はてなキーワード: dieselとは
企業運営なら入りやすいし、その上、無料なのがいいよね。それを入口にコマーシャルギャラリーも行ってみるとより広がるよ。
ちなみに、ここで言う企業運営ギャラリーとは、企画展を定期的に行う企業(財団含む)が運営する無料のギャラリーを指します。
サントリー美術館やアーティゾン美術館、SOMPO美術館のような企業運営でも有料の展示を行う施設は含みません。
(脱線だけど、SOMPO美術館のゴッホは当時批判も多かったけど、今では買って大正解だったよね。)
資生堂銀座本店の地下にあるギャラリー。バランス良くいい企画展が多い。
行くとたいてい企業文化誌「花椿」をもらって帰る。余裕があれば、資生堂パーラーでお茶して行けばいいんじゃないかしら。
DNPの財団が運営するグラフィック系のギャラリー。エッジの効いた平面作品をたくさん見られるよ。
銀座メゾンエルメスの8階にあるギャラリー。ドアマンのいる狭めの入口から入って、お店の奥のエレベーターまで行かなくてはならないので入るハードルがちょっと高いけど、レンゾ・ピアノの建築に入ることができる。展示のクオリティも高いよ。
フランス、日本に縁のある作家さんの展示が多い。入口が幅広で左のエレベーターへの通路も広いので比較的入りやすい。場所は銀座ね。
昔はポーラ美術館と同じようなガラス作品とかの展覧会をやっていた気がするけど、いつからか現代が多くなった気がする。ここも銀座。
表参道にあるコンテンポラリーを扱う。gggとは逆にインスタレーションとか映像が多い。お店の脇にあるエレベーターから行けるので入りやすい。
ワコールアートセンターの運営する複合施設。建築は槇文彦。ギャラリーはスパイラル主宰のSICF (スパイラル・インディペンデント・クリエイターズ・フェスティバル)の展覧会以外はほぼレンタルスペースだけど、グループ展とか、他の用で表参道に行くときに寄るといい展示に出会うことがあるよ。
ナディフが運営するギャラリー。表参道にあったのが移転して恵比寿に。ナディフは元々セゾン美術館(!)の脇で「アール・ヴィヴァン」という美術書店を運営していた会社を母体としている。展示は個性的というか、独自の視点のあるものが多い気がするよ。
ファッションブランド のDIESEL が⼿掛けるギャラリー。アバンギャルドだったり、野性味のある展覧会が多いよ。
TOTOの運営するギャラリー。建築の展覧会を専門に行っている。2フロアあって、それが外部の中庭にある階段でつながる構造になっているため、そのことも含め展覧会として構成される面白い展示空間だよ。中庭を取り込む展示があったり、特に何もせず、息抜き的に通過させる展示があったり。
クリエイションギャラリーG8とガーディアン・ガーデンが2023年に活動終了し、東京駅にBUGが2023年9月にオープン。まだ行けてないから情報まで。
お嬢様ずんだもん叩きで叩いてた側がみーんなイモイモ言ってるけど、パッと見て「うわ!あの人おしゃれだな〜!自分のセンス光ってるな〜!」って人そんな見た事ない。
いたとしても紳士淑女が多い。(多分ご高齢の人は地味な色を着がちだからやたらスタイリッシュだと目立つってのもあるんだろうけど)
菜々緒が黒のロングドレス着てたら「おしゃれ」に見えない?でもそれは菜々緒の顔とスタイル由来じゃないの?
久本雅美がパッチワーク系のアウター着てたら「おしゃれ」か?あれはあの人のキャラあってこそじゃないのか?
おしゃれのジャンルも結構分類されていて、その中でみんな同じような格好するじゃん。ギャル、モード、スポーティ、地雷、原宿系、ロリィタ、ナチュラル、コンサバと様々あるけど「ああこういう感じだよね」があって別に個々人のセンスめっちゃ良い〜!とはならなくない?
自分が着ないジャンルの人見たら「着こなせてていいな、すごいな」とはなるかもしれないけど。私はDIESELとか着こなしてる細くてカッコイイお姉ちゃん見たら「おお〜!」って思うし。
axes叩き自体はかなり昔からある印象で、自分がずんだもんの子と同世代の時にはもう「この着方してる人はダサいよね」という言説があったよ。15年くらい前の話だけどその時点で、研究してケバくない化粧しろ、茶色の合皮はやめろ、髪を巻け、って言ってたわけで……。
でも中学生位の子がピーコート着るのも、180デニールのタイツ履くのもごく当たり前だと思うんだよね。
キラキラスタイリッシュファッションなの東京のトレンドに近い子ばかりだと思う。東京駅で修学旅行生見てると地方の子はみんな基本はダサいよ。制服でもそんだけ差があるんだから当然じゃないのかなあ。
田中みな実がaxes着てても同じような叩き方するの?
おしゃれってなにさ。
4,5年使ってたダウンのアウターがダメになったので捨てて新しいのを買いに行った
普段はユニクロばっか買ってるので久しぶりにアウトレットに行って物色したんだけど
どこの店もダウンのアウターが2,3万ぐらいでびっくりした
SHIPS, BEAMS, DIESEL, UNITED ARROWSとかの大学生大好き中級ブランドでそんぐらいの値段
昔は7〜8万してなかった?アウトレット&シーズン終わりだとしてもめっちゃ安い
同じ工場で作られたのをちょっとだけアレンジしてラベル貼ってるだけの商売なので当然ではあるんだけど
店員とちょっと話した感じから推測すると、コロナ禍で輸入先が制限されてて
その結果どこの店でも同じようなアウターになって価格競争しちゃってるんだと思う
Paul Smithとかdunhillとかはさすがに10万超えで個性的なアウターだったけど
DIESELの服着てるワイは上流やったのか
DIESELの件で炎上しているので、前から気になっていた人について書く。
なんでこの方の絵がもてはやされてるのか分からない。
めちゃくちゃ上手いとか個性があるわけでなく、普通のアニメーター志望か漫画家志望みたいな絵(漫画家志望らしい)
「アパレル業界にいてJUN INAGAWA知らんやついたんか…」
「アパレル関係なのにJun Inagawa知らないとかないだろ、有名人とか着てるのに」
みたいなツイートをいくつか見かけたけど、
知ってたら何?(その知ってる知らないで競う感じがまずダサい。有名人が着てるから何だよ…)
どうしてこの人がAdidasやらDIESELやらとコラボしたりしてるの?
