Dates are inconsistent

Dates are inconsistent

219 results sorted by ID

Possible spell-corrected query: cca
2024/1570 (PDF) Last updated: 2024-10-05
Can KANs Do It? Toward Interpretable Deep Learning-based Side-channel Analysis
Kota Yoshida, Sengim Karayalcin, Stjepan Picek
Attacks and cryptanalysis

Recently, deep learning-based side-channel analysis (DLSCA) has emerged as a serious threat against cryptographic implementations. These methods can efficiently break implementations protected with various countermeasures while needing limited manual intervention. To effectively protect implementation, it is therefore crucial to be able to interpret \textbf{how} these models are defeating countermeasures. Several works have attempted to gain a better understanding of the mechanics of these...

2024/1458 (PDF) Last updated: 2024-09-18
Providing Integrity for Authenticated Encryption in the Presence of Joint Faults and Leakage
Francesco Berti, Itamar Levi
Secret-key cryptography

Passive (leakage exploitation) and active (fault injection) physical attacks pose a significant threat to cryptographic schemes. Although leakage-resistant cryptography is well studied, there is little work on mode-level security in the presence of joint faults and leakage exploiting adversaries. In this paper, we focus on integrity for authenticated encryption (AE). First, we point out that there is an inherent attack in the fault-resilience model presented at ToSC 2023. This shows how...

2024/1437 (PDF) Last updated: 2024-10-04
HierNet: A Hierarchical Deep Learning Model for SCA on Long Traces
Suvadeep Hajra, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Side-channel analysis (SCA) compromises the security of cryptographic devices by exploiting various side-channel leakages such as power consumption, electromagnetic (EM) emanations, or timing variations, posing a practical threat to the security and privacy of modern digital systems. In power or EM SCA, statistical or machine learning methods are employed to extract secret information from power/EM traces. In many practical scenarios, raw power/EM traces can span hundreds of thousands of...

2024/1381 (PDF) Last updated: 2024-09-03
Reality Check on Side-Channels: Lessons learnt from breaking AES on an ARM Cortex A processor
Shivam Bhasin, Harishma Boyapally, Dirmanto Jap
Attacks and cryptanalysis

AES implementation has been vastly analysed against side-channel attacks in the last two decades particularly targeting resource-constrained microcontrollers. Still, less research has been conducted on AES implementations on advanced hardware platforms. In this study, we examine the resilience of AES on an ARM Cortex A72 processor within the Raspberry Pi 4B model. Unlike their microcontroller counterparts, these platforms operate within the complex ecosystem of an operating system (OS),...

2024/1309 (PDF) Last updated: 2024-08-21
R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection
Archisman Ghosh, Dong-Hyun Seo, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Side-channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side-channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the attacker’s search space. In recent years, physical...

2024/1277 (PDF) Last updated: 2024-08-13
Robust but Relaxed Probing Model
Nicolai Müller, Amir Moradi
Applications

Masking has become a widely applied and heavily researched method to protect cryptographic implementations against SCA attacks. The success of masking is primarily attributed to its strong theoretical foundation enabling it to formally prove security by modeling physical properties through so-called probing models. Specifically, the robust $d$-probing model enables us to prove the security for arbitrarily masked hardware circuits, manually or with the assistance of automated tools, even when...

2024/1251 (PDF) Last updated: 2024-08-06
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Attacks and cryptanalysis

Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1187 (PDF) Last updated: 2024-07-23
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis

Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...

2024/1143 (PDF) Last updated: 2024-07-13
LR-OT: Leakage-Resilient Oblivious Transfer
Francesco Berti, Carmit Hazay, Itamar Levi
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...

2024/1019 (PDF) Last updated: 2024-06-24
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...

2024/967 (PDF) Last updated: 2024-07-08
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation

Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...

2024/709 (PDF) Last updated: 2024-09-12
Masked Computation the Floor Function and its Application to the FALCON Signature
Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier
Public-key cryptography

FALCON is candidate for standardization of the new Post Quantum Cryptography (PQC) primitives by the National Institute of Standards and Technology (NIST). However, it remains a challenge to define efficient countermeasures against side-channel attacks (SCA) for this algorithm. FALCON is a lattice-based signature that relies on rational numbers which is unusual in the cryptography field. While recent work proposed a solution to mask the addition and the multiplication, some roadblocks...

2024/708 (PDF) Last updated: 2024-05-07
Automated Generation of Fault-Resistant Circuits
Nicolai Müller, Amir Moradi
Implementation

Fault Injection (FI) attacks, which involve intentionally introducing faults into a system to cause it to behave in an unintended manner, are widely recognized and pose a significant threat to the security of cryptographic primitives implemented in hardware, making fault tolerance an increasingly critical concern. However, protecting cryptographic hardware primitives securely and efficiently, even with well-established and documented methods such as redundant computation, can be a...

2024/440 (PDF) Last updated: 2024-06-10
Secret and Shared Keys Recovery on Hamming Quasi-Cyclic with SASCA
Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau
Attacks and cryptanalysis

Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed-Solomon (RS)...

2024/438 (PDF) Last updated: 2024-03-14
EFFLUX-F2: A High Performance Hardware Security Evaluation Board
Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya
Attacks and cryptanalysis

Side-channel analysis has become a cornerstone of modern hardware security evaluation for cryptographic accelerators. Recently, these techniques are also being applied in fields such as AI and Machine Learning to investigate possible threats. Security evaluations are reliant on standard test setups including commercial and open-source evaluation boards such as, SASEBO/SAKURA and ChipWhisperer. However, with shrinking design footprints and overlapping tasks on the same platforms, the quality...

2024/428 (PDF) Last updated: 2024-06-18
SNOW-SCA: ML-assisted Side-Channel Attack on SNOW-V
Harshit Saurabh, Anupam Golder, Samarth Shivakumar Titti, Suparna Kundu, Chaoyun Li, Angshuman Karmakar, Debayan Das
Attacks and cryptanalysis

This paper presents SNOW-SCA, the first power side-channel analysis (SCA) attack of a 5G mobile communication security standard candidate, SNOW-V, running on a 32-bit ARM Cortex-M4 microcontroller. First, we perform a generic known-key correlation (KKC) analysis to identify the leakage points. Next, a correlation power analysis (CPA) attack is performed, which reduces the attack complexity to two key guesses for each key byte. The correct secret key is then uniquely identified utilizing...

2024/287 (PDF) Last updated: 2024-02-20
CAPABARA: A Combined Attack on CAPA
Dilara Toprakhisar, Svetla Nikova, Ventzislav Nikov
Attacks and cryptanalysis

Physical attacks pose a substantial threat to the secure implementation of cryptographic algorithms. While considerable research efforts are dedicated to protecting against passive physical attacks (e.g., side-channel analysis (SCA)), the landscape of protection against other types of physical attacks remains a challenge. Fault attacks (FA), though attracting growing attention in research, still lack the prevalence of provably secure designs when compared to SCA. The realm of combined...

