
I Know What Your Layers Did: Layer-wise
Explainability of Deep Learning Side-channel

Analysis

Guilherme Perin1, Sengim Karayalcin1, Lichao Wu2, and Stjepan Picek3

1 Leiden University, The Netherlands
2 Technical University of Darmstadt, Germany

3 Radboud University, The Netherlands

Abstract. Deep neural networks have proven effective for second-order
profiling side-channel attacks, even in a black-box setting with no prior
knowledge of masks and implementation details. While such attacks have
been successful, no explanations were provided for understanding why a
variety of deep neural networks can (or cannot) learn high-order leakages
and what the limitations are. In other words, we lack the explainability
on neural network layers combining (or not) unknown and random se-
cret shares, which is a necessary step to defeat, e.g., Boolean masking
countermeasures. In this paper, we use information-theoretic metrics to
explain the internal activities of deep neural network layers. We propose a
novel methodology for the explainability of deep learning-based profiling
side-channel analysis (denoted ExDL-SCA) to understand the process-
ing of secret masks. Inspired by the Information Bottleneck theory, our
explainability methodology uses perceived information to explain and de-
tect the different phenomena that occur in deep neural networks, such as
fitting, compression, and generalization. We provide experimental results
on masked AES datasets showing what relevant features deep neural net-
works use, and where in the networks relevant features are learned and
irrelevant features are compressed. Using our method, evaluators can
determine what secret masks are being exploited by the network, which
allows for more detailed feedback on the implementations. This paper
opens new perspectives for understanding the role of different neural
network layers in profiling side-channel attacks.4

Keywords: Side-channel Analysis, Deep Learning, Countermeasures,
Explainability, Perceived Information, Information Bottleneck Theory,
Activation Patching

1 Introduction

Side-channel attacks (SCA) represent powerful non-invasive attacks that exploit
unintentional leakages of confidential information from electronic devices [22].

4 Source code for reproducing our results is available in an anonymized repository at
https://anonymous.4open.science/r/explainability-D555/

https://anonymous.4open.science/r/explainability-D555/

During cryptographic executions, the devices leak information through different
side channels, such as power consumption [19], electromagnetic emission [34],
or execution time [18]. Commonly used SCAs can be broadly categorized as
profiled (e.g., Template Attacks [7]) and non-profiled attacks (e.g., Simple Power
Analysis [18] and Differential Power Analysis [19]).

Deep learning (DL-SCA) has drawn significant interest recently [33] due to
its strong attack capabilities in breaking protected cryptographic implementa-
tions [21,5,17], e.g., software/hardware AES protected by first-order (Boolean)
masking [44]. Moreover, the SCA community constantly manages to improve the
performance of deep learning. For example, the first publication using the AS-
CAD dataset with the fixed key required around 400 attack traces to break the
target [3]. Today, we can break the same dataset with a single attack trace and
neural network architectures with only a few hidden layers [32]. Unfortunately,
despite all of the advances in enhancing attack efficiency, we still lack the knowl-
edge to understand how neural networks break a target due to the complexity
of the architecture. Although past research put effort into the understanding of
some aspects of deep learning models [25,16,47], there is still an evident lack of
knowledge about, for instance, deep neural networks learning to defeat masking
countermeasures. We refer interested readers to several recognized challenges in
deep learning-based SCA, especially the one connected to the explainability of
the masking countermeasure processing [33].

We argue that the capacity to explain the behavior of a machine learning
model is at least as important as enhancing attack performance. A deeper un-
derstanding of the neural network enables evaluators to 1) understand what
leakage the model is exploiting, 2) bolster the security of devices, and 3) ulti-
mately develop devices that are resilient against even the most advanced threats.
Following this, we advocate for the necessity of an Explainable Deep Learning-
based Side-Channel Analysis framework, denoted by ExDL-SCA. The primary
objectives of ExDL-SCA are to 1) elucidate the sources of (exploitable) informa-
tion leakage and 2) explain where, in a profiling model, masking countermeasures
are defeated. This approach aims to bridge the gap between model transparency
and enhanced security in side-channel analysis. To reach those goals, we propose
the following questions to be answered with ExDL-SCA:

1. Where: explain the contribution of different layers in a neural network.
2. What: explain what happens with relevant or irrelevant features and if the

information is processed (fitting, compression) to the subsequent layers of a
neural network.

This paper proposes an information-theoretic-based explainability method-
ology that infers how much information the black-box model5 learns from secret
masks. The starting point of our methodology is Information Bottleneck Theory
(IB) [41,38], which has sparked much interest from the deep learning commu-
nity as a potential theoretical framework to explain how deep neural networks
achieve enormous success in many different applications. In essence, IB theory

5 Secret masks are not supplied during the training of a black-box profiling model and
are only considered for post-hoc explainability.

2

suggests that deep neural network training undergoes two phases: fitting and
compression. The fitting phase is supposedly fast and is characterized by hidden
layers trying to maximize information about X . At the same time, compression
is slower, and it is responsible for the generalization ability of the model. In the
compression phase, the network starts to compress noise and other irrelevant fea-
tures while preserving only relevant features from input training data X . The IB
theory requires the computation of mutual information between (usually) high
dimensional input data X (such as side-channel measurements) and (potentially)
high dimensional intermediate network representations T (the output of a hidden
layer), i.e., I(X , T). However, computing I(X , T) is particularly challenging for
discrete and high-dimensional representations [14,36], which constrains the esti-
mation of the compression phase during training. To address this, we adapt the
Information Bottleneck (IB) framework to the Perceived Information metric [4],
enabling a more precise explanation of the fitting, compression, and generaliza-
tion phases across different hidden layers. For the first time, we provide security
evaluators with specific insights into where and what each neural network layer
learns from high-order leakages during training. This methodology allows evalu-
ators to accurately assess what a profiling model learns—or fails to learn—from
the implemented countermeasures at a layer-specific level.
Our main contributions are:

1. We discuss explainability in the context of DL-SCA and recognize the where
and what questions that need to be answered to provide (the core of) ex-
plainable DL-SCA.

2. We define a new methodology to quantify the information learned by hidden
neural network layers during profiling. Our method allows an evaluator to
measure how the input information leakage is learned and conveyed layer
by layer in a deep neural network. Furthermore, our method can show in
what layer the information bottleneck is inherently implemented to compress
irrelevant input information (such as noise) and preserve relevant leakages
to break masking countermeasures.

3. We provide experimental results on publicly available datasets and different
neural network architectures. All our results indicate that the information
bottleneck theory is a valid method to explain the different phases of deep
neural network training.

4. We conclusively show that neural networks learn to use and combine sepa-
rate sharing, i.e., with separate randomness of the same sensitive value, to
improve model predictions.

5. We validate that the secret masks determined to contribute to model pre-
dictions by our method causally contribute to the predictions by executing
activation patching experiments.

3

2 Background

2.1 Notations and Terminology

We refer to X as a set of side-channel measurements, with xi being the i-th
observation of X . Xp is a set of profiling side-channel measurements and Xa is the
attack set with lengths np and na, respectively. Each side-channel measurement
xi represents the side-channel leakages of a cryptographic operation having input
data di and encryption key ki.

6 We refer to Y as the set of hypothetical leakage
values (or labels) for X where yi = f(di, ki) is one element of Y, and s(.) denotes
a leakage selection function (e.g., s(.) can be represented by an S-box operation
in the first encryption AES round). In the case of masking countermeasures, mr
refers to (r)-th secret share. Alternatively, the term Yf refers to the set of labels
representing a feature in side-channel measurements (e.g., a secret share related
to key byte index j).

With respect to information-theoretic notions, we refer to p(xi) as the prob-
ability of observing xi and p(yi|xi) as the probability of observing yi given xi.
H(X) is the entropy of X while H(Y|X) gives the conditional entropy of Y given
X . The mutual information between X and Y is given by I(X ;Y).

For neural network representations, we refer to T as an encoding providing
an intermediate representation of X in a neural network (e.g., T could represent
the feature map output of a convolution layer or the activations output of a fully
connected layer) and ti is an observation of T . The term L refers to the number
of hidden layers (excluding the output layer from the counting). The index of a
hidden layer is given by l. The term X l indicates the output of a hidden layer
l when the input data to the network is X . Finally, Ŷ is the output prediction
from a neural network.

In this paper, the term sample refers to the point of interest xi[j] in a side-
channel measurement xi. The term feature refers to the meaning of some infor-
mation contained in X . For example, when X represents the set of side-channel
measurements from the AES encryption process, the leakage of an intermediate
byte in each measurement xi, given by a label set Y, is a feature of X .

We also define specific notations for neural networks. Convolutional neural
networks (CNNs) have a layer-wise structure according to the Eq. (1), where
C(fi, ks, st) denote a convolution layer with fi filters, kernel size ks, and stride
st, A is the activation layer (which can be RE in case of relu, SE in case of
selu, or E in case of elu), BN is a batch normalization layer, AP (ps, st) is
an average pooling layer with pooling size ps and stride st, FC(ne) is a fully
connected layer with ne neurons and S(c) is a Softmax layer with c output
neurons. The superscripts nc and nfc indicate the number of convolution blocks
and fully connected layers, respectively.

X → [C(fi, ks, st)→ A→ BN → AP (ps, st)]nc → [FC(ne)→ A]nfc → S(c)→ Ŷ.
(1)

6 Instead of the encryption function and plaintext, it is also possible to consider de-
cryption function and ciphertext, but for simplicity, we consider encryption only.