もう絵の上手さとか魅力じゃないよね?単なるネームバリューだよね。
父親が日産の車のデザイナーらしいけどそれはそんなにコネとして有効なのか。
本人の人間的な魅力があるのか。
正直くやしい。
なんかこういう表現としても下品(他の作品も見たけど非常に十代っぽい。グロとかエロに逃げがち)
ようわからんけど今若者には人気らしいですよ〜って思ってんのか、単純に他の絵を知らないからいいと思うのか。
小さい世界で細々とやってればいい。
ファッション業界、誰とは言わないけどこういうイラストレーター他にもいる。
みんなで御輿担いで実際の絵の価値以上の、中身からっぽな大きな偶像みたいなものを作り上げて…
とここまで書いて気づいた、あれはアイドルイラストレーターなのか。
歌手やアーティストとしての様な絵描きではなく、アイドル絵描き。
アイドルが絵を描いてるんだと思ったら落ち着いてきた。
まあでもそうなれるのも才能だからな、あーうらやましい。
「パートIII.Dで、当財団は、ダイムラーが使用した違法操作機器の運用にかかる委託研究について説明する。 ••••••(以下:••••••)が実施したこの調査では、これまで他の利益団体や当局が使用していない根本的に異なる方法論を採用した。端的にいえば、当財団が購入したEuro 6 Test Vehicleでテスト走行を行い、エンジンと排気ガス管理を制御するECU(Electronical Control Unit)から走行中の情報を読み取ったのである。これにより当財団は、試験車両の違法操作機器の根本的なメカニズムと機能を初めて洞察する者となった。本調査により当財団が同定できる限り、少なくとも8つの違法(SCRおよびEGR)操作機器が配備された、驚異的に複雑で洗練された排出詐欺が明らかになった。これらの違法操作機器はそれぞれ、実際の運転条件でシステム全体の効率を大幅に低下させる。ダイムラーのトリックの結果として、これらの違法操作機器はNEDCテストサイクル外でのみ動作する。」
「III.B.1. 序文
255. このセクションでは、当財団は、排出規制および適用される判例法に基づいて、違法操作機器の特性について説明する。 前述のとおり、当財団はとりわけ、2020年4月30日の欧州司法裁判所 Eleanor Sharpston 法務官の意見※に特に注意を払っている。(図14を参照)。」
※「2020年4月30日の欧州司法裁判所 Eleanor Sharpston 法務官の意見」はこちら。↓
"Court of Justice of the European Union PRESS RELEASE No 52/20
Luxembourg, 30 April 2020
Advocate General’s Opinion in Case C-693/18CLCV and Others (defeat device on a diesel engine)
According to Advocate General Sharpston, a device that adjusts upwards the operation of the emission control system of diesel engine vehicles during the approval testing of those vehicles is a ‘defeat device’prohibited by EU law
The objective of slowing down the aging or the clogging-up of the enginedoes not justify the use of such a device"
III.D.1. イントロダクション、研究の関連性、および主要な調査結果
295. このセクションでは、当財団の研究結果について論ずる。 この研究は、その方法論によって、上で説明した研究※とは区別される。 前述のように、この研究は、入力値(周囲温度や車速など)と出力値(PEMSで測定された排出量)を測定するのみならず、ECU自体の内部機能を測定することを目的とする。 テスト中にECUから直接情報を読み取ることにより、ECUの設計と操作を再構築可能である。」
※直前のIII.C で、第三者が公表した調査結果を挙げている。
「296.このアプローチは、概ねメーカーのソースコードがなければ違法操作機器の動作を検出および分析することは不可能であると考えられていることから、これまでどの型式承認当局・関連団体にも採用されていない。間違いなく可能であるとはいえ、費用と時間がかかり、専門知識を用いねばならない。この理由もあって、当財団はこれまでのところ、この研究を単一のテスト車両(本テスト車両)に限定している。本テスト車両は、第306項でさらに指定されているユーロ6対応型メルセデスE350である。モダンなユーロ6車両を選択する理由は、この車両タイプに、EGR(排気ガス再循環)とSCR(選択的触媒反応)の組み合わせからなる高度で複雑な排出制御システムが装備されているためである。このような複合システムでは、SCRシステムが処理の大半を引き継ぐため、EGRシステムはNOx排気負荷を減らすために「ハード」に動作しなくてもよくなる。 Euro 6モデルのECUソフトウェアはEuro 5ソフトウェアの拡張バージョンであるため、以前のバージョンの多くの機能がまだソフトウェアに存在している。調査が示すように、本テスト車両のECUには、機能しているEGR操作機器も多数含まれている。この点で、本研究結果は、EGR装置のみが装備されていた古いメルセデスベンツモデルにも関連している。
297. 要するに、この調査により、SCRとEGRの違法操作機器の範囲が特定された。これらはそれぞれ、特定の条件下でシステムの全体的な効率を大幅に低下させ、これによりSCR触媒コンバーターはほとんどの条件で動作容量のうち最大で60%に制限されることとなる。」
「300. 本調査の結果、違法なSCRおよびEGR操作機器は、NEDC検査下の状況では動作せず、通常の使用状況でのみ動作するようにプログラムされていることが判明した。 違法操作機器は、条件がNEDC検査条件から少しでも逸脱している場合にアクティブになることがわかっている。 さらに、SCR関連のいくつかの違法操作機器には、車両が数か月間使用された後にのみ違法操作機器を操作するように設定されたタイマー機能があり、NEDC検査を確実に通るようになっている。」
「302. 本調査はまた、これらの違法操作ツールのほとんどがソフトウェアの更新後にテスト車両から削除されたことを示している。これは、エンジンの損傷を防止したり、車両の安全な動作を確保したりするために違法操作ツールが必要ないことを意味している。このソフトウェアの更新によって、テスト車両のすべての違法操作機器が実際に削除されたかどうかは明らかではない。……」
III.D.2.a)はじめに
305. 本調査で使用されるメソドロジーは、データ収集、ソフトウェア分析、およびテスト車両から生れたテスト結果の解釈とを、組み合わせることである。306. 前述のように、本テスト車両は、メルセデスベンツ E 350 BlueTEC 4 MATIC Tであり、OM 642型 190 Kw、2987 ccm、6気筒エンジンを搭載している。本テスト車両の検査文書のコピーを別紙57に提示した。……
307. ECUの情報チャネルは複雑で量が多いため(ECUは内部で10,000を超える信号を処理)、イテラティブなプロセスを用いた。 最初のフェーズでは、通常使用中に車両のECUのプロファイルを作成するために、広範なデータ収集が行われた。 排出制御に関連するソフトウェアとデータは、ソフトウェア分析を使用して特定した。 その後、データ収集プロセスをさらに洗練し、より詳細なデータを得た。」
308. 調査中のデータ収集は、OBD-2ポートを使用して実行した。……」
「310.前述のように、ECUソフトウェアのソースコードや完全なドキュメントについては、ダイムラーがその情報を慎重に管理しているために、本調査者はこれらを得ていない。 ただし、ドキュメントやソースコードが利用できないソフトウェアの分析については多くの研究があり、そのような分析はIT業界で定期的に行われている。研究者は、「逆アセンブル」(ソフトウェアが人間が読める形式に変換される)やソフトウェアシミュレーションなどのいわゆるリバースエンジニアリング手法を使用している。 これらの手法により、ソースコードが利用できない文書化されていないソフトウェアの分析が可能になり、本テスト車両のECUソフトウェアの分析にも使用されている。」
315. 本SCRシステムでは、主な制御変数の1つはAdBlueまたはDEF(ディーゼル排気流体)の投与量である。本テスト車両のECU、Bosch EDC17CP57 は、システムに投与されたAdBlueの量を計算する。 SCR触媒コンバーター内で、AdBlueはアンモニアに変換され、次にアンモニアがNOxと酸素と反応して窒素と水に変換される。