2024/186 (PDF) Last updated: 2024-06-30
RAD-FS: Remote Timing and Power SCA Security in DVFS-Augmented Ultra-Low-Power Embedded Systems
Daniel Dobkin, Nimrod Cever, Itamar Levi
Attacks and cryptanalysis

High-performance crypto-engines have become crucial components in modern System-On-Chip (SoC) architectures across platforms, from servers to edge-IoTs’. Alas, their secure operation faces a significant obstacle caused by information-leakage through various side-channels. Adversaries exploit statistical-analysis techniques on measured (e.g.,) power and timing signatures generated during (e.g.,) encryption, extracting secrets. Mathematical countermeasures against such attacks often impose...

2024/170 (PDF) Last updated: 2024-02-05
Train Wisely: Multifidelity Bayesian Optimization Hyperparameter Tuning in Side-Channel Analysis
Trevor Yap Hong Eng, Shivam Bhasin, Léo Weissbart
Implementation

Side-Channel Analysis (SCA) is critical in evaluating the security of cryptographic implementations. The search for hyperparameters poses a significant challenge, especially when resources are limited. In this work, we explore the efficacy of a multifidelity optimization technique known as BOHB in SCA. In addition, we proposed a new objective function called $ge_{+ntge}$, which could be incorporated into any Bayesian Optimization used in SCA. We show the capabilities of both BOHB and...

2024/167 (PDF) Last updated: 2024-02-05
Creating from Noise: Trace Generations Using Diffusion Model for Side-Channel Attack
Trevor Yap, Dirmanto Jap
Implementation

In side-channel analysis (SCA), the success of an attack is largely dependent on the dataset sizes and the number of instances in each class. The generation of synthetic traces can help to improve attacks like profiling attacks. However, manually creating synthetic traces from actual traces is arduous. Therefore, automating this process of creating artificial traces is much needed. Recently, diffusion models have gained much recognition after beating another generative model known as...

2024/130 (PDF) Last updated: 2024-01-30
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation

While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...

2024/124 (PDF) Last updated: 2024-07-23
Perceived Information Revisited II: Information-Theoretical Analysis of Deep-Learning Based Side-Channel Attacks
Akira Ito, Rei Ueno, Naofumi Homma
Attacks and cryptanalysis

Previous studies on deep-learning-based side-channel attacks (DL-SCAs) have shown that traditional performance evaluation metrics commonly used in DL, like accuracy and F1 score, are not effective in evaluating DL-SCA performance. Therefore, some previous studies have proposed new alternative metrics for evaluating the performance of DL-SCAs. Notably, perceived information (PI) and effective perceived information (EPI) are major metrics based on information theory. While it has been...

2024/071 (PDF) Last updated: 2024-01-17
Too Hot To Be True: Temperature Calibration for Higher Confidence in NN-assisted Side-channel Analysis
Seyedmohammad Nouraniboosjin, Fatemeh Ganji
Attacks and cryptanalysis

The past years have witnessed a considerable increase in research efforts put into neural network-assisted profiled side-channel analysis (SCA). Studies have also identified challenges, e.g., closing the gap between metrics for machine learning (ML) classification and side-channel attack evaluation. In fact, in the context of NN-assisted SCA, the NN’s output distribution forms the basis for successful key recovery. In this respect, related work has covered various aspects of integrating...

2024/066 (PDF) Last updated: 2024-10-01
Exploiting the Central Reduction in Lattice-Based Cryptography
Tolun Tosun, Amir Moradi, Erkay Savas
Attacks and cryptanalysis

This paper questions the side-channel security of central reduction technique, which is widely adapted in efficient implementations of Lattice-Based Cryptography (LBC). We show that the central reduction leads to a vulnerability by creating a strong dependency between the power consumption and the sign of sensitive intermediate values. We exploit this dependency by introducing the novel absolute value prediction function, which can be employed in higher-order non-profiled multi-query...

2024/060 (PDF) Last updated: 2024-10-01
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Richard Petri, Emanuele Strieder
Attacks and cryptanalysis

NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...

2024/049 (PDF) Last updated: 2024-01-15
CL-SCA: Leveraging Contrastive Learning for Profiled Side-Channel Analysis
Annv Liu, An Wang, Shaofei Sun, Congming Wei, Yaoling Ding, Yongjuan Wang, Liehuang Zhu
Attacks and cryptanalysis

Side-channel analysis based on machine learning, especially neural networks, has gained significant attention in recent years. However, many existing methods still suffer from certain limitations. Despite the inherent capability of neural networks to extract features, there remains a risk of extracting irrelevant information. The heavy reliance on profiled traces makes it challenging to adapt to remote attack scenarios with limited profiled traces. Besides, attack traces also contain...

2023/1952 (PDF) Last updated: 2023-12-25
Overview and Discussion of Attacks on CRYSTALS-Kyber
Stone Li
Attacks and cryptanalysis

This paper reviews common attacks in classical cryptography and plausible attacks in the post-quantum era targeted at CRYSTALS-Kyber. Kyber is a recently standardized post-quantum cryptography scheme that relies on the hardness of lattice problems. Although it has undergone rigorous testing by the National Institute of Standards and Technology (NIST), there have recently been studies that have successfully executed attacks against Kyber while showing their applicability outside of controlled...

2023/1860 (PDF) Last updated: 2023-12-04
EstraNet: An Efficient Shift-Invariant Transformer Network for Side-Channel Analysis
Suvadeep Hajra, Siddhartha Chowdhury, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter, and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced...

2023/1746 (PDF) Last updated: 2023-11-11
A masking method based on orthonormal spaces, protecting several bytes against both SCA and FIA with a reduced cost
Claude Carlet, Abderrahman Daif, Sylvain Guilley, Cédric Tavernier
Cryptographic protocols

In the attacker models of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA), the opponent has access to a noisy version of the internal behavior of the hardware. Since the end of the nineties, many works have shown that this type of attacks constitutes a serious threat to cryptosystems implemented in embedded devices. In the state-of-the-art, there exist several countermeasures to protect symmetric encryption (especially AES-128). Most of them protect only against one of these two...

2023/1626 (PDF) Last updated: 2024-04-18
Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts - A Case Study on HQC KEM
Thales Paiva, Prasanna Ravi, Dirmanto Jap, Shivam Bhasin
Attacks and cryptanalysis

HQC is a code-based key encapsulation mechanism (KEM) that was selected to move to the fourth round of the NIST post-quantum standardization process. While this scheme was previously targeted by side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...

2023/1596 (PDF) Last updated: 2023-10-16
A Black Box Attack Using Side Channel Analysis and Hardware Trojans
Raja Adhithan Radhakrishnan
Attacks and cryptanalysis

The emergence of hardware trojans as significant threats in various aspects of hardware design, including Firmware, open-source IP, and PCB design, has raised serious concerns. Simultaneously, AI technologies have been employed to simplify the complexity of Side Channel Analysis (SCA) attacks. Due to the increasing risk posed by these threats, it becomes essential to test hardware by considering all possible attack vectors. This paper aims to propose a black box attack using...