4

Similarly, a multilayer perceptron (MLP) is defined according to the following
layer-wise notation:

X → [FC(ne)→ A]nfc → S(c)→ Ŷ. (2)

2.2 Deep Learning-based Profiling SCA Against Masked
Implementations

In classification applications, a neural network model represents a function that
maps input data X into a finite number of output class probabilities Ŷ. The
mapping is performed by a function f(X , θ) −→ Ŷ, where θ is a set of parameters
learned during the training phase by minimizing a loss function.7 The learned
mapping between input side-channel traces X and outputs probabilities Ŷ de-
pends on the estimated number of classes presented in X . This number of classes,
|Y|, is derived from a leakage function that indicates the hypothetical leakage
value in a side-channel measurement.

To protect against side-channel attacks, masking is implemented to break
the statistical dependence between side-channel measurements (e.g., power con-
sumption) and hypothetical leakage values. For an m-order masking scheme, an
intermediate byte b in a cryptographic algorithm is protected as follows:

bm = b � m1 � m2 · · · � mm, (3)

where � can indicate a Boolean [6], arithmetic [12], multiplicative [12], or affine [10]
operation.

The leakage function g(·) = L defined for a second-order profiling SCA is
supposed to learn how to combine two unknown variables m1 and m2 according
to:

L = g(m1, m2) = m1 � m2, (4)

where g is a function mathematically combining two variables through the op-
eration �.

In our analysis, m1 will always be given by an 8-bit mask share randomly gen-
erated for each encryption execution, while m2 will be given by an 8-bit masked
S-box output of the first AES encryption round, i.e., m2 = S-box(di ⊕ ki)⊕ m1.
For instance, the leakage function for a second-order attack on a masked AES
implementation is defined as:

L = g(m1, S-box(di⊕ki)⊕m1) = m1⊕S-box(di⊕ki)⊕m1 = S-box(di⊕ki), (5)

where � = ⊕.
A side-channel measurement xi containing second-order leakages must embed

leakage of information from the treatment of masked S-box output (S-box(di⊕
ki)⊕m1) and, at least, the loading of mask share m1 from memory. We can finally

7 In this paper, we always consider categorical cross-entropy as the loss function since
it is commonly used in deep learning-based SCA.

5

assume that to implement second-order profiling, a neural network must learn
the following mapping that also includes a leakage function L:

F (X ,L, θ) = F (X , g(S-box(di ⊕ ki)⊕ m1, m1), θ)→ Ŷ. (6)

This means that a neural network can learn a mapping from side-channel
traces X to output class probabilities Ŷ that represents (ideally) the xor between
two random 8-bit variables S-box(di ⊕ ki) ⊕ m1 and m1. In essence, the leakage
function represented by learned parameters θ defines how continuous variables
or input features (X) (i.e., raw or pre-processed trace samples) are converted

into hypothetical discrete leakage values g(X)
L−→ Ŷ, where Ŷ can also be seen

as the set of predicted labels. As a consequence, a neural network that can
learn second-order leakages defines a mapping with an intermediate function
that can be given by one or more hidden layers, which learns how to implement
g(S-box(di ⊕ ki)⊕ m1, m1).

The trained neural network, thus, implements the following path:

X → T1 → · · · → TL
Softmax−−−−−−→ Ŷ ≡ X → g(S-box(di ⊕ ki)⊕ m1, m1)

Softmax−−−−−−→ Ŷ.
(7)

From Eq. (7), we can verify that

T1 → · · · → TL ≡ g(m1, m2). (8)

A loss function assesses the overall variation between expected (ground truth)
labels Y and predicted labels Ŷ. Common hypothetical leakage models for side-
channel analysis include Identity, Hamming weight, Hamming distance, or bit-
level models (e.g., the least or most significant bits). Besides the predefined
number of classes for classification, the trained neural network has no other
information on converting input features into labels. Therefore, training a model
assumes the network will automatically learn the leakage model properties by
implementing the mapping from Eq. (6).

2.3 Mechanistic Interpretability

As deeper models are deployed in a wider range of tasks, a precise understand-
ing of how these models make decisions is increasingly important [15]. Recently,
mechanistic interpretability has emerged as a promising subfield that attempts to
reverse-engineer neural networks and their behavior. Several key techniques have
been proposed that result in significant gains in finding detailed explanations of
what neural networks are learning [29]. The main hypothesis underpinning mech-
anistic interpretability research is that neural networks consist of understandable
features [30]. These features are the abstract concepts or attributes of the input
that models use to make predictions. Features can be low-level, e.g., “there is a
curve in the top-right of this image”, or more high-level, e.g., “there is a cat in
this image”. We note that “features” is a term for any information about inputs
a model might use to make decisions. While determining what features are used

6

by a model is a reasonable method to form hypotheses on what a network is
learning, to fully understand it, we also need to know how the model is using
these features. The mechanisms the model weights implement to manipulate fea-
tures are referred to as circuits [29]. These, again, can be low-level, e.g., how a
model is composing several curves into shapes, but circuits also exist at much
higher levels of abstraction, e.g., how a model decides whether there is a cat in
an image. The goal of mechanistic interpretability is then to find these features
and circuits in trained models and give post-hoc explanations that accurately
describe model behavior based on the models’ internals. In the following sections,
we will provide background on two main tools in mechanistic interpretability.

Probing Probing [1] is a method for analyzing the internal representations of
neural networks. The main idea is to annotate a dataset with features that are
hypothesized to be relevant to a trained model’s predictions, save the activations,
i.e., outputs of a layer in the model, during the forward pass of the model on
this dataset, and finally train a probe, i.e., a small (linear) classifier, to predict
the annotated features from these activations. When the probe converges and
achieves reasonable accuracy levels (some information about), the feature is rep-
resented in the activations. By probing for the evolution of features at different
points in training and different intermediate layers, it is possible to determine
when and where the model learns to use certain features. Recently, probing has
been used to gain insights into several large models. In [26], the authors explored
when in the training of AlphaZero [39] knowledge about certain chess concepts
is acquired.8 More recently, in [20,28], probes were used to discover a represen-
tation of a world model, i.e., board state, of a simple board game (Othello) in a
toy model trained to predict the next move.

Activation Patching Activation Patching9 is a technique used to understand
the behavior of a model by intervening in its internal computations. It involves
modifying or “patching” the activations (i.e., the outputs of neurons in a layer)
during the forward pass of the network to observe how changes affect the model’s
predictions or behavior [11]. This technique is useful for understanding the net-
work’s internal decision-making process and gaining insight into which layers
or neurons are responsible for certain outputs or behaviors. Furthermore, it al-
lows us to test hypotheses about if/how a model uses a feature by changing it
during the forward pass. Concretely, for a model that is trained to do addition
between two group elements a, b ∈ G, a reasonable hypothesis is that the model
is somehow combining a and b in some internal layer [8]. To verify that the model
implements recombination before/after a certain layer, during the forward pass,
we can replace the activations before that layer that correspond to a with the

8 From basic concepts like material imbalance to more complex positional concepts
used in classical chess engines.

9 Also referred to as causal tracing [43] or interchange intervention [11].

7

activations for a′ ∈ G, a′ 6= a.10 Then, if the intervention changes the output
from ab to a′b, there is strong evidence that the model uses this feature, and
the combination happens after the intervention. If the output does not change,
the recombination might have happened before this layer, or the model might
not faithfully implement the group operation. Some concrete examples of using
this type of intervention to find/verify circuits are the editing of factual infor-
mation in language models [27], finding circuits that do grammatical operations
in language models [43], and changing the internal board representations [20,28]
to alter the predicted next moves.

3 Related Work

Interpretability and explainability in deep learning profiling SCA have received
relatively little attention. A larger focus has been put on neural network op-
timization to solve the difficult task of hyperparameter tuning. Nevertheless,
the efforts to build various methodologies could be considered interpretability
research since the authors attempt to provide guidelines to build good neural
networks, which intuitively means they could interpret what models do [51,45].
Moreover, Zaid et al. used weight visualization and feature maps to understand
what features are more important [51]. In [31], the authors considered infor-
mation bottleneck theory to derive an early stopping mechanism for a deep
learning-based profiling attack by maximizing mutual information I(T ;Y) for
the output layer. Note that the approach we propose in Section 4 differs from
this early stopping technique. Indeed, [31] only measures the information in the
softmax layer (i.e., predictions), while our technique measures information in
hidden layers.

The more “direct” attempts at interpretability and explainability can be
divided into approaches that concentrate on the input layer and approaches that
concentrate on the inner (hidden) layers. The techniques that concentrate on the
input layer try to recognize the most important features (or the influence of each
feature on the performance of a neural network). Visualization techniques were
the first attempt to explain what side-channel trace sample points have more
impact on neural network decisions. Masure et al. provided visualization results
through input gradient from the input network layer. They verified that neural
networks automatically detect the time location of secret shares even in the
presence of desynchronization countermeasures [24]. The input gradients analysis
implements the so-called sensitivity analysis of loss function concerning input
features or side-channel samples [24]. In [16], the authors compared different
visualization techniques, e.g., Layer-wise Relevance Propagation and Occlusion,
in profiling SCA and considered them as side-channel attack distinguishers. More
recently, Golder et al. explored even more visualization techniques like Integrated
Gradient and SmoothGrad [13]. Finally, Schamberger et al. [37] and Yap et

10 We obtain the activations for a′ by running another forward pass of the model with
the a′ as input.

8

al. [49] investigated occlusion techniques to understand better the influence of
specific features on the DNN decision-making process.

To explain the behavior of hidden layers in profiling SCA, the authors of [42]
considered Singular Vector Canonical Correlation Analysis (SVCCA) to explain
what neural network layers learn from different side-channel traces. Unfortu-
nately, the authors only managed to reach interpretability on a coarse level as
even diverse datasets (side-channel and image datasets) had more similarity than
two side-channel datasets. Wu et al. proposed the adoption of ablation techniques
to explain how different neural network configurations perform in the presence
of diverse hiding countermeasures [47]. While these results are very interesting,
we note they cannot explain the processing of masks. Furthermore, the approach
is rather involved and gives results that are (potentially) difficult to interpret.