316.有効性の尺度は、「SCR除去効率」または「変換効率」である。 SCRの潜在的な効率は、以下を含む多くの物理的条件によって制限される場合がある。
317. 以上のリストは完全なものではないが、適切に機能しているSCRシステムが物理的な制限を受けていることを示している。 これらの制限に対処するために、本ECUソフトウェアには、2つの異なる動作モードが含まれている。
318.最初のモードは、以下「アンモニア負荷モデル」と呼ぶもので、SCRシステムが完全に機能するモードである。 このモードは公的にアクセス可能なメディアでは説明されておらず、この用語自体は文献で使用されている標準ではないことに注意されたい。
319. 2番目のモードは「代替モデル」である。 これは、不正な操作ツールによってアクティブ化されるモードである。 代替モデルがいずれかの操作ツールによってアクティブ化されると、通常SCRは最大60%となる。 特にいくつかの違法操作ツールが同時にアクティブ化されている場合は、効率が大幅に低下する可能性もある。……」
330. 本調査による観察結果の要点は、代替モデルでは、実際の運転条件のほとんどで、SCRシステムのターゲット効率が比較的低い値に保たれるが、これは物理的な制限に基づいていない要因やポリシーの選択によって生じているため、 違法だということである。 言い換えると、SCR触媒でのNOxの還元に直接影響を与えることがない入力に応じて、効率目標が意図的に低い値に低減される。 したがって、これらの要素とポリシーの選択、およびそれらが有効にするメカニズムは、違法な操作手段と見なすことができる。
331. これらの違法なSCR関連の操作ツールは、以下の機能を共有する:
(i)それらは、温度、排気ガスの質量流量といった、極端な条件下で一般的に制御する必要がある物理的特性に応答する。
(ii)ただしそれらは、通常の「実際の」運転条件では、システマティックにアクティべートされる。
(iii)それらは、たとえば、正当化されないヒステリシスを使用することにより、アクティベート後に、ある効果が出るように設計されている。
簡単に言えば、ヒステリシスという用語は、新しい状態への切り替えを引き起こす値と元の状態への戻りを引き起こす値との間に特定の「範囲」がある状態を表す。一般的な例は、特定の温度で加熱がオンになるサーモスタットで、温度が初期値よりも数度低い場合にのみオフになることで、システムのオンとオフが連続して行われないようになっている。今回のケースでいうと、ヒステリシスは、元の状態(この場合は「アンモニア負荷モデル」)に切り替えるしきい値が「代替モデル」が動き出す状態に切り替えるレベルよりもかなり低い(または高い)場合に発生する; そして
(iv)それらはSCRシステムの目標効率を大幅に低下させ、AdBlueの投与を大幅に削減する。これにより、NOx排出量が大幅かつ大幅に増加する。
332. 本調査の結果、8個以上の違法操作機器が発見されたが、そのうち6個はSCRシステム(およびAdBlueの投与量)に関連している。……」
「III.D.4.a)SCR操作ツール1:排気ガスの質量流量
335. 最初の違法SCR操作機器は、SCR触媒コンバーターを通過する排気ガスの体積(排気ガスの質量流量)を参照する。
336. 上述したように、排気ガスの質量流量がSCR触媒の処理能力よりも大きい場合、排気ガスはSCR触媒から逃げることができ、NOxチャージを減らす機会が与えられないこととなる。 これに対処しないと、SCR効率の過大評価につながり、AdBlueのオーバードーズにつながる可能性がある。 このことで、SCR触媒がアンモニアでオーバーフィルされ、アンモニアのスリップが発生する可能性がある。 したがって、質量流量を監視し、過剰なマスフローが通知されたときにSCRのターゲット効率の推定値を下げることは、原則として、有効なストラテジーになる可能性がある。
337. ただし、テスト車両では、フィルタ後の排気ガスの質量流量の制限は、時速170 kgに設定されており、これは、実際の運転状況では約100 km / hに相当する。 このしきい値は、技術的な観点から見て、言い訳けができないほど低くなっている。 このしきい値を超えるとすぐに、ECUは代替モデルに切り替える。 さらに、(-80 kg / hの)強いヒステリシスが適用されるため、負荷モデルに切り替える場合、質量流量は90 kg / h未満でなければならない。 60 km / h程度の低速でも、このしきい値は日常的に超過している。 さらに、エンジンが一定している場合、短時間では負荷モデルに戻らない。
338. この制限は、正確には、SCRシステムの「エージングファクター」によって決まることに注意せよ。この機能に関連して、ECUはSCR触媒コンバーターがその耐用期間中にさらされた温度を記録し、これに基づいて経年変化の影響をモデル化する。ただし、以下のグラフに示すように、この違法操作機器のエージングファクターは、完全な100%(完全に新しい状態)が1%~99%(すなわち実質的に新しい)まで減少するとすぐにアクティブになるように設定されている。すでにその時点で、上限は時速200 kgから時速170 kg へ削減され、下限(ヒステリシス)は時速120 kg / hから時速80 kg / hに削減されている。 NEDC検査は完全に新しい車両で行われるため、輸入検査でこの違法操作デバイスを検出できないと推定できるのである。これに対し、本テスト車両はこれらの観測の時点で70,000マイル走行しており、ソフトウェアは69%のSCRエージングファクターを示していた。」
調査対象のブランドはファッションコーディネートサイト「WEAR」の「人気レディースブランドランキング」に掲載されている100ブランドとした。
このランキングは1人でもそのブランドを使用したコーディネートを女性が投稿していると男性・子供による投稿も含めた投稿数で掲載される。
例えば女性による投稿が10件程度でも男性による投稿が10000件あれば掲載されてしまう、ということだ。
しかし他に調査対象を絞り込む手段がなかったためこのランキングに掲載されているブランドを調査対象とした。
そして、WEARではブランド名でコーディネートを検索すると「各ブランドのアイテムを1つ以上使用したコーディネート」が表示されるので、それを「性別:レディース,ユーザー:その他ユーザー,年齢:18歳~22歳」という条件で絞り込み、その検索結果の件数でランキングを作成した。
検索条件の「その他ユーザー」とはWEAR公認ユーザーであるWEARISTAとショップ店員以外のことである。
WEARISTAは特定ブランドの宣伝を行っている場合があるため、ショップ店員は当然自ブランドのアイテムを使用したコーディネートしか投稿していないため、公平性に欠けると判断し除外した。
また、この調査方法だと「少数のユーザーが特定ブランドのアイテムを使用したコーディネートを多く投稿している」ケースが全く考慮されていないが、結果への影響は少ないと判断し無視した。
他にも「年齢のみの絞り込みでは大学生以外も含まれる」「WEARユーザーしか調査対象になっていない」「ユーザーがブランド登録を雑に行っている可能性を考慮していない」など多数の問題があるので、完全に正確な調査ではないことを理解していただきたい。
表にしてみた。
「順位」は今回調査したコーディネート数によるランキング順位、「全体」はWEARの「人気レディースブランドランキング」の順位、「差異」は2つの順位の差を指す。
差異の数字がプラス方向に大きければ「とりわけ女子大生に人気がある」、マイナス方向に大きければ「女子大生以外の年齢層に人気がある」ということである。
下の方のコーデ数2桁のブランドは「子供のコーディネート写真を母親が自分のアカウントで投稿した」などの理由で調査対象に含まれてしまった子供服ブランドなので無視してよい。
また、WEARの全体ランキングの性質上メンズがメインのブランドはこのランキングでの順位は低くなっている。
順位 | 全体 | 差異 | ブランド名 | コーデ数 |
---|---|---|---|---|
1 | 2 | +1 | GU | 54,620 |
2 | 1 | -1 | UNIQLO | 38,518 |
3 | 4 | +1 | WEGO | 30,265 |
4 | 3 | -1 | CONVERSE | 26,569 |
5 | 5 | 0 | NIKE | 20,832 |
6 | 8 | +2 | no brand | 18,225 |
7 | 11 | +4 | LOWRYS FARM | 17,751 |
8 | 7 | -1 | H&M | 14,946 |