2023/1563 (PDF) Last updated: 2023-10-17
Formal Analysis of Non-profiled Deep-learning Based Side-channel Attacks
Akira Ito, Rei Ueno, Rikuma Tanaka, Naofumi Homma
Attacks and cryptanalysis

This paper formally analyzes two major non-profiled deep-learning-based side-channel attacks (DL-SCAs): differential deep-learning analysis (DDLA) by Timon and collision DL-SCA by Staib and Moradi. These DL-SCAs leverage supervised learning in non-profiled scenarios. Although some intuitive descriptions of these DL-SCAs exist, their formal analyses have been rarely conducted yet, which makes it unclear why and when the attacks succeed and how the attack can be improved. In this paper, we...

2023/1550 (PDF) Last updated: 2023-10-09
A Thorough Evaluation of RAMBAM
Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi
Implementation

The application of masking, widely regarded as the most robust and reliable countermeasure against Side-Channel Analysis (SCA) attacks, has been the subject of extensive research across a range of cryptographic algorithms, especially AES. However, the implementation cost associated with applying such a countermeasure can be significant and even in some scenarios infeasible due to considerations such as area and latency overheads, as well as the need for fresh randomness to ensure the...

2023/1341 (PDF) Last updated: 2023-09-08
Combined Private Circuits - Combined Security Refurbished
Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann, Sayandeep Saha, Pascal Sasdrich, François-Xavier Standaert
Implementation

Physical attacks are well-known threats to cryptographic implementations. While countermeasures against passive Side-Channel Analysis (SCA) and active Fault Injection Analysis (FIA) exist individually, protecting against their combination remains a significant challenge. A recent attempt at achieving joint security has been published at CCS 2022 under the name CINI-MINIS. The authors introduce relevant security notions and aim to construct arbitrary-order gadgets that remain trivially...

2023/1287 (PDF) Last updated: 2024-02-29
To extend or not to extend: Agile Masking Instructions for PQC
Markus Krausz, Georg Land, Florian Stolz, Dennis Naujoks, Jan Richter-Brockmann, Tim Güneysu, Lucie Kogelheide
Implementation

Splitting up sensitive data into multiple shares – termed masking – has proven an effective countermeasure against various types of Side-Channel Analysis (SCA) on cryptographic implementations. However, in software this approach not only leads to dramatic performance overheads for non-linear operations, but also suffers from microarchitectural leakage, which is hard to avoid. Both problems can be addressed with one solution: masked hardware accelerators. In this context, Gao et al. [GGM+...

2023/1252 (PDF) Last updated: 2023-08-21
Towards Private Deep Learning-based Side-Channel Analysis using Homomorphic Encryption
Fabian Schmid, Shibam Mukherjee, Stjepan Picek, Marc Stöttinger, Fabrizio De Santis, Christian Rechberger
Applications

Side-channel analysis certification is a process designed to certify the resilience of cryptographic hardware and software implementations against side-channel attacks. In certain cases, third-party evaluations by external companies or departments are necessary due to limited budget, time, or even expertise with the penalty of a significant exchange of sensitive information during the evaluation process. In this work, we investigate the potential of Homomorphic Encryption (HE) in...

2023/1220 (PDF) Last updated: 2024-05-26
Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach
Pierre-Augustin Berthet, Yoan Rougeolle, Cédric Tavernier, Jean-Luc Danger, Laurent Sauvage

The recent technological advances in Post-Quantum Cryptography (PQC) raise the questions of robust implementations of new asymmetric cryptographic primitives in today’s technology. This is the case for the lattice-based Module Lattice-Key Encapsulation Mechanism (ML-KEM) algorithm which is proposed by the NIST as the first standard for Key Encapsulation Mechanism (KEM), taking inspiration from CRYSTALS-Kyber. We have notably to make sure the ML-KEM implementation is resilient against...

2023/1213 (PDF) Last updated: 2023-12-05
Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme
Rei Ueno, Naofumi Homma, Akiko Inoue, Kazuhiko Minematsu
Secret-key cryptography

This paper presents a provably secure, higher-order, and leakage-resilient (LR) rekeying scheme named LR Rekeying with Random oracle Repetition (LR4), along with a quantitative security evaluation methodology. Many existing LR primitives are based on a concept of leveled implementation, which still essentially require a leak-free sanctuary (i.e., differential power analysis (DPA)-resistant component(s)) for some parts. In addition, although several LR pseudorandom functions (PRFs) based on...

2023/1184 (PDF) Last updated: 2023-10-19
STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber
Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, Shivam Bhasin
Attacks and cryptanalysis

In this work, we propose a novel single-trace key recovery attack targeting side-channel leakage from the key-generation and encryption procedure of Kyber KEM. Our attack exploits the inherent nature of the Module-Learning With Errors (Module-LWE) problem used in Kyber KEM. We demonstrate that the inherent reliance of Kyber KEM on the Module-LWE problem results in higher number of repeated and secret key-related computations, referred to as STAMPs appearing on a single side channel trace,...

2023/1108 (PDF) Last updated: 2024-09-14
It's a Kind of Magic: A Novel Conditional GAN Framework for Efficient Profiling Side-channel Analysis (Extended Version)
Sengim Karayalcin, Marina Krcek, Lichao Wu, Stjepan Picek, Guilherme Perin
Attacks and cryptanalysis

Profiling side-channel analysis (SCA) is widely used to evaluate the security of cryptographic implementations under worst-case attack scenarios. This method assumes a strong adversary with a fully controlled device clone, known as a profiling device, with full access to the internal state of the target algorithm, including the mask shares. However, acquiring such a profiling device in the real world is challenging, as secure products enforce strong life cycle protection, particularly on...

2023/1055 (PDF) Last updated: 2023-07-06
OccPoIs: Points of Interest based on Neural Network's Key Recovery in Side-Channel Analysis through Occlusion
Trevor Yap, Shivam Bhasin, Stjepan Picek
Implementation

Deep neural networks (DNNs) represent a powerful technique for assessing cryptographic security concerning side-channel analysis (SCA) due to their ability to aggregate leakages automatically, rendering attacks more efficient without preprocessing. Nevertheless, despite their effectiveness, DNNs employed in SCA are predominantly black-box algorithms, posing considerable interpretability challenges. In this paper, we propose a novel technique called Key Guessing Occlusion (KGO) that...

2023/887 (PDF) Last updated: 2023-06-09
Pairwise and Parallel: Enhancing the Key Mismatch Attacks on Kyber and Beyond
Mingyao Shao, Yuejun Liu, Yongbin Zhou
Public-key cryptography

Key mismatch attacks resilience is a great concern for KEMs in the NIST PQC standardization process. In key mismatch attacks, the adversary aims to recover the reused key by sending special form of ciphertexts to the target party and observing whether the shared key matches his guesses or not. In this paper, we propose pairwise-parallel key mismatch attacks on Kyber and other lattice-based KEMs. The strategy is to recover partial information about multiple secret key coefficient-pairs in...

