n| `epsilon` | A lower bound value for the norm. Will use `sqrt(epsilon)` as the divisor if `norm \u003c sqrt(epsilon)`. |\n| `name` | A name for this operation (optional). |\n| `dim` | Deprecated, do not use. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` with the same shape as `x`. ||\n\n\u003cbr /\u003e"]]