9 | 6 | -3 | ZARA | 13,857 |
10 | 13 | +3 | Dr.Martens | 13,741 |
11 | 9 | -2 | adidas | 13,544 |
12 | 17 | +5 | earth music&ecology | 13,331 |
13 | 23 | +10 | FOREVER 21 | 11,032 |
14 | 12 | -2 | VANS | 9,181 |
15 | 22 | +7 | niko and... | 8,501 |
16 | 54 | +38 | SPINNS | 8,466 |
17 | 42 | +25 | 靴下屋 | 8,256 |
18 | 15 | -3 | NEW BALANCE | 8,036 |
19 | 89 | +70 | tutuanna | 7,581 |
20 | 61 | +41 | w closet | 7,492 |
21 | 51 | +30 | Kastane | 6,462 |
22 | 47 | +25 | INGNI | 6,286 |
23 | 24 | +1 | JEANASIS | 6,087 |
24 | 60 | +36 | Honeys | 6,071 |
25 | 28 | +3 | MOUSSY | 5,624 |
26 | 58 | +32 | Heather | 5,587 |
27 | 10 | -17 | GLOBAL WORK | 5,391 |
28 | 27 | -1 | VINTAGE | 5,390 |
29 | 64 | +35 | E hyphen world gallery | 5,365 |
30 | 18 | -12 | GAP | 4,922 |
31 | 30 | -1 | Champion | 4,536 |
32 | 94 | +62 | MAJESTIC LEGON | 4,425 |
33 | 76 | +43 | GRL | 4,149 |
34 | 43 | +9 | Daniel Wellington | 4,000 |
35 | 39 | +4 | adidas originals | 3,909 |
36 | 86 | +50 | PAGEBOY | 3,886 |
37 | 81 | +44 | Bershka | 3,763 |
38 | 77 | +39 | EMODA | 3,703 |
39 | 49 | +10 | Reebok | 3,589 |
40 | 74 | +34 | CASIO | 3,509 |
41 | 44 | +3 | KBF | 3,382 |
42 | 67 | +25 | POLO RALPH LAUREN | 3,333 |
43 | 41 | -2 | AZUL by moussy | 3,271 |
44 | 53 | +9 | LEPSIM | 3,179 |
45 | 63 | +18 | SLY | 3,173 |
46 | 33 | -13 | Levi's | 3,051 |
47 | 92 | +45 | Marc by Marc Jacobs | 2,994 |
48 | 65 | +17 | STUSSY | 2,922 |
49 | 26 | -23 | Handmade | 2,900 |
50 | 62 | +12 | studio CLIP | 2,855 |
51 | 69 | +18 | Right-on | 2,671 |
52 | 57 | +5 | Ciaopanic | 2,664 |
53 | 93 | +40 | who's who Chico | 2,615 |
54 | 46 | -8 | Lee | 2,545 |
55 | 25 | -30 | URBAN RESEARCH | 2,536 |
56 | 68 | +12 | snidel | 2,523 |
57 | 99 | +42 | ORiental TRaffic | 2,463 |
58 | 88 | +30 | MURUA | 2,386 |
59 | 20 | -39 | Ungrid | 2,345 |
60 | 73 | +13 | G-SHOCK | 2,340 |
61 | 55 | -6 | BEAMS BOY | 2,267 |
62 | 71 | +9 | DHOLIC | 2,240 |
63 | 90 | +27 | Vivienne Westwood | 2,202 |
64 | 19 | -45 | BEAUTY&YOUTH UNITED ARROWS | 2,140 |
65 | 52 | -13 | SENSE OF PLACE by URBAN RESEARCH | 2,097 |
66 | 72 | +6 | THE NORTH FACE | 2,059 |
67 | 45 | -22 | coen | 2,004 |
68 | 59 | -9 | BIRKENSTOCK | 1,965 |
69 | 37 | -32 | FREAK'S STORE | 1,830 |
70 | 50 | -20 | Another Edition | 1,827 |
71 | 82 | +11 | mystic | 1,803 |
72 | 97 | +25 | archives | 1,739 |
73 | 35 | -38 | BEAMS | 1,666 |
74 | 21 | -53 | nano・universe | 1,632 |
75 | 34 | -41 | JOURNAL STANDARD | 1,592 |
76 | 40 | -36 | OLD NAVY | 1,436 |
77 | 16 | -61 | HARE | 1,393 |
78 | 100 | +22 | X-girl | 1,327 |
79 | 78 | -1 | Ray BEAMS | 1,326 |
80 | 38 | -42 | Supreme | 1,116 |
81 | 36 | -45 | green label relaxing | 1,106 |
82 | 84 | +2 | ROSE BUD | 999 |
83 | 87 | +4 | NEW ERA | 999 |
84 | 75 | -9 | CIAOPANIC TYPY | 833 |
85 | 32 | -53 | DIESEL | 765 |
86 | 56 | -30 | STUDIOUS | 714 |
87 | 96 | +9 | ikka | 703 |
88 | 79 | -9 | UNITED ARROWS | 632 |
89 | 91 | +2 | JOURNAL STANDARD relume | 598 |
90 | 14 | -76 | RAGEBLUE | 585 |
91 | 80 | -11 | Ray-Ban | 571 |
92 | 98 | +6 | apart by lowrys | 536 |
93 | 66 | -27 | Adam et Rope' | 531 |
94 | 48 | -46 | TODAYFUL | 341 |
95 | 95 | 0 | SLOBE IENA | 277 |
96 | 31 | -65 | AVIREX | 184 |
97 | 70 | -27 | HYSTERIC GLAMOUR | 106 |
98 | 29 | -69 | petit main | 36 |
99 | 83 | -16 | BREEZE | 20 |
100 | 85 | -15 | BRANSHES | 15 |
女子大生だけど他の女子大生がどこで服を買っているのか分からない、という自分のために作成したランキングだが自分と同じように悩んでいる人の参考になれば幸いである。
例えばメルカリでBEAMSの服が買いたくて『BEAMS メンズ』とかで検索したら説明文の最後の方に
COMME CA DU MODE、 COMME CA ISM、COMME CA ME、ビームスbeams、THEORY、ZARA、ディーゼルdiesel、トゥモローランド、トミーTOMMY、ナノユニバースnano universe 、ヒアーズHERE's、ヒューゴボスHUGO BOSS、ポールスミスpaul smith、マーク ジェイコブスMARC JACOBS 、ユナイテッド アローズUNITED ARROWS、ラルフローレンRalph Lauren、アーバンリサーチURBAN RESEARCH、無印良品、ユニクロUNIQLO等が好きな方も是非!」
みたいなあからさまに検索対策用にブランド名とか他社製品名を並べまくってるゴミ出品者が大量に、それはもうBEAMSでメンズじゃない製品で9割以上埋め尽くされるレベルで出てくるんだけど、これ本当どうにかならんの?