Yap et al. used the Truth Table Deep Convolutional Neural Network approach
to obtain the rules and decisions the neural networks learned when retrieving
the secret key from the cryptographic primitive [48]. With this approach, the au-
thors located the points of interest responsible for neural network learning. Still,
the authors mentioned the approach being inferior to the feature map of gradi-
ent visualization if the exact position of POI is needed. Moreover, the approach
does not work with desynchronization/jitter countermeasures. Furthermore, Ma-
sure et al. [23] defined a neural network layer that explicitly recombines mask
shares. However, this approach requires knowledge about the masking scheme
implemented on the device. Finally, Zaid et al. adapted Conditional Variational
AutoEncoder [50] to model side-channel traces. With this approach, the authors
used the weights of the neural networks to provide an equation of the traces
corresponding to the leakage.

The related works concentrate 1) on inputs (features) that do not allow for the
explanation of the internal working of neural networks or 2) they are constrained
concerning computational complexity and/or type of countermeasures that can
be analyzed. Consequently, despite the progress obtained in the last few years,
a technique to quantify the occurrence and propagation of high-order leakages
in hidden layers and how (if) the masking countermeasures are defeated is still
unknown.

4 Explainability Methodology for Profiling SCA -
ExDL-SCA

This section describes our explainability methodology. The process allows us
to quantify how much information each intermediate network representation
obtains about input features present in training measurements. As we apply
our explainability methodology to the AES masked implementation, features in
input measurements are given by different secret shares (i.e., mask and masked
S-Box output bytes).

The proposed solution adds extra calculations during the deep neural network
training. The model is trained with profiling traces Xp labeled in a black-box

9

way11 with Yp. At the end of each training epoch, we predict the model with
both profiling and attack traces Xp and Xa, respectively. By doing so, the output
of each hidden layer l, given by T , is saved as encoded versions of profiling and
attack sets, i.e., X l

p and X l
a, respectively. X l

p and X l
a are activation outputs12

from a hidden layer l when the model predicts with profiling and attack sets,
respectively. The shapes of X l

p and X l
a depend on the output layer dimensions.

4.1 Quantitative Measures of Side-channel Leakages in Hidden
Layer Representations

When training a deep neural network as a profiling model against masked imple-
mentations, one expects a model to learn and combine high-order leakages from
input traces automatically. If the attacked side-channel trace interval includes
the processing of several intermediate bytes from a cryptographic implementa-
tion, including the masks, each of these bytes can be considered as input fea-
tures. An intermediate network representation given by the output activations
of a certain hidden layer should be able to compress irrelevant features while
preserving information about relevant ones. The irrelevant features are assumed
to be noise by the neural network and, therefore, should not be propagated to
the next layers. The relevant features, in this case, would be the intermediate
bytes representing the masks and masked target operation (e.g., masked S-box

output byte in the first encryption round), which should be combined by some
intermediate network representation as well.

To understand where (e.g., in which layer) and when (e.g., in which training
epoch) the model implements feature compression and feature learning, we need
to define an information metric I. Such an information metric must be able
to quantify efficiently, through a function q(.), how much information a hidden
layer representation T has about a certain feature Yf , i.e., I(T,Yf). We use Per-
ceived Information [4], a lower bound on Mutual Information, as it is relatively
straightforward to compute from a classification model predictions and can thus
be easily used to quantify the information a trained probe captures for a feature.
Alternatives and their drawbacks are discussed in Appendix A.

Perceived Information (PI) Estimation [4] In our method, we are inter-
ested in estimating the amount of information from secret shares that can be
extracted by each hidden layer. Thus, by taking the intermediate representations
T = X l

p (obtained when predicting the network with training data Xp) from all
hidden layers, at the end of each training epoch, we train a separate probe q(.)
with X l

p in each layer l to measure how much information T has about an input
feature Yf . The probe q(.) can be any supervised classification method. In our
case, we use a shallow MLP classifier with an output softmax layer. This shallow
MLP classifier is also a multi-output classifier, which allows us to estimate the

11 i.e., without mask knowledge
12 We refer to these as activations throughout this paper as this is the terminology

generally used in mechanistic interpretability research

10

information from several input features in a hidden layer representation T with a
single training of q(.). After training this shallow MLP classifier with X l

p, we use

it to predict encoded attack traces X l
a to obtain class probabilities associated

with each selected input feature. The shallow MLP classifier provided output
class probabilities p(yf |xli) for each input feature Yf .

After obtaining the conditional class probabilities p(yf |xli) from q(.), per-
ceived information becomes a convenient approach as it measures the amount
of information learned by a profiling model concerning specific leakage model
resulting in a set of labels Yf). Initially, we need to estimate the conditional
entropy H(Yf |X l

p), which is given by:

H(X l
p|Yf) =

|Yf |∑
z=1

p(yf = z)

np∑
i=1

p(xli|yf = z) log2 p(yf = z|xli), (9)

where xli is the i-th observation of X l
p and yf is one element of Yf . First, we

replace X l
p by attack (or test) encoded representations X l

a in Eq. (9):

H(X l
a|Yf) =

|Yf |∑
z=1

p(yf = z)

na∑
i=1

p(xli|yf = z) log2 p(yf = z|xli), (10)

where yf are labels obtained from intermediate values processed in attack traces
Xa. Following the approach proposed in [4], we can replace the true probabil-

ity mass function (PMF), p(yf |xli), by p̂(yf |x
l,yf
i) and compute the perceived

information by sampling(see Eq. (11) from [4]):

P̂ I(X l
a|Yf) = H(Yf) +

|Yf |∑
z=1

p(yf = z)
1

nyf=z

na∑
i=1

log2 p̂(yf |x
l,yf=z

i), (11)

where p̂(yf |x
l,yf
a)) gives the probability that an encoded attack trace x

l,yf=z

i is
labeled with class yf when it is labeled with this same class.13 The term nyf=z

gives the number of attack traces that are labeled with class yf = z.
The metric from Eq. (11) becomes an indirect estimation of how much infor-

mation the encoded hidden layer representation T = X l
p (obtained by predicting

the neural network with profiling set Xp) contains from a specific byte being
manipulated by a cryptographic algorithm, such as a secret share in masked im-
plementations.

The quantity P̂ I(X l
a|Yf) depends on a properly built classifier q(.), which

leads to the more precise estimation of perceived information values from Eq. (11).
We validate that minor hyperparameter variations do not significantly affect the
results in Appendix D. The magnitude of input feature information (such as

13 We assume a known-key attack setting analysis. For an evaluator, the attack set
is always the validation set, and the corresponding validation key bytes are always
known.

11

secret shares) is expected to be higher in the first hidden layers, where the rela-
tion PI(T l,Yf) ≥ PI(T l+1,Yf) for two subsequent layers l and l + 1 is always
preserved. However, we experimentally verified that the relation PI(T l,Yf) ≥
PI(T l+1,Yf) always holds for the initial part of the network training. As training
progresses, this relationship might not hold anymore. While this may be coun-
terintuitive, as information about a share in a later layer implicitly needs to also
be in the earlier layer, the reasons behind this are clear: the shallow MLP q(.)
we fit to obtain a PMF for a feature cannot always extract all of the information
present in the activations. Later in training, when the network has (possibly)
implemented a bottleneck, it is easier for q(.) to extract information in deeper
layers as there is less irrelevant information and noise. Note that computing per-
ceived information to estimate information in hidden representations with the
classifier q(.) makes our explainability method independent of (although inspired
by) IB theory.

4.2 ExDL-SCA Steps

After explaining how we estimate perceived information between input features
represented by labels and intermediate network representations T from a hidden
layer l, we can define the complete structure of our explainability methodology.
Figure 1 provides the four steps that form our methodology:

1. In Step 1 , we define a baseline neural network F to be trained for E
epochs with profiling traces Xp that are labeled as Y (without the knowledge
of secret mask shares). Our experimental results in Sections 5 and 7 are
obtained from software AES 128 implementations and, therefore, (black-
box) labels Y are generated from S-box output bytes in the first encryption
round, i.e., S-box(dj ⊕ kj).

2. In Step 2 , we extract the intermediate representations T from hidden lay-
ers. Thus, at the end of training epoch e, the trained model F predicts both
profiling (Xp) and attack (Xa) sets. For each hidden layer l, we obtain output
activations that are taken as encoded versions of input profiling and attack
sets, i.e., X l

p and X l
a, respectively.

3. In Step 3 , we take encoded profiling sets X l
p from all hidden layers l and

build a shallow MLP classifier, denoted as q(.), which is trained with X l
p

for Eq epochs. Instead of training q(.) multiple times (one time for each
different input feature Yf), we implement a multi-label classifier to speed up
the process.

4. Finally, in Step 4 , the shallow MLP classifier q(.) predicts encoded attack

set X l
a, producing output class probabilities Ŷ l

f = p(yf |xli) for each different
input feature Yf . These quantities are considered for a perceived information
calculation as in Eq. (11).
This way, we can estimate the amount of information that an encoded repre-

sentation X l
p, in a hidden layer l, can have about input information Yf for every

training epoch in a black-box model. Note that Yf can also be the true labels
Y, which allows us also to measure the moment when the network F combines

12

Fig. 1: Methodology for mask share fitting explainability. Here, q represents a
shallow MLP with multi-label classification.

two secret shares and becomes capable of implementing a second-order attack.
Algorithm 1 (Appendix B) provides the steps necessary to implement our ex-
plainability methodology. The method LayerPredict(LF ,X) returns the output
activations from a layer of index l when this layer predicts some input X .