2023/579 (PDF) Last updated: 2023-04-24
Revealing the Secrets of Radio-Enabled Embedded Systems: on extraction of raw information from any on-board signal through RF
Erez Danieli, Menachem Goldzweig, Moshe Avital, Itamar Levi
Implementation

In this work we are interested in evaluating the possibility of extracting information from radio-enabled embedded-systems from a long distance. That is, our focus is capturing information from sources in the micrometer to tens of centimeters scale, such as intra- or inter- device busses, board-level routing traces etc. Moreover, we focus on distances in the range of millimeters to tens of centimeters from the (on-chip or on-board) embedded-system Tx Antenna to the signal source....

2023/484 (PDF) Last updated: 2023-05-05
SCA Evaluation and Benchmarking of Finalists in the NIST Lightweight Cryptography Standardization Process
Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Ferrufino, Jens-Peter Kaps, Kris Gaj
Implementation

Side-channel resistance is one of the primary criteria identified by NIST for use in evaluating candidates in the Lightweight Cryptography (LWC) Standardization process. In Rounds 1 and 2 of this process, when the number of candidates was still substantial (56 and 32, respectively), evaluating this feature was close to impossible. With ten finalists remaining, side-channel resistance and its effect on the performance and cost of practical implementations became of utmost importance. In this...

2023/459 (PDF) Last updated: 2023-05-17
SCMA: Plaintext Classification Assisted Side Channel Spectral Modulation Attacks. Towards Noise-insensitive SCA Attacks...
Moshe Avital, Itamar Levi
Attacks and cryptanalysis

Side-channel analysis (SCA) attacks manifest a significant challenge to the security of cryptographic devices. In turn, it is generally quite expensive to protect from SCAs (energy, area, performance etc.). In this work we exhibit a significant change in paradigm for SCA attacks: our proposed attack is quite different from conventional SCA attacks and is able to filter out physical measurement noise, algorithmic noise, as well as thwart various countermeasures, and extract information from...

2023/406 (PDF) Last updated: 2024-10-07
Quasi-linear masking to protect against both SCA and FIA
Claude Carlet, Abderrahman Daif, Sylvain Guilley, Cédric Tavernier
Applications

The implementation of cryptographic algorithms must be protected against physical attacks. Side-channel and fault injection analyses are two prominent such implem\-entation-level attacks. Protections against either do exist; they are characterized by security orders: the higher the order, the more difficult the attack. In this paper, we leverage fast discrete Fourier transform to reduce the complexity of high-order masking, and extend it to allow for fault detection and/or correction. The...

2023/335 (PDF) Last updated: 2023-04-17
Separating Oil and Vinegar with a Single Trace
Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samardjiska, Marc Stöttinger
Attacks and cryptanalysis

Due to recent cryptanalytical breakthroughs, the multivariate signature schemes that seemed to be most promising in the past years are no longer in the focus of the research community. Hence, the cryptographically mature UOV scheme is of great interest again. Since it has not been part of the NIST process for standardizing post-quantum cryptography so far, it has not been studied intensively for its physical security. In this work, we present a side-channel attack on the latest...

2023/294 (PDF) Last updated: 2023-02-27
SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes
Qian Guo, Denis Nabokov, Alexander Nilsson, Thomas Johansson
Attacks and cryptanalysis

Whereas theoretical attacks on standardized crypto primitives rarely lead to actual practical attacks, the situation is different for side-channel attacks. Improvements in the performance of side-channel attacks are of utmost importance. In this paper, we propose a framework to be used in key-recovery side-channel attacks on CCA-secure post-quantum encryption schemes. The basic idea is to construct chosen ciphertext queries to a plaintext checking oracle that collects information on a...

2023/035 (PDF) Last updated: 2024-03-20
A Deep Analysis of two Glitch-Free Hardware Masking Schemes SESYM and LMDPL
Nicolai Müller, Daniel Lammers, Amir Moradi
Attacks and cryptanalysis

In the context of masking, which is the dominant technique for protecting cryptographic hardware designs against SCA attacks, the focus has long been on the design of masking schemes that guarantee provable security in the presence of glitches. Unfortunately, achieving this comes at the cost of increased latency, since registers are required to stop glitch propagation. Previous work has attempted to reduce latency by eliminating registers, but the exponential increase in area makes such...

2023/034 (PDF) Last updated: 2023-04-21
PROLEAD_SW - Probing-Based Software Leakage Detection for ARM Binaries
Jannik Zeitschner, Nicolai Müller, Amir Moradi
Applications

A decisive contribution to the all-embracing protection of cryptographic software, especially on embedded devices, is the protection against SCA attacks. Masking countermeasures can usually be integrated into the software during the design phase. In theory, this should provide reliable protection against such physical attacks. However, the correct application of masking is a non-trivial task that often causes even experts to make mistakes. In addition to human-caused errors,...

2023/021 (PDF) Last updated: 2024-07-05
DLFA: Deep Learning based Fault Analysis against Block Ciphers
Yukun Cheng, Changhai Ou, Fan Zhang, Shihui Zheng, Shengmin Xu, Jiangshan Long
Attacks and cryptanalysis

Previous studies on fault analysis have demonstrated promising potential in compromising cryptographic security. However, these fault analysis methods are limited in practical impact due to methodological constraints and the substantial requirement of faulty information such as correct and faulty ciphertexts. Additionally, while deep learning techniques have been widely applied to side-channel analysis (SCA) in recent years and have shown superior performance compared with traditional...

2023/008 (PDF) Last updated: 2023-01-02
AutoPOI: Automated Points Of Interest Selection for Side-channel Analysis
Mick G.D. Remmerswaal, Lichao Wu, Sébastien Tiran, Nele Mentens
Implementation

Template attacks~(TAs) are one of the most powerful Side-Channel Analysis~(SCA) attacks. The success of such attacks relies on the effectiveness of the profiling model in modeling the leakage information. A crucial step for TA is to select relevant features from the measured traces, often called Points Of Interest~(POIs), to extract the leakage information. Previous research indicates that properly selecting the input leaking features could significantly increase the attack performance....

2023/001 (PDF) Last updated: 2023-07-23
Time is money, friend! Timing Side-channel Attack against Garbled Circuit Constructions
Mohammad Hashemi, Domenic Forte, Fatemeh Ganji
Attacks and cryptanalysis

With the advent of secure function evaluation (SFE), distrustful parties can jointly compute on their private inputs without disclosing anything besides the results. Yao’s garbled circuit protocol has become an integral part of secure computation thanks to considerable efforts made to make it feasible, practical, and more efficient. These efforts have resulted in multiple optimizations on this primitive to enhance its performance by orders of magnitude over the last years. The advancement in...