闇金に金が流れるとかマネーロンダリングに繋がるとかほとんどのユーザーには関係ないだろうけどこれは大体のエンドユーザーなら一度は迷惑してるだろ。
26回目の誕生日を迎えて、誕生日プレゼントに欲しいものとか聞かれたが、自分はあまり物欲が無いということに気がついた。
車が欲しいとか、高級なものが欲しいというのはもってのほか、前は喜んでいたDIESELのデニムもUNIQLOのデニムで満足するようになってしまったし、去年まで3年連続くらいで買っていたので今年も惰性で行ってみた眼鏡屋も全く心躍らなかった。
今年一年振り返って、強いてあげるならMacbookとAppleWatchはいい買い物だったなと思うが、今の仕事でこれ以上の性能のものは要らないので向こう2年はこの環境でいいなと思ってる。
去年引っ越した家もモノが少ない今の状態が気に入ってるので特に何かを買い足したいわけではないし、(寧ろ服は削りたい
趣味のゲームもパワプロとプロスピ以外ここ3年間やってない。(逆にパワプロとプロスピは小学校の頃初めて買ったパワプロ6から新作が出たら毎回買ってやり続けている。今年は新作は出ないらしい
だからお金も必要以上には要らない。とは将来家庭を持つことを考えたら言ってもられないので相応には稼ぎたい。
何がしたいとかも特段ない。
仕事が楽しくてやり甲斐があって凄く充足感を感じてしまっている。
漠然としたデッカイことしたいってのは無くなった。
それよりも友情とか信頼とか、そういう見えないものの大切さが自分の中で大きくなったような気がする。
昔ライブハウスで聞いてた、既に活動停止したインディーズバンドのアルバムを未だに聞いている。
仕事がうまくいって、新しいことに挑戦できて、取引先や会社の成長に少しでも貢献できて、
日々の楽しみはベイスターズが勝つこと。
そんな物欲の無い、26歳。
あ、でも強いて言うなら一週間インド行きたい
When the diesel generators were gone, the reactor operators switched to emergency battery power. The batteries were designed as one of the backups to the backups, to provide power for cooling the core for 8 hours. And they did.
Within the 8 hours, another power source had to be found and connected to the power plant. The power grid was down due to the earthquake. The diesel generators were destroyed by the tsunami. So mobile diesel generators were trucked in.
This is where things started to go seriously wrong. The external power generators could not be connected to the power plant (the plugs did not fit). So after the batteries ran out, the residual heat could not be carried away any more.
At this point the plant operators begin to follow emergency procedures that are in place for a “loss of cooling event”. It is again a step along the “Depth of Defense” lines. The power to the cooling systems should never have failed completely, but it did, so they “retreat” to the next line of defense. All of this, however shocking it seems to us, is part of the day-to-day training you go through as an operator, right through to managing a core meltdown.
It was at this stage that people started to talk about core meltdown. Because at the end of the day, if cooling cannot be restored, the core will eventually melt (after hours or days), and the last line of defense, the core catcher and third containment, would come into play.
But the goal at this stage was to manage the core while it was heating up, and ensure that the first containment (the Zircaloy tubes that contains the nuclear fuel), as well as the second containment (our pressure cooker) remain intact and operational for as long as possible, to give the engineers time to fix the cooling systems.
Because cooling the core is such a big deal, the reactor has a number of cooling systems, each in multiple versions (the reactor water cleanup system, the decay heat removal, the reactor core isolating cooling, the standby liquid cooling system, and the emergency core cooling system). Which one failed when or did not fail is not clear at this point in time.
So imagine our pressure cooker on the stove, heat on low, but on. The operators use whatever cooling system capacity they have to get rid of as much heat as possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of the fuel rods below 2200°C), as well as the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressure has to be released from time to time. Because the ability to do that in an emergency is so important, the reactor has 11 pressure release valves. The operators now started venting steam from time to time to control the pressure. The temperature at this stage was about 550°C.
This is when the reports about “radiation leakage” starting coming in. I believe I explained above why venting the steam is theoretically the same as releasing radiation into the environment, but why it was and is not dangerous. The radioactive nitrogen as well as the noble gases do not pose a threat to human health.
At some stage during this venting, the explosion occurred. The explosion took place outside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor building has no function in keeping the radioactivity contained. It is not entirely clear yet what has happened, but this is the likely scenario: The operators decided to vent the steam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in the steam more time to subside). The problem is that at the high temperatures that the core had reached at this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode, outside the third containment, damaging the reactor building around. It was that sort of explosion, but inside the pressure vessel (because it was badly designed and not managed properly by the operators) that lead to the explosion of Chernobyl. This was never a risk at Fukushima. The problem of hydrogen-oxygen formation is one of the biggies when you design a power plant (if you are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happened outside, which was not intended but a possible scenario and OK, because it did not pose a risk for the containment.
So the pressure was under control, as steam was vented. Now, if you keep boiling your pot, the problem is that the water level will keep falling and falling. The core is covered by several meters of water in order to allow for some time to pass (hours, days) before it gets exposed. Once the rods start to be exposed at the top, the exposed parts will reach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloy tube, would fail.
And this started to happen. The cooling could not be restored before there was some (very limited, but still) damage to the casing of some of the fuel. The nuclear material itself was still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay – radioactive Cesium and Iodine – started to mix with the steam. The big problem, uranium, was still under control, because the uranium oxide rods were good until 3000 °C. It is confirmed that a very small amount of Cesium and Iodine was measured in the steam that was released into the atmosphere.
It seems this was the “go signal” for a major plan B. The small amounts of Cesium that were measured told the operators that the first containment on one of the rods somewhere was about to give. The Plan A had been to restore one of the regular cooling systems to the core. Why that failed is unclear. One plausible explanation is that the tsunami also took away / polluted all the clean water needed for the regular cooling systems.
The water used in the cooling system is very clean, demineralized (like distilled) water. The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure water does not get activated much, so stays practically radioactive-free. Dirt or salt in the water will absorb the neutrons quicker, becoming more radioactive. This has no effect whatsoever on the core – it does not care what it is cooled by. But it makes life more difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water.
