model=tf.keras.applications.MobileNetV3Large()fb_model=tf.lite.TFLiteConverterV2.from_keras_model(model).convert()tf.lite.experimental.Analyzer.analyze(model_content=fb_model)# === TFLite ModelAnalyzer ===## Your TFLite model has ‘1’ subgraph(s). In the subgraph description below,# T# represents the Tensor numbers. For example, in Subgraph#0, the MUL op# takes tensor #0 and tensor #19 as input and produces tensor #136 as output.## Subgraph#0 main(T#0) -> [T#263]# Op#0 MUL(T#0, T#19) -> [T#136]# Op#1 ADD(T#136, T#18) -> [T#137]# Op#2 CONV_2D(T#137, T#44, T#93) -> [T#138]# Op#3 HARD_SWISH(T#138) -> [T#139]# Op#4 DEPTHWISE_CONV_2D(T#139, T#94, T#24) -> [T#140]# ...
Analyzes the given tflite_model with dumping model structure.
This tool provides a way to understand users' TFLite flatbuffer model by
dumping internal graph structure. It also provides additional features
like checking GPU delegate compatibility.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.lite.experimental.Analyzer\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/lite/python/analyzer.py#L35-L105) |\n\nProvides a collection of TFLite model analyzer tools.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.lite.experimental.Analyzer`](https://www.tensorflow.org/api_docs/python/tf/lite/experimental/Analyzer)\n\n\u003cbr /\u003e\n\n### Used in the notebooks\n\n| Used in the guide |\n|------------------------------------------------------------------------------------------|\n| - [TensorFlow Lite Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) |\n\n#### Example:\n\n model = tf.keras.applications.MobileNetV3Large()\n fb_model = tf.lite.TFLiteConverterV2.from_keras_model(model).convert()\n tf.lite.experimental.Analyzer.analyze(model_content=fb_model)\n # === TFLite ModelAnalyzer ===\n #\n # Your TFLite model has '1' subgraph(s). In the subgraph description below,\n # T# represents the Tensor numbers. For example, in Subgraph#0, the MUL op\n # takes tensor #0 and tensor #19 as input and produces tensor #136 as output.\n #\n # Subgraph#0 main(T#0) -\u003e [T#263]\n # Op#0 MUL(T#0, T#19) -\u003e [T#136]\n # Op#1 ADD(T#136, T#18) -\u003e [T#137]\n # Op#2 CONV_2D(T#137, T#44, T#93) -\u003e [T#138]\n # Op#3 HARD_SWISH(T#138) -\u003e [T#139]\n # Op#4 DEPTHWISE_CONV_2D(T#139, T#94, T#24) -\u003e [T#140]\n # ...\n\n| **Warning:** Experimental interface, subject to change.\n\nMethods\n-------\n\n### `analyze`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/lite/python/analyzer.py#L63-L105) \n\n @staticmethod\n analyze(\n model_path=None, model_content=None, gpu_compatibility=False, **kwargs\n )\n\nAnalyzes the given tflite_model with dumping model structure.\n\nThis tool provides a way to understand users' TFLite flatbuffer model by\ndumping internal graph structure. It also provides additional features\nlike checking GPU delegate compatibility.\n| **Warning:** Experimental interface, subject to change. The output format is not guaranteed to stay stable, so don't write scripts to this.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|---------------------|------------------------------------------------|\n| `model_path` | TFLite flatbuffer model path. |\n| `model_content` | TFLite flatbuffer model object. |\n| `gpu_compatibility` | Whether to check GPU delegate compatibility. |\n| `**kwargs` | Experimental keyword arguments to analyze API. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Print analyzed report via console output. ||\n\n\u003cbr /\u003e"]]