2022/1247 (PDF) Last updated: 2023-01-16
Peek into the Black-Box: Interpretable Neural Network using SAT Equations in Side-Channel Analysis
Trevor Yap, Adrien Benamira, Shivam Bhasin, Thomas Peyrin
Implementation

Deep neural networks (DNN) have become a significant threat to the security of cryptographic implementations with regards to side-channel analysis (SCA), as they automatically combine the leakages without any preprocessing needed, leading to a more efficient attack. However, these DNNs for SCA remain mostly black-box algorithms that are very difficult to interpret. Benamira \textit{et al.} recently proposed an interpretable neural network called Truth Table Deep Convolutional Neural Network...

2022/1087 (PDF) Last updated: 2024-10-04
I Know What Your Layers Did: Layer-wise Explainability of Deep Learning Side-channel Analysis
Guilherme Perin, Sengim Karayalcin, Lichao Wu, Stjepan Picek
Attacks and cryptanalysis

Deep neural networks have proven effective for second-order profiling side-channel attacks, even in a black-box setting with no prior knowledge of masks and implementation details. While such attacks have been successful, no explanations were provided for understanding why a variety of deep neural networks can (or cannot) learn high-order leakages and what the limitations are. In other words, we lack the explainability on neural network layers combining (or not) unknown and random secret...

2022/1055 (PDF) Last updated: 2022-11-26
Exploring Integrity of AEADs with Faults: Definitions and Constructions
Sayandeep Saha, Mustafa Khairallah, Thomas Peyrin
Secret-key cryptography

Implementation-based attacks are major concerns for modern cryptography. For symmetric-key cryptography, a significant amount of exploration has taken place in this regard for primitives such as block ciphers. Concerning symmetric-key operating modes, such as Authenticated Encryption with Associated Data (AEAD), the state- of-the-art mainly addresses the passive Side-Channel Attacks (SCA) in the form of leakage resilient cryptography. So far, only a handful of work address Fault Attacks (FA)...

2022/965 (PDF) Last updated: 2022-07-27
PROLEAD - A Probing-Based Hardware Leakage Detection Tool
Nicolai Müller, Amir Moradi
Applications

Even today, SCA attacks pose a serious threat to the security of cryptographic implementations fabricated with low-power and nano-scale feature technologies. Fortunately, the masking countermeasures offer reliable protection against such attacks based on simple security assumptions. However, the practical application of masking to a cryptographic algorithm is not trivial, and the designer may overlook possible security flaws, especially when masking a complex circuit. Moreover, abstract...

2022/940 (PDF) Last updated: 2023-04-17
Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs
Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, Naofumi Homma
Public-key cryptography

In this paper, we present a side-channel analysis (SCA) on key encapsulation mechanisms (KEMs) based on the Fujisaki–Okamoto (FO) transformation and its variants. Many post-quantum KEMs usually perform re-encryption during key decapsulation to achieve chosen-ciphertext attack (CCA) security. The side-channel leakage of re-encryption can be exploited to mount a key-recovery plaintext-checking attack (KR-PCA), even if the chosen-plaintext attack (CCA) secure decryption constructing the KEM is...

2022/927 (PDF) Last updated: 2022-10-27
Fit The Joint Moments - How to Attack any Masking Schemes
Valence Cristiani, Maxime Lecomte, Thomas Hiscock, Philippe Maurine

Side-Channel Analysis (SCA) allows extracting secret keys manipulated by cryptographic primitives through leakages of their physical implementations. Supervised attacks, known to be optimal, can theoretically defeat any countermeasure, including masking, by learning the dependency between the leakage and the secret through the profiling phase. However, defeating masking is less trivial when it comes to unsupervised attacks. While classical strategies such as CPA or LRA have been extended to...

2022/916 (PDF) Last updated: 2022-07-25
Post-Quantum Authenticated Encryption against Chosen-Ciphertext Side-Channel Attacks
Melissa Azouaoui, Yulia Kuzovkova, Tobias Schneider, Christine van Vredendaal
Public-key cryptography

Over the last years, the side-channel analysis of Post-Quantum Cryptography (PQC) candidates in the NIST standardization initiative has received increased attention. In particular, it has been shown that some post-quantum Key Encapsulation Mechanisms (KEMs) are vulnerable to Chosen-Ciphertext Side-Channel Attacks (CC-SCA). These powerful attacks target the re-encryption step in the Fujisaki-Okamoto (FO) transform, which is commonly used to achieve CCA security in such schemes. To...

2022/901 (PDF) Last updated: 2022-10-30
Garbled-Circuits from an SCA Perspective: Free XOR can be Quite Expensive. . .
Itamar Levi, Carmit Hazay
Attacks and cryptanalysis

Garbling schemes, invented in the 80's by Yao (FOCS'86), have been a versatile and fundamental tool in modern cryptography. A prominent application of garbled circuits is constant round secure two-party computation, led to a long line of study of this object, where one of the most influential optimizations is Free-XOR (Kolesnikov and Schneider ICALP'08), introducing a global offset $\Delta$ for all garbled wire values where XOR gates are computed locally without garbling them. To date,...

2022/737 (PDF) Last updated: 2022-12-04
Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New Results
Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D'Anvers, Anubhab Baksi
Public-key cryptography

In this work, we present a systematic study of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA) on structured lattice-based schemes, with a focus on Kyber Key Encapsulation Mechanism (KEM) and Dilithium signature scheme, which are leading candidates in the NIST standardization process for Post-Quantum Cryptography (PQC). Through our study, we attempt to understand the underlying similarities and differences between the existing attacks, while classifying them into different...

2022/602 (PDF) Last updated: 2023-01-24
Combined Fault Injection and Real-Time Side-Channel Analysis for Android Secure-Boot Bypassing
Clément Fanjas, Clément Gaine, Driss Aboulkassimi, Simon Pontié, Olivier Potin

The Secure-Boot is a critical security feature in modern devices based on System-on-Chips (SoC). It ensures the authenticity and integrity of the code before its execution, avoiding the SoC to run malicious code. To the best of our knowledge, this paper presents the first bypass of an Android Secure-Boot by using an Electromagnetic Fault Injection (EMFI). Two hardware characterization methods are combined to conduct this experiment. A real-time Side-Channel Analysis (SCA) is used to...

2022/563 (PDF) Last updated: 2022-11-30
Find the Bad Apples: An efficient method for perfect key recovery under imperfect SCA oracles – A case study of Kyber
Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, Tao Jiang
Public-key cryptography

Side-channel resilience is a crucial feature when assessing whether a post-quantum cryptographic proposal is sufficiently mature to be deployed. In this paper, we propose a generic and efficient adaptive approach to improve the sample complexity (i.e., the required number of traces) of plaintext-checking (PC) oracle-based side-channel attacks (SCAs), a major class of key recovery chosen-ciphertext SCAs on lattice-based key encapsulation mechanisms. This new approach is preferable when the...