But Plan A had failed – cooling systems down or additional clean water unavailable – so Plan B came into effect. This is what it looks like happened:
In order to prevent a core meltdown, the operators started to use sea water to cool the core. I am not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us.
The point is that the nuclear fuel has now been cooled down. Because the chain reaction has been stopped a long time ago, there is only very little residual heat being produced now. The large amount of cooling water that has been used is sufficient to take up that heat. Because it is a lot of water, the core does not produce sufficient heat any more to produce any significant pressure. Also, boric acid has been added to the seawater. Boric acid is “liquid control rod”. Whatever decay is still going on, the Boron will capture the neutrons and further speed up the cooling down of the core.
The plant came close to a core meltdown. Here is the worst-case scenario that was avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the water steam to avoid pressure buildup. The third containment would then have been completely sealed to allow the core meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor, and all radioactive particles to settle on a surface inside the containment. The cooling system would have been restored eventually, and the molten core cooled to a manageable temperature. The containment would have been cleaned up on the inside. Then a messy job of removing the molten core from the containment would have begun, packing the (now solid again) fuel bit by bit into transportation containers to be shipped to processing plants. Depending on the damage, the block of the plant would then either be repaired or dismantled.
Now, where does that leave us?
・The plant is safe now and will stay safe.
・Japan is looking at an INES Level 4 Accident: Nuclear accident with local consequences. That is bad for the company that owns the plant, but not for anyone else.
・Some radiation was released when the pressure vessel was vented. All radioactive isotopes from the activated steam have gone (decayed). A very small amount of Cesium was released, as well as Iodine. If you were sitting on top of the plants’ chimney when they were venting, you should probably give up smoking to return to your former life expectancy. The Cesium and Iodine isotopes were carried out to the sea and will never be seen again.
・There was some limited damage to the first containment. That means that some amounts of radioactive Cesium and Iodine will also be released into the cooling water, but no Uranium or other nasty stuff (the Uranium oxide does not “dissolve” in the water). There are facilities for treating the cooling water inside the third containment. The radioactive Cesium and Iodine will be removed there and eventually stored as radioactive waste in terminal storage.
・The seawater used as cooling water will be activated to some degree. Because the control rods are fully inserted, the Uranium chain reaction is not happening. That means the “main” nuclear reaction is not happening, thus not contributing to the activation. The intermediate radioactive materials (Cesium and Iodine) are also almost gone at this stage, because the Uranium decay was stopped a long time ago. This further reduces the activation. The bottom line is that there will be some low level of activation of the seawater, which will also be removed by the treatment facilities.
・The seawater will then be replaced over time with the “normal” cooling water
・The reactor core will then be dismantled and transported to a processing facility, just like during a regular fuel change.
・Fuel rods and the entire plant will be checked for potential damage. This will take about 4-5 years.
・The safety systems on all Japanese plants will be upgraded to withstand a 9.0 earthquake and tsunami (or worse)
・I believe the most significant problem will be a prolonged power shortage. About half of Japan’s nuclear reactors will probably have to be inspected, reducing the nation’s power generating capacity by 15%. This will probably be covered by running gas power plants that are usually only used for peak loads to cover some of the base load as well. That will increase your electricity bill, as well as lead to potential power shortages during peak demand, in Japan.
If you want to stay informed, please forget the usual media outlets and consult the following websites:
http://bravenewclimate.com/2011/03/12/japan-nuclear-earthquake/
結論:大丈夫。
MvK2010
I'm going to copy paste a full blog post of a research scientist at MIT here, who explains the situation at Fukushima much better than anyone else has, his message: no worries.
This post is by Dr Josef Oehmen, a research scientist at MIT, in Boston.
He is a PhD Scientist, whose father has extensive experience in Germany’s nuclear industry. I asked him to write this information to my family in Australia, who were being made sick with worry by the media reports coming from Japan. I am republishing it with his permission.
It is a few hours old, so if any information is out of date, blame me for the delay in getting it published.
This is his text in full and unedited. It is very long, so get comfy.
I am writing this text (Mar 12) to give you some peace of mind regarding some of the troubles in Japan, that is the safety of Japan’s nuclear reactors. Up front, the situation is serious, but under control. And this text is long! But you will know more about nuclear power plants after reading it than all journalists on this planet put together.
There was and will *not* be any significant release of radioactivity.
By “significant” I mean a level of radiation of more than what you would receive on – say – a long distance flight, or drinking a glass of beer that comes from certain areas with high levels of natural background radiation.
I have been reading every news release on the incident since the earthquake. There has not been one single (!) report that was accurate and free of errors (and part of that problem is also a weakness in the Japanese crisis communication). By “not free of errors” I do not refer to tendentious anti-nuclear journalism – that is quite normal these days. By “not free of errors” I mean blatant errors regarding physics and natural law, as well as gross misinterpretation of facts, due to an obvious lack of fundamental and basic understanding of the way nuclear reactors are build and operated. I have read a 3 page report on CNN where every single paragraph contained an error.
We will have to cover some fundamentals, before we get into what is going on.
Construction of the Fukushima nuclear power plants
The plants at Fukushima are so called Boiling Water Reactors, or BWR for short. Boiling Water Reactors are similar to a pressure cooker. The nuclear fuel heats water, the water boils and creates steam, the steam then drives turbines that create the electricity, and the steam is then cooled and condensed back to water, and the water send back to be heated by the nuclear fuel. The pressure cooker operates at about 250 °C.
The nuclear fuel is uranium oxide. Uranium oxide is a ceramic with a very high melting point of about 3000 °C. The fuel is manufactured in pellets (think little cylinders the size of Lego bricks). Those pieces are then put into a long tube made of Zircaloy with a melting point of 2200 °C, and sealed tight. The assembly is called a fuel rod. These fuel rods are then put together to form larger packages, and a number of these packages are then put into the reactor. All these packages together are referred to as “the core”.
The Zircaloy casing is the first containment. It separates the radioactive fuel from the rest of the world.
The core is then placed in the “pressure vessels”. That is the pressure cooker we talked about before. The pressure vessels is the second containment. This is one sturdy piece of a pot, designed to safely contain the core for temperatures several hundred °C. That covers the scenarios where cooling can be restored at some point.
The entire “hardware” of the nuclear reactor – the pressure vessel and all pipes, pumps, coolant (water) reserves, are then encased in the third containment. The third containment is a hermetically (air tight) sealed, very thick bubble of the strongest steel. The third containment is designed, built and tested for one single purpose: To contain, indefinitely, a complete core meltdown. For that purpose, a large and thick concrete basin is cast under the pressure vessel (the second containment), which is filled with graphite, all inside the third containment. This is the so-called “core catcher”. If the core melts and the pressure vessel bursts (and eventually melts), it will catch the molten fuel and everything else. It is built in such a way that the nuclear fuel will be spread out, so it can cool down.