5 Compression in Deep Neural Networks

The information bottleneck theory suggests that one of the main aspects of learn-
ing from noisy datasets is the compression of X to an intermediate representation
during training to eliminate the noise and preserve relevant information about
Y. For the reasons explained in Appendix A, measuring the level of compression
with mutual information I(X ;T) is difficult and depends on the neural network
architectural choices (e.g., activation functions). Therefore, the solution adopted
in our work relies on quantifying perceived information of specific input features
in hidden layer representations with a separate classifier. This way, our estima-
tion of information in hidden representation is not limited by specific choices
such as saturating (e.g., tanh) or non-saturating (e.g., relu or elu) activation
functions.

5.1 Compression of Irrelevant (Key Byte) Features in First-order
Masked Datasets

We use our explainability methodology to show how deep neural network layers
compress the information about irrelevant features present in training set Xp

13

while preserving relevant features. When targeting a single key byte in a first-
order masked AES dataset, relevant features become the secret shares associated
with the target key byte. In contrast, irrelevant features are all the information
corresponding to other key bytes and noise components. We provide results for
a noise-free simulated dataset, in which all features are well defined so that
every sample represents a feature (with zero noise) and there are no samples
that would represent noise. Section 7 provides experiments on real side-channel
measurements from the first-order Boolean masked AES implementations.

Our simulated traces contain leakages from S-box outputs in the first AES
encryption round. Each trace xi contains 32 samples, and each of these samples
is generated according to the following equations:

xi[2j] = HW (S-box(dj ⊕ kj)⊕ mj)

xi[2j + 1] = HW (mj),
(12)

where j ∈ [0, 15] denotes the j-th key byte index and mj is the mask share
associated with the j-th key byte. HW returns the Hamming weight of the
intermediate variable. In total, we generate 100 000 simulated profiling traces,
and 5 000 simulated attack traces.

In the first experiment, we define a 4-layer MLP with the following layer-wise
structure:14

X → [FC(100)→ E]4 → S(9)→ Ŷ.

The learning rate and batch size are set to 0.0025 and 400, respectively. Different
values for these two hyperparameters would also provide the optimal results we
require for our explanations. This MLP is trained with the Adam optimizer for
100 epochs. The simulated profiling and attack traces Xp and Xa are labeled
with the Hamming weight leakage model according to the intermediate values
related to the second key byte j = 2, i.e., Y = S-box(d2 ⊕ k2). This is why the
output layer S(9) has 9 neurons.

In Figure 2, we plot the perceived information values obtained for all hidden
layers. The perceived information values are computed concerning all 32 input
features (16 masks plus 16 masked S-box output bytes) contained in simulated
traces. For the shallow MLP classifier q to compute perceived information from
hidden layers, we always use a 1-layer MLP with 50 neurons, where the activation
function is elu, the learning rate is 0.001, the batch size is 200, and the optimizer
is Adam. This classifier q is always trained for 100 epochs.

Since Xp is labeled with Y = S-box(d2 ⊕ k2), we expect that the network
layers will fit the relevant features corresponding to key byte 2, i.e., m2 and
S-box(d2 ⊕ k2) ⊕ m2, and compress the rest of the features. In Figure 2, we
clearly see that in layers 2-4, the information related to irrelevant features de-
creases around epoch 10. Concurrently, we also see an increase in the perceived
information for the label Y. This indicates that IB theory is a solid explanation
for the models’ behavior. Indeed, later in training, the bottleneck moves from

14 Hyperparameters are chosen arbitrarily as the simulation is noise-free and essentially
anything works.

14

later layers to the first layer. Again, the start of compression of irrelevant fea-
tures in the first layer, around epoch 35, is accompanied by an increase in the
perceived information for the label Y in the first layer. Note that the PI values
for masks reach 2.56 bits, the maximum value we can obtain under the Hamming
weight leakage model.

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Fig. 2: The compression of irrelevant features with a 4-layer MLP. Blue and
orange lines indicate the perceived information from relevant features. Irrelevant
features associated with the other key bytes are given as gray lines.

When applying the explainability method to simulated results, we can imme-
diately confirm that during the first training epochs, the information about input
features is higher in the first layers and weaker in layers closer to the network
output, which confirms that the relation PI(T l,Yf) ≥ PI(T l+1,Yf) holds. As
the training progresses, the network layers start to learn the information from
input features, and they might eventually become higher in the middle layers
than in the first layers. This scenario is better illustrated in Figure 3c, where
the values are the same as shown previously in Figure 2. Figure 3c also shows
that PI(T l, Sbox(d2 ⊕ k2)) grows more aggressively in the deeper layers, which
is expected as these layers tend to maximize information about target labels,
successfully indicating the combination of two secret shares. We note that this
information is also present in earlier layers but that the probes are too shallow
to (fully) recombine masks themselves. This allows for a reasonable measure of
where the model is doing the mask recombination. Note that as the probe can
potentially combine masks itself, especially in later layers when the network is

15

closer to the prediction, PI(T l+1,Yf) we estimate is not a perfect indication of
where mask recombination happens.15

(a) m2 (b) Sbox(d2 ⊕ k2)⊕m2 (c) Sbox(d2 ⊕ k2)

Fig. 3: The evolution of perceived information values in hidden layers. Initially,
when training starts, the relation for input features PIlayer1 ≥ PIlayer2 ≥
PIlayer3 ≥ PIlayer4 always holds. During training, this relation changes as the
relevant input features are transferred to the deeper layers.

6 Validating Results Using Activation Patching

The method presented in Section 4 gives us a solid basis to form hypotheses about
the usage of specific secret shares and where in the network mask recombination
is happening. However, assessing the validity of these hypotheses is still difficult.
While finding the relevant features that relate to tasks in, e.g., language models
is highly nontrivial, in our case, it is relatively straightforward. The features
that contribute to model predictions should correspond to secret shares that get
recombined to the target value at some point in the network, see Eq. (7). If we
can find the part of the activations that corresponds to a mask m, then we can
replace those parts of the activations with those corresponding to a specific mask
value and observe the effects on the output behavior of the network. Concretely,
if we take a network that implements g(S-box(di ⊕ ki) ⊕ m, m) and patch it to
replace m with 016, then the network now implements g(S-box(di ⊕ ki) ⊕ m, 0),
which for the Boolean masking schemes we consider equals S-box(di ⊕ ki) ⊕ m.
Thus, if we replace the mask value before recombination, the prediction should
change to S-box(di ⊕ ki) ⊕ m. If we replace it after recombination, it should
remain the same as it was originally.

7 Experimental Results

For the shallow MLP classifier q, we always use a 1-layer MLP with 100 neu-
rons, where the activation function is elu, the learning rate is 0.001, the batch

15 Our results against ESHARD in Figures 8 and 10 provide a practical example of this.
16 We note that changing m to 0 results in easier mask recombination that amplifies

the effect of the patches. This is by design.

16

size is 400, and the optimizer is Adam. The classifier q is always trained for 20
epochs. The precise details for the activation patching experiments provided in
this section can be found in Appendix F.

7.1 Datasets

For our experimental results, we considered the trace sets from the ASCAD
and ESHARD databases, where mask shares are also provided in the metadata.
For the considered datasets, we target trace intervals with second-order leak-
ages of multiple key bytes to ensure we include several other intermediate bytes
representing irrelevant features during training in different hidden layers. Addi-
tionally, we simulate the effect of a hiding countermeasure (desynchronization)
for the ASCAD dataset with the results given in Appendix E.

ASCADr This dataset contains 300 000 traces,17 where the first 200 000 measure-
ments have random keys and are considered for profiling while 100 000 measure-
ments contain a fixed key and, from this second set, we consider 5 000 for the
attack phase. Each measurement contains 250 000 samples. This dataset was col-
lected from an AES 128 software implementation featuring a first-order Boolean
masking countermeasure. In previous works, a trimmed version of this dataset
containing measurements with 1 400 samples is commonly adopted, which con-
tains second-order leakages related to the third key byte only. For our experi-
ments, we start from raw measurements containing 250 000 samples and select
the interval from sample 70 000 until sample 90 000. Then, we apply a window
resampling with a resampling window of 20 samples and a step of 10 samples,
resulting in traces with 2 000 samples (following the procedure from [32]). These
trimmed and resampled measurements contain second-order leakages related to
the third key byte in the first encryption round but also include leakages from
other key bytes. Note that these traces also contain significant leakages of the
masked inputs of the S-box [9], which we also include in our analysis.

ESHARD The ESHARD dataset consists of side-channel measurements collected
from a software-masked AES-128 implementation running on an ARM Cortex-
M4 device. The AES implementation is protected with a first-order Boolean
masking scheme with a shared masked S-box. In this work, we consider a
trimmed version of the dataset that is publicly available18 and includes the
processing of the mask and all masked S-box operations in the first encryp-
tion round without shuffling. This dataset contains 100 000 measurements, split
into groups of 90 000, 5 000, and 5 000 for profiling, validation, and attack sets,
respectively.

17 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_

variable_key
18 https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

17

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

7.2 Reading the Plots

Ex-DLSCA plots The main goal is to demonstrate how different hidden layers
fit, compress, or generalize concerning different features. Plots provided in this
section show the evolution of perceived information (Eq. (11)) during training
for different features given by specific label sets. For the evaluated datasets,
we deploy profiling and attack phases over trace intervals that include leakages
from different key bytes. For ASCADr, the evaluated interval includes second-
order leakages from key bytes 2, 4, 5, and 11, in which the target is key byte
2. For ESHARD, the target interval includes second-order leakages from all key
bytes, and we target key byte 2.