2022/555 (PDF) Last updated: 2022-10-13
Adapting Belief Propagation to Counter Shuffling of NTTs
Julius Hermelink, Silvan Streit, Emanuele Strieder, Katharina Thieme
Public-key cryptography

The Number Theoretic Transform (NTT) is a major building block in recently introduced lattice based post-quantum (PQ) cryptography. The NTT was target of a number of recently proposed Belief Propagation (BP)-based Side Channel Attacks (SCAs). Ravi et al. have recently proposed a number of countermeasures mitigating these attacks. In 2021, Hamburg et al. presented a chosen-ciphertext enabled SCA improving noise-resistance, which we use as a starting point to state our findings. We...

2022/527 (PDF) Last updated: 2022-05-10
PQC-SEP: Power Side-channel Evaluation Platform for Post-Quantum Cryptography Algorithms
Jungmin Park, N. Nalla Anandakumar, Dipayan Saha, Dhwani Mehta, Nitin Pundir, Fahim Rahman, Farimah Farahmandi, Mark M. Tehranipoor
Public-key cryptography

Research in post-quantum cryptography (PQC) aims to develop cryptographic algorithms that can withstand classical and quantum attacks. The recent advance in the PQC field has gradually switched from the theory to the implementation of cryptographic algorithms on hardware platforms. In addition, the PQC standardization process of the National Institute of Standards and Technology (NIST) is currently in its third round. It specifies ease of protection against side-channel analysis (SCA) as an...

2022/507 (PDF) Last updated: 2022-05-13
Low-Latency Hardware Private Circuits
David Knichel, Amir Moradi
Implementation

Over the last years, the rise of the IoT, and the connection of mobile - and hence physically accessible - devices, immensely enhanced the demand for fast and secure hardware implementations of cryptographic algorithms which offer thorough protection against SCA attacks. Among a variety of proposed countermeasures against SCA, masking has transpired to be a promising candidate, attracting significant attention in both, academia and industry. Here, abstract adversary models have been derived,...

2022/484 (PDF) Last updated: 2023-07-07
VERICA - Verification of Combined Attacks: Automated formal verification of security against simultaneous information leakage and tampering
Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, Tim Güneysu
Applications

Physical attacks, including passive Side-Channel Analysis and active Fault Injection Analysis, are considered among the most powerful threats against physical cryptographic implementations. These attacks are well known and research provides many specialized countermeasures to protect cryptographic implementations against them. Still, only a limited number of combined countermeasures, i.e., countermeasures that protect implementations against multiple attacks simultaneously, were proposed in...

2022/418 (PDF) Last updated: 2022-04-06
LLTI: Low-Latency Threshold Implementations
Victor Arribas, Zhenda Zhang, Svetla Nikova
Implementation

With the enormous increase in portable cryptographic devices, physical attacks are becoming similarly popular. One of the most common physical attacks is Side-Channel Analysis (SCA), extremely dangerous due to its non-invasive nature. Threshold Implementations (TI) was proposed as the first countermeasure to provide provable security in masked hardware implementations. While most works on hardware masking are focused on optimizing the area requirements, with the newer and smaller...

2022/340 (PDF) Last updated: 2022-03-14
To Overfit, Or Not to Overfit: Improving the Performance of Deep Learning-based SCA
Azade Rezaeezade, Guilherme Perin, Stjepan Picek
Secret-key cryptography

Profiling side-channel analysis allows evaluators to estimate the worst-case security of a target. When security evaluations relax the assumptions about the adversary's knowledge, profiling models may easily be sub-optimal due to the inability to extract the most informative points of interest from the side-channel measurements. When used for profiling attacks, deep neural networks can learn strong models without feature selection with the drawback of expensive hyperparameter tuning....

2022/232 (PDF) Last updated: 2023-01-14
Conditional Variational AutoEncoder based on Stochastic Attack
Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, Alexandre Venelli
Attacks and cryptanalysis

Over the recent years, the cryptanalysis community leveraged the potential of research on Deep Learning to enhance attacks. In particular, several studies have recently highlighted the benefits of Deep Learning based Side-Channel Attacks (DLSCA) to target real-world cryptographic implementations. While this new research area on applied cryptography provides impressive result to recover a secret key even when countermeasures are implemented (e.g. desynchronization, masking schemes), the lack...

2022/230 (PDF) Last updated: 2022-02-25
Apple vs. EMA: Electromagnetic Side Channel Attacks on Apple CoreCrypto
Gregor Haas, Aydin Aysu
Implementation

Cryptographic instruction set extensions are commonly used for ciphers which would otherwise face unacceptable side channel risks. A prominent example of such an extension is the ARMv8 Cryptographic Extension, or ARM CE for short, which defines dedicated instructions to securely accelerate AES. However, while these extensions may be resistant to traditional "digital" side channel attacks, they may still vulnerable to physical side channel attacks. In this work, we demonstrate the first such...

2022/124 (PDF) Last updated: 2022-11-24
On the Performance Gap of a Generic C Optimized Assembler and Wide Vector Extensions for Masked Software with an Ascon-{\it{p}} test case
Dor Salomon, Itamar Levi
Implementation

Efficient implementations of software masked designs constitute both an important goal and a significant challenge to Side Channel Analysis attack (SCA) security. In this paper we discuss the shortfall between generic C implementations and optimized (inline-) assembly versions while providing a large spectrum of efficient and generic masked implementations for any order, and demonstrate cryptographic algorithms and masking gadgets with reference to the state of the art. Our main goal is to...

2022/050 (PDF) Last updated: 2022-01-18
High-Speed and Unified ECC Processor for Generic Weierstrass Curves over GF(p) on FPGA
Asep Muhamad Awaludin, Harashta Tatimma Larasati, Howon Kim
Implementation

In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) processor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms other similar works in terms of execution time. Our approach employs the combination of the schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplication (ECPM) to achieve better parallelization while retaining low complexity. In the hardware implementation, the substantial...

2022/023 (PDF) Last updated: 2022-01-08
Transitional Leakage in Theory and Practice - Unveiling Security Flaws in Masked Circuits
Nicolai Müller, David Knichel, Pascal Sasdrich, Amir Moradi
Applications

Accelerated by the increased interconnection of highly accessible devices, the demand for effective and efficient protection of hardware designs against SCA is ever rising, causing its topical relevance to remain immense in both, academia and industry. Among a wide range of proposed countermeasures against SCA, masking is a highly promising candidate due to its sound foundations and well-understood security requirements. In addition, formal adversary models have been introduced, aiming to...

2021/1622 (PDF) Last updated: 2022-08-08
Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber
Jeroen Delvaux
Implementation

At Indocrypt 2021, Hermelink, Pessl, and Pöppelmann presented a fault attack against Kyber in which a system of linear inequalities over the private key is generated and solved. The attack requires a laser and is, understandably, demonstrated with simulations—not actual equipment. We facilitate and diversify the attack in four ways, thereby admitting cheaper and more forgiving fault-injection setups. Firstly, the attack surface is enlarged: originally, the two input operands of the...