This third containment is then surrounded by the reactor building. The reactor building is an outer shell that is supposed to keep the weather out, but nothing in. (this is the part that was damaged in the explosion, but more to that later).
Fundamentals of nuclear reactions
The uranium fuel generates heat by nuclear fission. Big uranium atoms are split into smaller atoms. That generates heat plus neutrons (one of the particles that forms an atom). When the neutron hits another uranium atom, that splits, generating more neutrons and so on. That is called the nuclear chain reaction.
Now, just packing a lot of fuel rods next to each other would quickly lead to overheating and after about 45 minutes to a melting of the fuel rods. It is worth mentioning at this point that the nuclear fuel in a reactor can *never* cause a nuclear explosion the type of a nuclear bomb. Building a nuclear bomb is actually quite difficult (ask Iran). In Chernobyl, the explosion was caused by excessive pressure buildup, hydrogen explosion and rupture of all containments, propelling molten core material into the environment (a “dirty bomb”). Why that did not and will not happen in Japan, further below.
In order to control the nuclear chain reaction, the reactor operators use so-called “moderator rods”. The moderator rods absorb the neutrons and kill the chain reaction instantaneously. A nuclear reactor is built in such a way, that when operating normally, you take out all the moderator rods. The coolant water then takes away the heat (and converts it into steam and electricity) at the same rate as the core produces it. And you have a lot of leeway around the standard operating point of 250°C.
The challenge is that after inserting the rods and stopping the chain reaction, the core still keeps producing heat. The uranium “stopped” the chain reaction. But a number of intermediate radioactive elements are created by the uranium during its fission process, most notably Cesium and Iodine isotopes, i.e. radioactive versions of these elements that will eventually split up into smaller atoms and not be radioactive anymore. Those elements keep decaying and producing heat. Because they are not regenerated any longer from the uranium (the uranium stopped decaying after the moderator rods were put in), they get less and less, and so the core cools down over a matter of days, until those intermediate radioactive elements are used up.
This residual heat is causing the headaches right now.
So the first “type” of radioactive material is the uranium in the fuel rods, plus the intermediate radioactive elements that the uranium splits into, also inside the fuel rod (Cesium and Iodine).
There is a second type of radioactive material created, outside the fuel rods. The big main difference up front: Those radioactive materials have a very short half-life, that means that they decay very fast and split into non-radioactive materials. By fast I mean seconds. So if these radioactive materials are released into the environment, yes, radioactivity was released, but no, it is not dangerous, at all. Why? By the time you spelled “R-A-D-I-O-N-U-C-L-I-D-E”, they will be harmless, because they will have split up into non radioactive elements. Those radioactive elements are N-16, the radioactive isotope (or version) of nitrogen (air). The others are noble gases such as Xenon. But where do they come from? When the uranium splits, it generates a neutron (see above). Most of these neutrons will hit other uranium atoms and keep the nuclear chain reaction going. But some will leave the fuel rod and hit the water molecules, or the air that is in the water. Then, a non-radioactive element can “capture” the neutron. It becomes radioactive. As described above, it will quickly (seconds) get rid again of the neutron to return to its former beautiful self.
This second “type” of radiation is very important when we talk about the radioactivity being released into the environment later on.
I will try to summarize the main facts. The earthquake that hit Japan was 7 times more powerful than the worst earthquake the nuclear power plant was built for (the Richter scale works logarithmically; the difference between the 8.2 that the plants were built for and the 8.9 that happened is 7 times, not 0.7). So the first hooray for Japanese engineering, everything held up.
When the earthquake hit with 8.9, the nuclear reactors all went into automatic shutdown. Within seconds after the earthquake started, the moderator rods had been inserted into the core and nuclear chain reaction of the uranium stopped. Now, the cooling system has to carry away the residual heat. The residual heat load is about 3% of the heat load under normal operating conditions.
The earthquake destroyed the external power supply of the nuclear reactor. That is one of the most serious accidents for a nuclear power plant, and accordingly, a “plant black out” receives a lot of attention when designing backup systems. The power is needed to keep the coolant pumps working. Since the power plant had been shut down, it cannot produce any electricity by itself any more.
Things were going well for an hour. One set of multiple sets of emergency Diesel power generators kicked in and provided the electricity that was needed. Then the Tsunami came, much bigger than people had expected when building the power plant (see above, factor 7). The tsunami took out all multiple sets of backup Diesel generators.
When designing a nuclear power plant, engineers follow a philosophy called “Defense of Depth”. That means that you first build everything to withstand the worst catastrophe you can imagine, and then design the plant in such a way that it can still handle one system failure (that you thought could never happen) after the other. A tsunami taking out all backup power in one swift strike is such a scenario. The last line of defense is putting everything into the third containment (see above), that will keep everything, whatever the mess, moderator rods in our out, core molten or not, inside the reactor.
http://anond.hatelabo.jp/20110314030613
へ続く
133 名盤さん [] Date:2008/05/10(土) 00:11:05 ID:uW+7WZgx Be:
NME 年間ベストアルバム1980-2007
1980 Joy Division / Closer
1981 Grace Jones / Nightclubbing
1982 Marvin Gaye / Midnight love
1983 Elvis Costello / Punch The Clock
1984 Bobby Womack / Poet 2
1986 Prince & the Revolution / Parade
1987 Public Enemy / Yo bum rush the show
1988 Public Enemy / It Takes A Nation Of Millions..
1990 De La Soul / 3 Feet high & rising
1990 Happy Mondays / Pills 'n' thrills and bellyaches
1993 Bjork / Debut
1994 Oasis / Definitely Maybe
1995 Tricky / Maxinquaye
1996 Beck / Odelay
1997 Spiritualized / Ladies And Gentleman We Are Floating In Space
1998 Mercury Rev / Deserters Songs
1999 The Flaming Lips / The Soft Bulletin
2000 Queens Of The Stone Age ? Rated R
2001 The Strokes / Is This It
2002 Coldplay / A Rush Of Blood To The Head
2003 The White Stripes / Elephant
2004 Franz Ferdinand / Franz Ferdinand
2005 Bloc Party ? Silent Alarm
2006 Arctic Monkeys / Whatever People Say I Am, That’s What I’m Not
2007 Klaxons / Myths Of The Near Future
134 名盤さん [] Date:2008/05/10(土) 00:12:00 ID:uW+7WZgx Be:
Rolling Stone 年間ベストアルバム1980-2007
1980 The Clash / London Calling
1981 Rolling Stones / Tatoo You
1982 Bruce Springsteen / Nebraska and R. & L. Thompson / Shoot out the lights
1983 R.E.M. / Murmur
1984 Bruce Springsteen / Born In The U.S.A.
1985 Talking Heads / Little Creatures
1986 Paul Simon / Graceland
1987 Bruce Springsteen / Tunnel Of Love
1988 Midnight Oil / Diesel and Dust
1989 Neil Young / Freedom
1990 Sinead O'Connor / I Do Not Want What I Haven't Got
1992 R.E.M. / Automatic For The People
1993 Nirvana / In Utero
1995 PJ Harvey / To Bring You My Love
1996 Beck / Odelay
1997 Bob Dylan / Time Out Of Mind
1998 Lauryn Hill / The Miseducation of Lauryn Hill
1999 Rage Against The Machine / The Battle of Los Angeles
2000 Eminem / The Marshall Mathers LP
2001 Bob Dylan / Love and Theft
2003 OutKast / Speakerboxxx/The Love Below
2004 Kanye West / The College Dropout
2005 Kanye West / Late Registration
2006 Bob Dylan / Modern Times
2007 MIA / Kala
135 名盤さん [] Date:2008/05/10(土) 00:42:04 ID:uW+7WZgx Be:
おまけ
rockin'on 年間ベストアルバム 2002-2007
2002 Red Hot Chili Peppers / By the Way
2003 Radiohead / Hail to the Thief
2004 Green Day / American Idiot
2005 Oasis / Don't Believe The Truth
2006 Red Hot Chili Peppers / Stadium Arcadium
2007 Radiohead / In Rainbows
1997 Radiohead / OK Computer
1998 Elliott Smith / XO
1999 Super Furry Animals / Guerilla
2000 FUMIYA TANAKA / UNKNOWN POSSIBILITY vol.2
2001 Super Furry Animals / Rings Around The World
2003 Outkast / Speakerboxxx/The Love Below
2004 The Libertines / The Libertines
2006 Arctic Monkeys / Whatever People Say I Am, That’s What I’m Not
2007 Radiohead / In Rainbows
KEREM SHALOM, Israel, July 11 ?? Real life has a way of intruding into the airy absolutes of the Israeli-Palestinian conflict. Each side may deny the other’s historical legitimacy, or plot the other’s demise, but somehow, the gritty business of coexistence marches on.
Skip to next paragraph
Enlarge This Image
Rina Castelnuovo for The New York Times
An Israeli man signaled for a truck to move toward Gaza at Sufa on Wednesday. Commerce continues despite the Hamas takeover.
The New York Times
For the past month, since the Islamic militants of Hamas took over the Gaza Strip, Israel has kept the main commercial crossing point at Karni shuttered, squeezing the life out of the limp Gazan economy. Israel bans contact with Hamas, and Hamas seeks Israel’s destruction, making border crossing etiquette more precarious than elsewhere.
Yet at this small crossing near the Egyptian border on Wednesday, between mortar attacks by Hamas and other militants, about 20 truckloads of milk products, meat, medicines and eggs passed from Israel into Gaza, part of the effort to keep basic commodities reaching the 1.5 million Palestinians of the largely isolated strip. Most of the supplies are not humanitarian relief, but are ordered by Palestinian merchants from Israeli suppliers, relying on contacts built up over years.
The mechanics of the crossover manage to answer Israel’s security needs while avoiding contact with Hamas. At Kerem Shalom, Israeli trucks transfer their goods to what Israeli military officials describe as a “sterile” Palestinian truck. Driven by a carefully vetted Palestinian driver, the truck never leaves the terminal, carrying the goods to the Palestinian side, where they are transferred onto ordinary Palestinian trucks that drive into Gaza.
Kerem Shalom, which means “vineyard of peace,” is surrounded by fences and concrete barriers. It can process only about 20 trucks a day, so it is reserved for products that require refrigeration.
The hardier goods, which make up the bulk of the supplies, go through another crossing, at Sufa, to the north. About 100 Israeli trucks a day come from Israel, swirling up clouds of dust before dumping thousands of tons of dry products, bales of straw and crates of fruit on “the platform,” a fenced-in patch of baked earth. At 3 p.m. the Israeli suppliers leave. Like drug dealers picking up a “drop,” the Gaza merchants send in trucks from a gate on the other side and take the products away.
Other products make their way into Gaza with virtually no human interaction. At the fuel depot at Nahal Oz, Israeli tankers pour diesel, gasoline and cooking gas into Gaza through pipes that run beneath the border. And even at Karni, the main crossing that closed for normal operations on June 12, the Israelis have adapted a 650-foot-long conveyor belt, which was previously used for gravel, to send in grain.
“It is better all around from a security point of view that commodities go in,” said Maj. Peter Lerner of the Coordination and Liaison Administration, the Israeli military agency that deals with the civilian aspects of the Gaza border. “More despair doesn’t serve anyone.”
Israeli officials cite security reasons for having shut Karni, the only crossing equipped to send containers into Gaza, or to handle exports out of the strip. “Karni was based on the concept of two sides operating together,” said Col. Nir Press, the head of the coordination agency.
Colonel Press noted that in April 2006, a vehicle loaded with half a ton of explosives got through three of four checkpoints on the Palestinian side of Karni, and was stopped at the last security position by members of the American-backed Presidential Guard, loyal to the Palestinian president, Mahmoud Abbas of Fatah.
But the Presidential Guard is no longer there, having been routed, along with all other Fatah forces in Gaza, by Hamas.
Instead, the military wing of Hamas and other Palestinian factions have been firing mortar shells at Kerem Shalom. On Tuesday, 10 of them landed in and around the terminal as two trucks of milk were passing. The crossing was closed for the rest of the day. [Another barrage of mortar shells hit areas around Kerem Shalom on Thursday.]
Hamas suspects that Israel wants to use Kerem Shalom to replace the Rafah crossing on the Egypt-Gaza border, which has been closed since June 9. The Palestinians had symbolic control at Rafah. At Kerem Shalom, Israel can better supervise who ?? and what ?? is going in and out of the strip.
“Kerem Shalom is a military post, a place from which Israeli tanks begin their incursions into Gaza,” said Fawzi Barhoum, a Hamas spokesman, justifying the mortar attacks. “How can we consider it a safe and legitimate crossing to replace Rafah?”
But when it comes to food, rather than principle, Hamas is proving itself pragmatic as well. On Sunday, Palestinian merchants, trying to press Israel to reopen Karni, told the Israelis that Hamas had barred the import of Israeli fruit. But by Wednesday, the Israeli fruit was ordered again. “Hamas does not want to lose the private sector,” a Gaza businessman explained.
Tellingly, the exposed Sufa crossing, through which most of the food comes, has not been attacked with mortars so far. Without Karni, however, and with the smaller crossings operating on a one-way basis, Gaza can barely subsist. With hardly any raw materials going in, and no products from Gazan farms, greenhouses and factories so far allowed out, Gaza’s tiny industrial base is on the verge of collapse.
Hamas officials say they want to start negotiations with Israel about reopening the formal crossings. Major Lerner said that Hamas had “a few things to do” first, including recognizing Israel’s right to exist and freeing Gilad Shalit, the Israeli soldier captured and taken to Gaza in a raid more than a year ago.
But the ultimate test of pragmatism may come in September when the Hebrew calendar enters what is known in Jewish law as a “shmita” year. Then the fields of Israel are supposed to lie fallow, and observant Jews seek agricultural products grown elsewhere. Before the Hamas takeover, Israel’s rabbis had reached agreements with Palestinians to import vegetables from Gaza, Major Lerner said. Given the needs of both sides, it may still happen.