The main idea is to illustrate the compression of irrelevant features by bot-
tleneck layers. Thus, in all plots, we provide perceived information results for
mask shares (given by mj in the plot’s legend, where j is the key byte index) and
masked S-Box output byte (given by S-box(kj ⊕dj)⊕mj in plot’s legend) for all
those key bytes. The perceived information values for target key bytes (key byte
2) are shown with colored lines (blue color for the mask mj/mout and orange color
for S-box(kj ⊕ dj)⊕ mj/out) while for the rest of key bytes, we show the results
with gray lines. For ASCADr mint lines represent min and purple lines represent
the masked S-box input kj ⊕ dj ⊕ min. The perceived information for the actual
black-box attack labels Y = S-box(kj ⊕ dj) is represented by a green line plot.
Therefore, blue, orange, mint, and purple lines indicate relevant features, while
gray lines indicate irrelevant features. Every subfigure shows results for a specific
hidden layer, and the x-axis indicates the training epochs of the main F model.

Activation Patching Plots The main takeaway from the activation patching
plots is to assess whether patching the mask value to be 0 in a specific layer has
the expected effect on the model prediction. When mask recombination happens
after the layer we patch in, then we expect “Patched Activation/Patched Label”
to be high and “Patched Activation/Original Label” to be low, as changing the
mask before the recombination happens should affect the output. Conversely,
if mask recombination happens before the layer we patch in, we do not expect
predictions to change, resulting in “Patched Activation/Patched Label” being
low and “Patched Activation/Original Label” being similar to the original PI
value as changing the mask value has no effect on the prediction. Note that we
always plot the original PI with unaltered activations under “Original Activa-
tion/Original Label” as a reference.

7.3 ASCADr

Multilayer Perceptron We select various MLP architectures that implement
successful key recovery on ASCADr from a random search (see Appendix 1 for
details). We consider a profiling MLP model successful when it reaches guessing
entropy equal to 0 for the correct key k2 after processing up to 5 000 attack
traces. Figure 4 shows a six-layer MLP with the following layer-wise structure:

X → [FC(100)→ E]6 → S(256)→ Ŷ. (13)

18

Fig. 4: Perceived information values for various features Yf from a six-layer MLP
trained with the ASCADr dataset.

For this model, the learning rate is set to 5e-4, and weights are initialized
with random uniform method. The attacked interval includes the second-order
leakages from four different key bytes, including the target one. We immediately
verify that the first hidden layer still contains information from irrelevant fea-
tures represented by key bytes different from the target one. From the second
layer, we see that the irrelevant information is highly compressed, and the outer
layer generalizes better to Y, as shown by the green line representing perceived
information concerning Y = S-box(kj⊕dj). One of the most interesting observa-
tions in Figure 4 is that, especially in the later layers, we see early generalization
with only input shares. Then, a bit later in training, we see in fc 3 that increases
in PI for the S-box output shares coincide with further increases in PI for the
label, indicating that the network first learns to classify from input shares, and
later learns to combine this with the leakage from output shares.

1. Where. Our results indicate that compression of X happens in the first
hidden layer in this MLP configuration. Generalization to Y is stronger in
hidden layers closer to the output layer, and this conclusion comes from
higher P̂ I(X l

a;Y) values obtained for the outer layer than hidden layers
closer to the input layer.

2. What. We verified that to generalize to Y, the first hidden layer compresses
noise and irrelevant features and transmits information from relevant secret
shares to the subsequent hidden layers. Indeed, for ASCADr, we see that both
input and output shares are exploited and combined to improve generaliza-
tion.

When we attempt to patch different shares for ASCADr and MLP, we see in
Figure 5 that only patches in the first layer can change the label to a specific
targeted value. When we intervene in later layers, we see that changing has a very

19

limited impact on the predictions, and PI remains positive for the original label
for patches to both mask values. This closely matches the results in Figure 4,
which indicate compression is complete after the first layer. Furthermore, we note
that the primary driver for prediction, especially early on in the generalization
of the model, seems to be the S-box input shares19 (full lines in Figure 5),
which closely match the initial spike in PI shown in Figure 4 where PI for the
S-box inputs and the label increase early, after which PI for the output shares
also starts slowly increasing. This early generalization without output shares is
matched in our ability to change the label to a targeted value with patches using
the input shares (orange line in Figure 5). We see that, as the PI for output
shares increases (blue and orange lines Figure 4), our ability to effectively patch
with input masks decreases until after epoch 20, we cannot get positive PI for
the patched label anymore.

Fig. 5: Perceived information values at the model output for patching activations
in ASCADr MLP.

Convolutional Neural Network We again deployed a random search to se-
lect various CNN architectures that implement successful key recovery on the
ASCADr dataset. Details about our CNN random search process can be found in
Supplementary material C (Table 2). Figure 6 shows the results obtained from
a CNN with four convolution layers and two fully connected layers with the
following structure:

X → [C(fi, 40, 15)→ SE → BN → AP (2, 2)]4 → [FC(20)→ SE]2 → S(256)→ Ŷ,
(14)

19 As for the input shares, we patch the S-box input mask min, the patched label, in
this case, is S-box(dj ⊕ kj ⊕ min ⊕ 0)

20

Fig. 6: Perceived information values for various features Yf from from CNN layers
(Eq. (14)) trained with the ASCADr dataset.

where fi is set to 12, 24, 36, and 48 for the four convolution layers. The
learning rate for this model is 1e-3, and trainable weights are initialized with
glorot normal method. The first layer, conv 1, fits information from relevant
and irrelevant features, as perceived information values are positive for approx-
imately the first 50 epochs. For this layer, after epoch 50, it seemingly starts to
happen for all features, but this seems to be the result of the probes not being
able to extract the features from the larger representations in conv 1. Layer
conv 2 shows the fitting of input features, including irrelevant ones, and layer
conv 3 shows compression of irrelevant features while preserving and learning
relevant ones. Note how conv 2 already generalized to Y . The subsequent layers
also show compression of irrelevant leakages from key bytes other than the target
one. Prediction to Y (given by positive values of P̂ I(X l

a;Y)), is already seen in
conv 4, and in fc 1 and fc 2 layers, this generalization to Y is even stronger.
Furthermore, we see that the model initially, for epochs 8-10, learns to utilize
the S-box output shares to get a small, positive PI for Y in layer fc 2. Then,
the model predictions significantly improve after it includes the input shares,
after which we see a steady increase in PI for Y and the output shares, as we
observed for MLP in Figure 4.

1. Where. We verify that the first convolution layer is usually unable to im-
plement compression of irrelevant features to keep the relevant ones (we
observed that when the model achieves good levels of generalization, the
first convolution layer tends to compress the input information, including
the features related to the target key byte). The second convolution layer
implements fitting and compression phases, characterized by increased per-
ceived information values obtained from features (i.e., secret shares) related

21

to the target key byte. The bottleneck is completed by the fourth convolu-
tional layer, where we only see positive PI for relevant shares.

2. What. We again see that the model learns to combine both S-box input
and output shares. Indeed, we initially see a minor increase in PI for the
label as the PI for output shares increases, after which we see an increase in
PI for input shares. Finally, just as for the MLP, the PI for output shares
slowly increases to improve generalization.
When we look at the patching results in Figure 7, we see that patches after

the compression is finished in the second convolutional layer result in the original
label being the main prediction early on in training. We also see that we can get
positive PI for the patched label when we replace min in the first convolutional
layer. Besides this, there is a (very) minor spike in PI for the patched label after
patching the S-box output mask in the second convolutional layer, which occurs
in the short period where PI in Figure 6 has not yet increased for the input
masks but has started to increase for the output shares and label (around epoch
8-10). When we patch in later layers, the effects of the patches eventually start
to decrease. As expected, the PI of patched models with original labels starts
approaching the original PI, indicating that the mask recombination has been
completed after irrelevant features are fully compressed in the last convolutional
layer.

Fig. 7: Perceived information values at model output for patching activations in
ASCADr CNN.

7.4 ESHARD

Multilayer Perceptron We again consider random search to select an MLP ar-
chitecture that performs well with the ESHARD dataset. The found model reaches

22

Fig. 8: Perceived information values for varying Yf from a four-layer MLP layers
(Eq. (15)) trained with the ESHARD dataset.

GE of 0 for the correct key k2 after processing up to 5 000 attack traces. For
this dataset, we consider the Hamming weight leakage model. Figure 8 shows
the results of a four-layer MLP with the following layer-wise structure:

X → [FC(40)→ Re]4 → S(9)→ Ŷ. (15)

For this model, the learning rate is set to 0.0025, and weights are initial-
ized with he uniform method. To reduce overfitting during training, we add a
regularization l1 = 0.000075 to all hidden layers. The attacked interval includes
the second-order leakages from all key bytes, including the target one. We verify
that all hidden layers contain information from irrelevant features represented
by key bytes different from the target one. In the third and fourth layers, the in-
formation regarding irrelevant features is smaller than the previous layers. This
model generalizes and can successfully recover the key. The green lines indicate
perceived information with respect to Y = S-box(kj⊕dj) and it is positive until
epoch 10 in layers fc 3 and fc 4. After that, we observe overfitting and perfor-
mance degradation, but the model still recovers the key from the attack traces.

1. Where. For this MLP model, we observe that the compression of irrele-
vant features already happens mostly in the first two layers. Moreover, the
compression is more aggressive in the last two layers, and the PI for the
label is additionally more clear in the latter layers, indicating that the mask
recombination is happening across layers fc 2 and fc 3.