2021/1592 (PDF) Last updated: 2022-07-28
The Need for Speed: A Fast Guessing Entropy Calculation for Deep Learning-based SCA
Guilherme Perin, Lichao Wu, Stjepan Picek
Attacks and cryptanalysis

The adoption of deep neural networks for profiling side-channel attacks (SCA) opened new perspectives for leakage detection. Recent publications showed that cryptographic implementations featuring different countermeasures could be broken without feature selection or trace preprocessing. This success comes with a high price: extensive hyperparameter search to find optimal deep learning models. As deep learning models usually suffer from overfitting due to their high fitting capacity, it is...

2021/1418 (PDF) Last updated: 2022-08-29
Autoencoder Assist: An Efficient Profiling Attack on High-dimensional Datasets
Qi Lei, Zijia Yang, Qin Wang, Yaoling Ding, Zhe Ma, An Wang

Deep learning (DL)-based profiled attack has been proved to be a powerful tool in side-channel analysis. A variety of multi-layer perception (MLP) networks and convolutional neural networks (CNN) are thereby applied to cryptographic algorithm implementations for exploiting correct keys with a smaller number of traces and a shorter time. However, most attacks merely focus on small datasets, in which their points of interest are well-trimmed for attacks. Countermeasures applied in embedded...

2021/1316 (PDF) Last updated: 2021-09-30
Towards Human Dependency Elimination: AI Approach to SCA Robustness Assessment
Unai Rioja, Lejla Batina, Igor Armendariz, Jose Luis Flores
Applications

Evaluating the side-channel resistance of a device in practice is a problematic and arduous process. Current certification schemes require to attack the device under test with an ever-growing number of techniques to validate its security. In addition, the success or failure of these techniques strongly depends on the individual implementing them, due to the fallible and human intrinsic nature of several steps of this path. To alleviate this problem, we propose a battery of automated attacks...

2021/1216 (PDF) Last updated: 2021-09-21
Toward Optimal Deep-Learning Based Side-Channel Attacks: Probability Concentration Inequality Loss and Its Usage
Akira Ito, Rei Ueno, Naofumi Homma
Implementation

In this paper, we present solutions to some open problems for constructing efficient deep learning-based side-channel attacks (DL-SCAs) through a theoretical analysis. There are two major open problems in DL-SCAs: (i) the effect of the difference in secret key values used for profiling and attack phases is unclear, and (ii) the optimality of the negative log-likelihood (NLL) loss function used in the conventional learning method is unknown. These two problems have hindered the accurate...

2021/1189 (PDF) Last updated: 2021-09-17
A Configurable Crystals-Kyber Hardware Implementation with Side-Channel Protection
Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya
Implementation

In this work, we present a configurable and side channel resistant implementation of the post-quantum key-exchange algorithm Crystals-Kyber. The implemented design can be configured for different performance and area requirements leading to different trade-offs for different applications. A low area implementation can be achieved in 5269 LUTs and 2422 FFs, whereas a high performance implementation required 7151 LUTs and 3730 FFs. Due to a deeply pipelined architecture, a high operating speed...

2021/1091 (PDF) Last updated: 2021-08-25
No (Good) Loss no Gain: Systematic Evaluation of Loss functions in Deep Learning-based Side-channel Analysis
Maikel Kerkhof, Lichao Wu, Guilherme Perin, Stjepan Picek
Implementation

Deep learning is a powerful direction for profiling side-channel analysis as it can break targets protected with countermeasures even with a relatively small number of attack traces. Still, it is necessary to conduct hyperparameter tuning for strong attack performance, which can be far from trivial. Besides a plethora of options stemming from the machine learning domain, recent years also brought neural network elements specially designed for side-channel analysis. An important...

2021/1053 (PDF) Last updated: 2021-08-16
XDIVINSA: eXtended DIVersifying INStruction Agent to Mitigate Power Side-Channel Leakage
Thinh H. Pham, Ben Marshall, Alexander Fell, Siew-Kei Lam, Daniel Page
Implementation

Side-channel analysis (SCA) attacks pose a major threat to embedded systems due to their ease of accessibility. Realising SCA resilient cryptographic algorithms on embedded systems under tight intrinsic constraints, such as low area cost, limited computational ability, etc., is extremely challenging and often not possible. We propose a seamless and effective approach to realise a generic countermeasure against SCA attacks. XDIVINSA, an extended diversifying instruction agent, is introduced...

2021/1003 (PDF) Last updated: 2022-11-04
SCA-secure ECC in software – mission impossible?
Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, Peter Schwabe
Implementation

This paper describes an ECC implementation computing the X25519 keyexchange protocol on the Arm Cortex-M4 microcontroller. For providing protections against various side-channel and fault attacks we first review known attacks and countermeasures, then we provide software implementations that come with extensive mitigations, and finally we present a preliminary side-channel evaluation. To our best knowledge, this is the first public software claiming affordable protection against multiple...

2021/981 (PDF) Last updated: 2021-07-23
Deep Learning-based Side-channel Analysis against AES Inner Rounds
Sudharshan Swaminathan, Lukasz Chmielewski, Guilherme Perin, Stjepan Picek
Implementation

Side-channel attacks (SCA) focus on vulnerabilities caused by insecure implementations and exploit them to deduce useful information about the data being processed or the data itself through leakages obtained from the device. There have been many studies exploiting these side-channel leakages, and most of the state-of-the-art attacks have been shown to work on systems implementing AES. The methodology is usually based on exploiting leakages for the outer rounds, i.e., the first and the last...

2021/909 (PDF) Last updated: 2021-07-05
Efficiency through Diversity in Ensemble Models applied to Side-Channel Attacks – A Case Study on Public-Key Algorithms –
Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli
Public-key cryptography

Deep Learning based Side-Channel Attacks (DL-SCA) are considered as fundamental threats against secure cryptographic implementations. Side-channel attacks aim to recover a secret key using the least number of leakage traces. In DL-SCA, this often translates in having a model with the highest possible accuracy. Increasing an attack’s accuracy is particularly important when an attacker targets public-key cryptographic implementations where the recovery of each secret key bits is directly...

2021/849 (PDF) Last updated: 2021-10-15
Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs
Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, Naofumi Homma
Public-key cryptography

This paper presents a side-channel analysis (SCA) on key encapsulation mechanism (KEM) based on the Fujisaki–Okamoto (FO) transformation and its variants. The FO transformation has been widely used in actively securing KEMs from passively secure public key encryption (PKE), as it is employed in most of NIST post-quantum cryptography (PQC) candidates for KEM. The proposed attack exploits side-channel leakage during execution of a psuedorandom function (PRF) in the re-encryption of KEM...

