tf.math.maximum
Stay organized with collections
Save and categorize content based on your preferences.
Returns the max of x and y (i.e. x > y ? x : y) element-wise.
tf.math.maximum(
x: Annotated[Any, tf.raw_ops.Any
],
y: Annotated[Any, tf.raw_ops.Any
],
name=None
) -> Annotated[Any, tf.raw_ops.Any
]
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Example:
x = tf.constant([0., 0., 0., 0.])
y = tf.constant([-2., 0., 2., 5.])
tf.math.maximum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 2., 5.], dtype=float32)>
Note that maximum
supports broadcast semantics for x
and y
.
x = tf.constant([-5., 0., 0., 0.])
y = tf.constant([-3.])
tf.math.maximum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-3., 0., 0., 0.], dtype=float32)>
The reduction version of this elementwise operation is tf.math.reduce_max
Args |
x
|
A Tensor . Must be one of the following types: bfloat16 , half , float32 , float64 , int8 , uint8 , int16 , uint16 , int32 , uint32 , int64 , uint64 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.math.maximum\n\n\u003cbr /\u003e\n\nReturns the max of x and y (i.e. x \\\u003e y ? x : y) element-wise.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.maximum`](https://www.tensorflow.org/api_docs/python/tf/math/maximum)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.maximum`](https://www.tensorflow.org/api_docs/python/tf/math/maximum)\n\n\u003cbr /\u003e\n\n tf.math.maximum(\n x: Annotated[Any, ../../tf/raw_ops/Any],\n y: Annotated[Any, ../../tf/raw_ops/Any],\n name=None\n ) -\u003e Annotated[Any, ../../tf/raw_ops/Any]\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Extension types](https://www.tensorflow.org/guide/extension_type) - [Introduction to graphs and tf.function](https://www.tensorflow.org/guide/intro_to_graphs) | - [Generate music with an RNN](https://www.tensorflow.org/tutorials/audio/music_generation) - [Instance Segmentation with Model Garden](https://www.tensorflow.org/tfmodels/vision/instance_segmentation) - [Graph regularization for sentiment classification using synthesized graphs](https://www.tensorflow.org/neural_structured_learning/tutorials/graph_keras_lstm_imdb) - [Substantial Undocumented Infection Facilitates the Rapid Dissemination of Novel Coronavirus (SARS-CoV2)](https://www.tensorflow.org/probability/examples/Undocumented_Infection_and_the_Dissemination_of_SARS-CoV2) - [Human Pose Classification with MoveNet and TensorFlow Lite](https://www.tensorflow.org/lite/tutorials/pose_classification) |\n\n#### Example:\n\n x = tf.constant([0., 0., 0., 0.])\n y = tf.constant([-2., 0., 2., 5.])\n tf.math.maximum(x, y)\n \u003ctf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 2., 5.], dtype=float32)\u003e\n\nNote that `maximum` supports [broadcast semantics](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) for `x` and `y`. \n\n x = tf.constant([-5., 0., 0., 0.])\n y = tf.constant([-3.])\n tf.math.maximum(x, y)\n \u003ctf.Tensor: shape=(4,), dtype=float32, numpy=array([-3., 0., 0., 0.], dtype=float32)\u003e\n\nThe reduction version of this elementwise operation is [`tf.math.reduce_max`](../../tf/math/reduce_max)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `uint32`, `int64`, `uint64`. |\n| `y` | A `Tensor`. Must have the same type as `x`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `x`. ||\n\n\u003cbr /\u003e"]]