2. What. The explainability method allows us to detect more precisely that
after epochs 8-10, the training does not improve the model’s generalization,
while the PI for relevant shares remains reasonably high. The decrease in
PI for relevant shares as training progresses then results in performance

23

degradation, but as the shares are still present, key recovery is possible. We
note that this is potentially part of the explanation for why models that
overfit (negative PI, high validation/test loss) can still recover the key.
In Figure 9, we can clearly see that only the patches in the first layer change

the label. Indeed, the PI for the new label is about 10 times larger than the
original PI. Patches in the second layer result still result in negative PI for the
original label, as expected, given that compression is still happening for the
irrelevant features in Figure 8. When we patch after the third layer, the effects
of the patch are limited, and PI for the original label remains (approximately)
the same as with the original activations. Patching later activations does not
seem to impact the predictions significantly as PI for the original label remains
(approximately) the same as with original activations, indicating that masks
have already been recombined.

Fig. 9: Perceived information values at model output for patching activations in
ESHARD MLP.

Convolutional Neural Network With another random search, we found a
CNN architecture that can successfully recover the key for the ESHARD dataset.
Figure 10 shows the results obtained from a CNN with two convolution layers
and two fully connected layers with the following structure:

X → [C(fi, 10, 5)→ SE → BN → AP (2, 2)]4 → [FC(100)→ SE]2 → S(9)→ Ŷ,
(16)

where fi is set to 16 and 32 for the two convolution layers. The learning rate
for this model is 0.0025, and trainable weights are initialized with he uniform

method. Again, we add a regularization l1 = 0.000075 to all hidden layers. The
first layer, conv 1, fits information from relevant and irrelevant features, as it

24

Fig. 10: Perceived information values for varying Yf from the CNN layers
(Eq. (16)) trained with the ESHARD dataset.

does not show any compression of irrelevant features. The compression becomes
visible in the second convolution layer (conv 2). The fc 1 layer already shows
high compression levels of irrelevant features while it preserves the relevant ones,
and even further compression of irrelevant features occurs in the fc 2.

1. Where. Our results clearly show that the compression of irrelevant features
starts happening in the first fully connected layer. Note that the PI for
irrelevant features is somewhat lower in fc 2 than fc 1, indicating that the
compression is only fully completed in the final layer.

2. What. The model clearly learns to preserve the relevant shares, even af-
ter it overfits, although the PI for the relevant features starts marginally
decreasing. The compression of irrelevant features also reduces PI for irrel-
evant features after the PI for the label is negative. Again, we note that PI
for relevant features remains reasonably high while the model overfits, which
is quite surprising, and this is potentially part of the explanation for why
the model can still extract the key. Additional results and discussion around
the overfitting dynamics for ESHARD models are in Appendix D.1.

As can be seen in Figure 10, the compression of irrelevant features seems to
only be fully complete after the second fully connected layer. When we look at
the patching results in Figure 11, we see that patches in the first three layers
effectively change the label to the target value, indicating that mask recombina-
tion only happens after the irrelevant features are suppressed. Indeed, even when
the model normally overfits, these patches result in positive PI for a changed la-
bel. Only if we patch in the last fully connected layer, we see some positive PI for
the original labels. This again confirms the results based on mask recombination
only happening after the compression of irrelevant features.

25

Fig. 11: Perceived information values at model output for patching activations
in ESHARD CNN.

7.5 Discussion

We have presented a methodology for the post-hoc analysis of neural networks
that break cryptographic implementations. We show that models learn to com-
press irrelevant features across several layers and showcase a method for demon-
strating how information related to features evolves in each layer during train-
ing. These results clearly allow us to evaluate what features, or mask shares,
are contributing to the models’ predictions and are, therefore, contributing to
exploitable leakage. Notably, the answers to what the networks are learning
are strongly supported by both IB theory and empirical validation. The net-
works clearly implement a bottleneck and compress irrelevant features through-
out training. We further validate that the features that are not compressed in
the networks are causally related to the networks’ outputs by patching activa-
tions to change the network predictions to a target value. The answers to where
networks are recombining shares are somewhat harder to verify. Indeed, it seems
quite clear that the intuition behind recombination happening after irrelevant
features are compressed is empirically supported by patching results. However,
as the patching method is not extremely precise, pinpointing the exact layer
where masks are recombined can be difficult.

8 Conclusions and Future Works

The proposed explainability methodology (ExDL-SCA) brings more clarity to
understanding the effect of masking countermeasures against different deep learning-
based profiling attacks. Inspired by the information bottleneck principle [41], and
through the lens of perceived information [4], we provide a method to visual-
ize what every hidden network layer learns from high-order leakages and which

26

layer(s) (i.e., where) effectively perform the unmasking operation when the
high-order leakages are recombined. We applied our methodology to real side-
channel measurements and verified how hidden layers successfully implement a
bottleneck to fit relevant features associated with high-order leakages from the
target key byte while compressing irrelevant ones. Furthermore, we answered the
main explainability questions in all experimental results scenarios and validated
that these answers are correct by testing the generated hypotheses about what
masks the networks are recombining where.

In future works, we will investigate and quantify compression and general-
ization phases in profiling attacks. The main goal is to find the optimal trade-off
between these two phenomena in deep neural networks. Furthermore, we will
investigate how to tune specific neural network hyperparameters to achieve sat-
isfactory compression of noise and irrelevant features, leading to more efficient
profiling attacks against more noisy datasets. In particular, we will research a
new way to create the best possible bottleneck to efficiently regularize the model
and discard noise by keeping the information from relevant features. Finally, the
patching method introduced in Section 6 seems promising for future work. Pos-
sible directions include refining the share localization to allow for more precise
interventions, automating part(s) of the analysis, and a more systematic evalu-
ation of what can be done with these interventions.

References

1. Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier
probes. In: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net
(2017), https://openreview.net/forum?id=HJ4-rAVtl

2. Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Hjelm, R.D.,
Courville, A.C.: Mutual information neural estimation. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 530–539. PMLR (2018),
http://proceedings.mlr.press/v80/belghazi18a.html

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

4. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.: Leakage
certification revisited: Bounding model errors in side-channel security evaluations.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 11692, pp. 713–737. Springer (2019). https://doi.org/10.1007/978-3-030-26948-
7 25, https://doi.org/10.1007/978-3-030-26948-7_25

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,

27

https://openreview.net/forum?id=HJ4-rAVtl
http://proceedings.mlr.press/v80/belghazi18a.html
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25

September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 3,
https://doi.org/10.1007/978-3-319-66787-4_3

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-
48405-1 26, https://doi.org/10.1007/3-540-48405-1_26

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
pp. 13–28. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

8. Chughtai, B., Chan, L., Nanda, N.: A toy model of universality: Reverse engi-
neering how networks learn group operations. In: Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Pro-
ceedings of Machine Learning Research, vol. 202, pp. 6243–6267. PMLR (2023),
https://proceedings.mlr.press/v202/chughtai23a.html

9. Egger, M., Schamberger, T., Tebelmann, L., Lippert, F., Sigl, G.: A second look
at the ASCAD databases. In: Balasch, J., O’Flynn, C. (eds.) Constructive Side-
Channel Analysis and Secure Design - 13th International Workshop, COSADE
2022, Leuven, Belgium, April 11-12, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13211, pp. 75–99. Springer (2022). https://doi.org/10.1007/978-3-030-
99766-3 4, https://doi.org/10.1007/978-3-030-99766-3_4

10. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against
higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) Selected Areas in Cryptography - 17th International Work-
shop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 6544, pp. 262–
280. Springer (2010). https://doi.org/10.1007/978-3-642-19574-7 18, https://

doi.org/10.1007/978-3-642-19574-7_18

11. Geiger, A., Lu, H., Icard, T., Potts, C.: Causal abstractions of neural networks. In:
Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual. pp. 9574–9586 (2021), https://proceedings.neurips.cc/paper/2021/

hash/4f5c422f4d49a5a807eda27434231040-Abstract.html

12. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side chan-
nel analysis with additive and multiplicative maskings. In: Preneel, B., Tak-
agi, T. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings. Lecture Notes in Computer Science, vol. 6917, pp. 240–
255. Springer (2011). https://doi.org/10.1007/978-3-642-23951-9 16, https://

doi.org/10.1007/978-3-642-23951-9_16

13. Golder, A., Bhat, A., Raychowdhury, A.: Exploration into the explainabil-
ity of neural network models for power side-channel analysis. In: Proceed-
ings of the Great Lakes Symposium on VLSI 2022. p. 59–64. GLSVLSI
’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3526241.3530346, https://doi.org/10.1145/3526241.

3530346

28

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://proceedings.mlr.press/v202/chughtai23a.html
https://doi.org/10.1007/978-3-030-99766-3_4
https://doi.org/10.1007/978-3-030-99766-3_4
https://doi.org/10.1007/978-3-030-99766-3_4
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1145/3526241.3530346
https://doi.org/10.1145/3526241.3530346
https://doi.org/10.1145/3526241.3530346

14. Goldfeld, Z., Polyanskiy, Y.: The information bottleneck problem and its applica-
tions in machine learning. CoRR abs/2004.14941 (2020), https://arxiv.org/
abs/2004.14941

15. Gunning, D., Vorm, E., Wang, J.Y., Turek, M.: Darpa’s explainable AI
(XAI) program: A retrospective. Applied AI Letters 2(4) (Dec 2021).
https://doi.org/10.1002/ail2.61, https://doi.org/10.1002/ail2.61

16. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution meth-
ods for leakage analysis and symmetric key recovery. In: Paterson, K.G.,
Stebila, D. (eds.) Selected Areas in Cryptography - SAC 2019 - 26th In-
ternational Conference, Waterloo, ON, Canada, August 12-16, 2019, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 11959, pp. 645–
666. Springer (2019). https://doi.org/10.1007/978-3-030-38471-5 26, https://

doi.org/10.1007/978-3-030-38471-5_26

17. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

18. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. LNCS, vol. 1109, pp. 104–113.
Springer-Verlag (1996)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,
M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397.
Springer (1999). https://doi.org/10.1007/3-540-48405-1 25, https://doi.org/10.
1007/3-540-48405-1_25

20. Li, K., Hopkins, A.K., Bau, D., Viégas, F., Pfister, H., Wattenberg, M.: Emergent
world representations: Exploring a sequence model trained on a synthetic task.
In: The Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=DeG07_TcZvT

21. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards. Springer (December 2006), ISBN 0-387-30857-1, http:

//www.dpabook.org/

23. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what
you already know scheme-aware modeling for profiling side-channel analysis
against masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 32–59
(2023). https://doi.org/10.46586/TCHES.V2023.I1.32-59, https://doi.org/10.