2021/830 (PDF) Last updated: 2021-06-21
Analysis and Protection of the Two-metric Helper Data Scheme
Lars Tebelmann, Ulrich Kühne, Jean-Luc Danger, Michael Pehl

To compensate for the poor reliability of Physical Unclonable Function (PUF) primitives, some low complexity solutions not requiring error-correcting codes (ECC) have been proposed. One simple method is to discard less reliable bits, which are indicated in the helper data stored inside the PUF. To avoid discarding bits, the Two-metric Helper Data (TMH) method, which particularly applies to oscillation-based PUFs, allows to keep all bits by using different metrics when deriving the PUF...

2021/827 (PDF) Last updated: 2022-06-01
TransNet: Shift Invariant Transformer Network for Side Channel Analysis
Suvadeep Hajra, Sayandeep Saha, Manaar Alam, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Deep learning (DL) has revolutionized Side Channel Analysis (SCA) in recent years. One of the major advantages of DL in the context of SCA is that it can automatically handle masking and desynchronization countermeasures, even while they are applied simultaneously for a cryptographic implementation. However, the success of the attack strongly depends on the DL model used for the attack. Traditionally, Convolutional Neural Networks (CNNs) have been utilized in this regard. This work proposes...

2021/592 (PDF) Last updated: 2021-05-10
Side Channel Analysis against the ANSSI’s protected AES implementation on ARM
Loïc Masure, Rémi Strullu
Applications

In 2019, the ANSSI released a protected software implementation of AES running on an STM32 platform with ARM Cortex-M architecture, publicly available on Github. The release of the code was shortly followed by a first paper written by Bronchain et al. at Ches 2020, analyzing the security of the implementation and proposing some attacks. In order to propose fair comparisons for future attacks on this target device, this paper aims at presenting a new publicly available dataset, called ASCADv2...

2021/471 (PDF) Last updated: 2021-04-12
Size, Speed, and Security: An Ed25519 Case Study
Cesar Pereida García, Sampo Sovio
Public-key cryptography

Ed25519 has significant performance benefits compared to ECDSA using Weierstrass curves such as NIST P-256, therefore it is considered a good digital signature algorithm, specially for low performance IoT devices. However, such devices often have very limited resources and thus, implementations for these devices need to be as small and as performant as possible while being secure. In this paper we describe a scenario in which an obvious strategy to aggressively optimize an Ed25519...

2021/464 (PDF) Last updated: 2021-08-14
iTimed: Cache Attacks on the Apple A10 Fusion SoC
Gregor Haas, Seetal Potluri, Aydin Aysu
Implementation

This paper proposes the first cache timing side-channel attack on one of Apple’s mobile devices. Utilizing a recent, permanent exploit named checkm8, we reverse-engineered Apple’s BootROM and created a powerful toolkit for running arbitrary hardware security experiments on Apple’s in-house designed ARM systems-on-a-chip (SoC). Using this toolkit, we then implement an access-driven cache timing attack (in the style of PRIME+PROBE) as a proof-of-concept illustrator. The advanced hardware...

2021/461 (PDF) Last updated: 2021-04-27
Second-Order SCA Security with almost no Fresh Randomness
Aein Rezaei Shahmirzadi, Amir Moradi
Implementation

Masking schemes are among the most popular countermeasures against Side-Channel Analysis (SCA) attacks. Realization of masked implementations on hardware faces several difficulties including dealing with glitches. Threshold Implementation (TI) is known as the first strategy with provable security in presence of glitches. In addition to the desired security order d, TI defines the minimum number of shares to also depend on the algebraic degree of the target function. This may lead to...

2021/460 (PDF) Last updated: 2021-04-09
Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s User Authentication through SCA
Oleksiy Lisovets, David Knichel, Thorben Moos, Amir Moradi
Implementation

In recent years, smartphones have become an increasingly important storage facility for personal sensitive data ranging from photos and credentials up to financial and medical records like credit cards and person’s diseases. Trivially, it is critical to secure this information and only provide access to the genuine and authenticated user. Smartphone vendors have already taken exceptional care to protect user data by the means of various software and hardware security features like code...

2021/313 (PDF) Last updated: 2021-03-11
Rank Estimation with Bounded Error via Exponential Sampling
Liron David, Avishai Wool
Applications

Efficient rank estimation algorithms are of prime interest in security evaluation against side-channel attacks (SCA) and recently also for password strength estimators. In a side channel setting it allows estimating the remaining security after an attack has been performed, quantified as the time complexity and the memory consumption required to brute force the key given the leakages as probability distributions over $d$ subkeys (usually key bytes). In password strength estimators the rank...

2021/249 (PDF) Last updated: 2021-03-28
NeuroSCA: Evolving Activation Functions for Side-channel Analysis
Karlo Knezevic, Juraj Fulir, Domagoj Jakobovic, Stjepan Picek
Implementation

The choice of activation functions can have a significant effect on the performance of a neural network. Although the researchers have been developing novel activation functions, Rectified Linear Unit ($ReLU$) remains the most common one in practice. This paper shows that evolutionary algorithms can discover new activation functions for side-channel analysis (SCA) that outperform $ReLU$. Using Genetic Programming (GP), candidate activation functions are defined and explored (neuroevolution)....

2021/242 (PDF) Last updated: 2021-03-02
GAP: Born to Break Hiding
Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park, Dong-Guk Han
Secret-key cryptography

Recently, Machine Learning (ML) is widely investigated in the side-channel analysis (SCA) community. As an artificial neural network can extract the feature without preprocessing, ML-based SCA methods relatively less rely on the attacker's ability. Consequently, they outperform traditional methods. Hiding is a countermeasure against SCA that randomizes the moments of manipulating sensitive data. Since hiding could disturb the neural network's learning, an attacker should design a proper...

2021/197 (PDF) Last updated: 2021-11-17
Gambling for Success: The Lottery Ticket Hypothesis in Deep Learning-based SCA
Guilherme Perin, Lichao Wu, Stjepan Picek
Applications

Deep learning-based side-channel analysis (SCA) represents a strong approach for profiling attacks. Still, this does not mean it is trivial to find neural networks that perform well for any setting. Based on the developed neural network architectures, we can distinguish between small neural networks that are easier to tune and less prone to overfitting but could have insufficient capacity to model the data. On the other hand, large neural networks have sufficient capacity but can overfit and...

2021/071 (PDF) Last updated: 2021-11-11
Reinforcement Learning for Hyperparameter Tuning in Deep Learning-based Side-channel Analysis
Jorai Rijsdijk, Lichao Wu, Guilherme Perin, Stjepan Picek
Implementation

Deep learning represents a powerful set of techniques for profiling side-channel analysis. The results in the last few years show that neural network architectures like multilayer perceptron and convolutional neural networks give strong attack performance where it is possible to break targets protected with various countermeasures. Considering that deep learning techniques commonly have a plethora of hyperparameters to tune, it is clear that such top attack results can come with a high price...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.