Note that in case of ties the identity of the return value is not guaranteed.
Usage
importtensorflowastfa=[1,10,26.9,2.8,166.32,62.3]b=tf.math.argmax(input=a)c=tf.keras.backend.eval(b)# c = 4# here a[4] = 166.32 which is the largest element of a across axis 0
Args
input
A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64, qint8, quint8, qint32, qint16, quint16, bool.
dimension
A Tensor. Must be one of the following types: int16, int32, int64.
int16, int32 or int64, must be in the range [-rank(input), rank(input)).
Describes which dimension of the input Tensor to reduce across. For vectors,
use dimension = 0.
output_type
An optional tf.DType from: tf.int16, tf.uint16, tf.int32, tf.int64. Defaults to tf.int64.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.arg_max\n\n\u003cbr /\u003e\n\nReturns the index with the largest value across dimensions of a tensor. (deprecated) \n\n tf.compat.v1.arg_max(\n input: Annotated[Any, ../../../tf/raw_ops/Any],\n dimension: Annotated[Any, ../../../tf/raw_ops/Any],\n output_type: TV_ArgMax_output_type = ../../../tf/dtypes#int64,\n name=None\n ) -\u003e Annotated[Any, ../../../tf/raw_ops/Any]\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use [`tf.math.argmax`](../../../tf/math/argmax) instead\n\nNote that in case of ties the identity of the return value is not guaranteed.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Usage ----- ||\n|---|---|\n| \u003cbr /\u003e import tensorflow as tf a = [1, 10, 26.9, 2.8, 166.32, 62.3] b = tf.math.argmax(input = a) c = tf.keras.backend.eval(b) # c = 4 # here a[4] = 166.32 which is the largest element of a across axis 0 \u003cbr /\u003e ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`, `qint8`, `quint8`, `qint32`, `qint16`, `quint16`, `bool`. |\n| `dimension` | A `Tensor`. Must be one of the following types: `int16`, `int32`, `int64`. int16, int32 or int64, must be in the range `[-rank(input), rank(input))`. Describes which dimension of the input Tensor to reduce across. For vectors, use dimension = 0. |\n| `output_type` | An optional [`tf.DType`](../../../tf/dtypes/DType) from: `tf.int16, tf.uint16, tf.int32, tf.int64`. Defaults to [`tf.int64`](../../../tf#int64). |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `output_type`. ||\n\n\u003cbr /\u003e"]]