46586/tches.v2023.i1.32-59

24. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general char-
acterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) Con-
structive Side-Channel Analysis and Secure Design - 10th International
Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11421, pp. 145–167. Springer
(2019). https://doi.org/10.1007/978-3-030-16350-1 9, https://doi.org/10.1007/
978-3-030-16350-1_9

25. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 348–

29

https://arxiv.org/abs/2004.14941
https://arxiv.org/abs/2004.14941
https://doi.org/10.1002/ail2.61
https://doi.org/10.1002/ail2.61
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://openreview.net/forum?id=DeG07_TcZvT
http://www.dpabook.org/
http://www.dpabook.org/
https://doi.org/10.46586/TCHES.V2023.I1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9

375 (2020). https://doi.org/10.13154/tches.v2020.i1.348-375, https://doi.org/

10.13154/tches.v2020.i1.348-375

26. McGrath, T., Kapishnikov, A., Tomasev, N., Pearce, A., Hassabis, D., Kim, B.,
Paquet, U., Kramnik, V.: Acquisition of chess knowledge in alphazero. CoRR
abs/2111.09259 (2021), https://arxiv.org/abs/2111.09259

27. Meng, K., Bau, D., Andonian, A., Belinkov, Y.: Locating and editing fac-
tual associations in GPT. In: Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022 (2022), http://papers.nips.cc/paper_files/paper/2022/hash/

6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html

28. Nanda, N., Lee, A., Wattenberg, M.: Emergent linear representations in
world models of self-supervised sequence models. In: Belinkov, Y., Hao,
S., Jumelet, J., Kim, N., McCarthy, A., Mohebbi, H. (eds.) Proceed-
ings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neu-
ral Networks for NLP, BlackboxNLP@EMNLP 2023, Singapore, Decem-
ber 7, 2023. pp. 16–30. Association for Computational Linguistics (2023).
https://doi.org/10.18653/V1/2023.BLACKBOXNLP-1.2, https://doi.org/10.

18653/v1/2023.blackboxnlp-1.2

29. Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., Carter, S.: Zoom in: An introduction to cir-
cuits. Distill (2020). https://doi.org/10.23915/distill.00024.001,
https://distill.pub/2020/circuits/zoom-in

30. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill
(2017). https://doi.org/10.23915/distill.00007, https://distill.pub/2017/feature-
visualization

31. Perin, G., Buhan, I., Picek, S.: Learning when to stop: A mutual information ap-
proach to prevent overfitting in profiled side-channel analysis. In: Bhasin, S., Santis,
F.D. (eds.) Constructive Side-Channel Analysis and Secure Design - 12th Inter-
national Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12910, pp. 53–81. Springer
(2021). https://doi.org/10.1007/978-3-030-89915-8 3, https://doi.org/10.1007/
978-3-030-89915-8_3

32. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for
deep learning-based side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2022(4), 828–861 (Aug 2022).
https://doi.org/10.46586/tches.v2022.i4.828-861, https://tches.iacr.org/

index.php/TCHES/article/view/9842

33. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-
based physical side-channel analysis. ACM Comput. Surv. 55(11) (Feb 2023).
https://doi.org/10.1145/3569577, https://doi.org/10.1145/3569577

34. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) Smart Card
Programming and Security. pp. 200–210. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2001)

35. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 677–707 (2021).

30

https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.348-375
https://arxiv.org/abs/2111.09259
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.BLACKBOXNLP-1.2
https://doi.org/10.18653/v1/2023.blackboxnlp-1.2
https://doi.org/10.18653/v1/2023.blackboxnlp-1.2
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00007
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577

https://doi.org/10.46586/tches.v2021.i3.677-707, https://doi.org/10.46586/

tches.v2021.i3.677-707

36. Saxe, A.M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B.D., Cox,
D.D.: On the information bottleneck theory of deep learning. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018),
https://openreview.net/forum?id=ry_WPG-A-

37. Schamberger, T., Egger, M., Tebelmann, L.: Hide and Seek: Using Occlu-
sion Techniques for Side-Channel Leakage Attribution in CNNs: An Eval-
uation of the ASCAD Databases, p. 139–158. Springer Nature Switzer-
land (2023). https://doi.org/10.1007/978-3-031-41181-6 8, http://dx.doi.org/

10.1007/978-3-031-41181-6_8

38. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via
information. CoRR abs/1703.00810 (2017), http://arxiv.org/abs/1703.00810

39. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T.P., Simonyan, K., Hassabis,
D.: Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR abs/1712.01815 (2017), http://arxiv.org/abs/1712.01815

40. Song, J., Ermon, S.: Understanding the limitations of variational mutual infor-
mation estimators. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020),
https://openreview.net/forum?id=B1x62TNtDS

41. Tishby, N., Pereira, F.C.N., Bialek, W.: The information bottleneck method. CoRR
physics/0004057 (2000), http://arxiv.org/abs/physics/0004057

42. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: The first step towards
explainability of neural networks in profiled side-channel analysis. In: Bertoni,
G.M., Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Secure De-
sign - 11th International Workshop, COSADE 2020, Lugano, Switzerland, April
1-3, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol.
12244, pp. 175–199. Springer (2020). https://doi.org/10.1007/978-3-030-68773-1 9,
https://doi.org/10.1007/978-3-030-68773-1_9

43. Wang, K.R., Variengien, A., Conmy, A., Shlegeris, B., Steinhardt, J.: Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small.
In: The Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=NpsVSN6o4ul

44. Won, Y., Hou, X., Jap, D., Breier, J., Bhasin, S.: Back to the ba-
sics: Seamless integration of side-channel pre-processing in deep neu-
ral networks. IEEE Trans. Inf. Forensics Secur. 16, 3215–3227 (2021).
https://doi.org/10.1109/TIFS.2021.3076928, https://doi.org/10.1109/TIFS.

2021.3076928

45. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a method-
ology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(3), 147–
168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168, https://tches.
iacr.org/index.php/TCHES/article/view/8586

46. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4),
389–415 (2020). https://doi.org/10.13154/tches.v2020.i4.389-415, https://doi.

org/10.13154/tches.v2020.i4.389-415

31

https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://openreview.net/forum?id=ry_WPG-A-
https://doi.org/10.1007/978-3-031-41181-6_8
http://dx.doi.org/10.1007/978-3-031-41181-6_8
http://dx.doi.org/10.1007/978-3-031-41181-6_8
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1712.01815
https://openreview.net/forum?id=B1x62TNtDS
http://arxiv.org/abs/physics/0004057
https://doi.org/10.1007/978-3-030-68773-1_9
https://doi.org/10.1007/978-3-030-68773-1_9
https://openreview.net/forum?id=NpsVSN6o4ul
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415

47. Wu, L., Won, Y.S., Jap, D., Perin, G., Bhasin, S., Picek, S.: Ablation
analysis for multi-device deep learning-based physical side-channel analysis.
IEEE Transactions on Dependable and Secure Computing pp. 1–12 (2023).
https://doi.org/10.1109/TDSC.2023.3278857

48. Yap, T., Benamira, A., Bhasin, S., Peyrin, T.: Peek into the black-box: Inter-
pretable neural network using sat equations in side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2023(2), 24–53 (Mar
2023). https://doi.org/10.46586/tches.v2023.i2.24-53, https://tches.iacr.org/

index.php/TCHES/article/view/10276

49. Yap, T., Picek, S., Bhasin, S.: Beyond the last layer: Deep feature loss functions
in side-channel analysis. In: Proceedings of the 2023 Workshop on Attacks and
Solutions in Hardware Security. p. 73–82. ASHES ’23, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3605769.3623996,
https://doi.org/10.1145/3605769.3623996

50. Zaid, G., Bossuet, L., Carbone, M., Habrard, A., Venelli, A.: Condi-
tional variational autoencoder based on stochastic attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2023(2), 310–357
(Mar 2023). https://doi.org/10.46586/tches.v2023.i2.310-357, https://tches.

iacr.org/index.php/TCHES/article/view/10286

51. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

A Alternative MI Estimation Methods

Mutual Information (MI) Estimation The most obvious way to measure
how much information a hidden network layer compresses (and preserves) from
X would be to compute the mutual information between X and T , I(X ;T), as
proposed by [38]. The main problem is that directly applying MI estimation to
compute I(X ;T) requires computing mutual information between two high di-
mensional data X (side-channel traces) and T (layer representation of T). This
way, an accurate estimation of MI requires exponentially more data, especially
for histogram-based mutual estimation, as explained next. Since mutual informa-
tion is symmetric, H(X)−H(X|T) = H(T)−H(T |X), I(X ;T) can be computed
according to:

I(X ;T) = H(T)−H(T |X) = H(T)−
np∑
i=1

p(xi)

np∑
j=1

p(tj |xi) log2 p(tj |xi). (17)

As discussed in [36], the histogram-based estimation of mutual information
requires a correct selection of the number of bins. When the number of bins is
too large to keep the precision of T , every input xi yields a different activation
pattern tj in each hidden layer. In other words, due to the high dimensionality
of X and T , it is often impossible to have two input traces xi that generate two
identical intermediate network representations ti. This will result in H(T |X) = 0

32

https://doi.org/10.1109/TDSC.2023.3278857
https://doi.org/10.46586/tches.v2023.i2.24-53
https://tches.iacr.org/index.php/TCHES/article/view/10276
https://tches.iacr.org/index.php/TCHES/article/view/10276
https://doi.org/10.1145/3605769.3623996
https://doi.org/10.1145/3605769.3623996
https://doi.org/10.46586/tches.v2023.i2.310-357
https://tches.iacr.org/index.php/TCHES/article/view/10286
https://tches.iacr.org/index.php/TCHES/article/view/10286
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

because the conditional probabilities p(tj |xi) become 1 for all xi and all tj
and, consequently, I(X ;T) = H(T). This result would wrongly indicate the
compression of input X during training, as we would only be computing the
entropy of T . A possible solution to obtain H(T |X) > 0 is to select a smaller
number of bins. Nevertheless, this would add too much noise to the mutual
information calculation, also leading to wrong estimations (e.g., see Appendix
A in [31]). Similarly, computing mutual information between a high-dimensional
T and an one-dimensional feature Yf , I(T ;Yf), could often result in I(T ;Yf) =
H(Yf), which is equivalent to obtaining the entropy of Yf . Therefore, measuring
mutual information I(a, b) when either a or b is high-dimensional data is ill-posed
to estimate the amount of information that T has about X or Yf .

Mutual Information Neural Estimation (MINE) In [2], the authors pro-
posed a neural estimation of mutual information that consists in a neural net-
work having two inputs and a single output neuron. The mutual information is
computed thanks to a loss function that provides a neural information value in
the output. Having a hidden layer representation of T , one could quantify the
mutual information between T and a secret share Yf , I(T,Yf) by implementing
MINE. The process sounds intuitive. However, it provides three main disadvan-
tages for our explainability requirements: (1) using MINE to quantify I(T,Yf)
implies finding neural network hyperparameters for each different model to ex-
plain (MINE neural network could also suffer from overfitting issues), (2) the
convergence of MINE could require an excessive number of training epochs that
could render our explainability process very time-consuming, and (3) the MINE
structure is designed to receive two inputs X and Y to estimate the mutual in-
formation between these two inputs only, which means that computing mutual
information between X and multiple input features in a single training is not
possible, which implies an even more complex analysis.
We implemented experiments with MINE, and, in multiple cases, we verified that
the exploding gradient problem happens.20 This could be solved with regulariza-
tion, gradient clipping, or carefully adjusting the MINE network hyperparame-
ters. The authors of [40] also observed these limitations and proposed to add a
clipping function to the MINE loss function estimator. Nevertheless, this solu-
tion adds new hyperparameters to be selected, which increases the complexity
of MINE as an estimator for information on hidden network representations.

B Algorithm for the Mask Shares Explainability

Algorithm 1 provides the required steps to implement the explainability method-
ology presented in Section 4 when the masking scheme contains two secret shares.
Note that the algorithm can be easily adapted to any number of secret shares.

20 When large error gradients accumulate and result in very large updates to neural
network model weights during training.

33

Algorithm 1 Steps for mask share fitting explainability.

1: procedure 2-share Mask Explainability(model F , shallow MLP model q,
number of layers L in model F , number of epochs EF for model F , number of
epochs Eq for model q, profiling set Xp, attack set Xa, label set representing an
input feature {).

2: for e = 1 to Ef do
3: Fe ← TrainOneEpoch(F , Xp) . Step 1 in Figure 1
4: for l = 1 to L do
5: LF ← GetLayer(Fe, l) . Step 2 in Figure 1
6: Xl

p ← LayerPredict(LF , Xp) . Step 2 in Figure 1
7: Xl

a ← LayerPredict(LF , Xa) . Step 2 in Figure 1
8: ql ← Train(q, Eq, Xl

p, Yf) . Step 3 in Figure 1

9: Ŷ l
f ← Predict(ql, Xl

a) . Step 4 in Figure 1

10: P̂ I(Xl
a; Ŷ l

f) = PerceivedInformation(Xl
a, Ŷ l

f) . Step 4 in Figure 1
11: end for
12: end for
13: end procedure

C Random Hyperparameter Search

Tables 1 and 2 provide the ranges for random search for MLP and CNN ar-
chitectures, respectively. For each scenario (dataset and architecture), we ran
1 000 hyperparameter search attempts, which was enough to find at least fifty
successful models.

Hyperparameter Options
Optimizer Adam

Dense Layers 2, 3, 4, 5, 6
Neurons 20, 40, 50, 100, 150, 200, 300, 400

Activation Function elu, selu, relu

Learning Rate
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005, 0.000025,

0.00001
Batch Size 400
Epochs 100

Weight Initialization
random uniform, glorot uniform, he uniform, random normal,

glorot normal, he normal

Regularization None, l1 or l2

l1 or l2
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005, 0.000025,

0.00001
Total Search Space 174 960

Table 1: Hyperparameter search options and ranges for MLPs.

D Impact of Hyperparameters for Probe q

The probe q is implemented with a shallow MLP network. The output layer is
given by a softmax layer as we want to obtain class probabilities for perceived

34

Hyperparameter Options
Optimizer Adam

Dense Layers 1, 2
Convolution Layers 1, 2, 3, 4

Neurons 20, 50, 100, 200
Filters 4, 8, 12, 16 (×) Conv. Layer Index

Kernel Size 2, 4, 6, 8, 10, 20, 30, 40
Strides 2, 3, 4, 5, 10, 15, 20

Pooling Size 2
Pooling Stride 2

Activation Function elu, selu, relu

Learning Rate
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005, 0.000025,

0.00001
Batch Size 400
Epochs 100

Weight Initialization
random uniform, glorot uniform, he uniform, random normal,

glorot normal, he normal

Regularization None

Total Search Space 903 168

Table 2: Hyperparameter search options and ranges for CNNs.

information calculation. This classifier requires the definition of several addi-
tional hyperparameters to ensure we obtain a consistent perceived information
estimation. Although it is common knowledge that hyperparameter tuning is
usually a difficult problem in profiled SCA, see, e.g., [35], we demonstrate that
designing this shallow MLP classifier for perceived information estimation is not
difficult, as performing hyperparameter tuning does not provide a wide variety
of results. Figure 12 shows an example when we compute perceived information
with 32 different hyperparameter tuning combinations. We applied this analy-
sis to the 4-layer MLP considered in the previous section with a simulated AES
dataset. The difference is that this time, trace simulations are made for the Iden-
tity leakage model, which allows us to obtain PI values up to 8 bits. Perceived
information values obtained with this MLP model are lower than 8 because this
model is not optimal and does not reach 100% of classification accuracy. This
grid search takes the following hyperparameter values and generates all possible
combinations. We consider a) layers: [1, 2], b) neurons: [50, 100], c) batch sizes:
[200, 400], d) epochs: [10, 20], and e) activation functions: [elu, selu].

The learning rate is set to 0.001, and the optimizer is always Adam. In this
case, we only compute perceived information for the two relevant input features
m2 (blue line) and S-box(d2⊕k2)⊕m2 (orange line) plus the perceived information
of the target label Y = S-box(d2 ⊕ k2) (green line). The main line indicates
the average perceived information for 32 hyperparameter combinations, and the
shadow interval indicates the variation we obtain with these same combinations.
Note how the variation, although more significant in the first layer, is much less
significant in the last layers. This means that varying the hyperparameters for
the shallow MLP implementing q does not significantly impact results.

35

Fig. 12: Variation of measured perceived information for different hyperparame-
ter combinations for classifier q(T,Yf).

D.1 On Overfitting in ESHARD Models

Our analysis of the ESHARD models clearly indicates that the model overfits.
During training, after an initial decrease in PI, the models start memorizing
training examples, and the PI for the attack set becomes negative. However, even
after the model is overfitting for most of its training epochs, it can still recover
the key. This raises some questions about what is happening in the models. Our
explanation in Section 7 ids that the relevant shares are still present and the
model, therefore, still has some generalization ability. While this is a reasonable
explanation that is supported by the patching results in Figure 11, it raises
further questions about how the model is learning. Why do our patches result
in positive PI being maintained throughout training?

The first point is that for ESHARD, the leakage closely follows the HW dis-
tribution.21 As we patch to set mout = 0, the model can directly pass the HW
of the output share to its prediction. When the HW of the mask is, e.g., 4, the
combination is less certain. To illustrate, if both mask and masked output have
HW 4, we cannot determine the HW of the recombination with certainty. This
then leads to a further point about the dynamics of model overfitting. If the
model has learned a reasonable function for recombining shares, it can improve
its training loss further by memorizing specific examples. Here, we propose that
it first learns to memorize the “harder cases” where the HW of the mask leaves
more uncertainty (i.e., HW (m) ∈ {2, 3, 4, 5, 6}). To give some evidence for this,
we plot PI for both ESHARD models across training for easy/hard attack traces in
Figure 13. We see that PI for easy cases is significantly higher, but this is an ob-
vious outcome of these cases being easier. The main point is that the PI for easy
cases starts decreasing significantly later, indicating that overfitting starts with
hard cases. While this insight does not have any direct applications, it improves
our understanding of the dynamics of training models in noisy environments.
Furthermore, it is a step towards answering why models that overfit can still
(sometimes) extract keys.

21 For ASCADr, the leakage is biased towards specific bits in the byte.

36

Fig. 13: PI for ESHARD models across training for easy (HW (m) ∈ {0, 1, 7, 8}))
and hard (HW (m) ∈ {2, 3, 4, 5, 6}) cases.

E Results with ASCADr Desynchronized Dataset

To produce misalignment, traces are randomly shifted by up to 50 samples
(see [46] for details on how to simulate the desynchronization effect). To cir-
cumvent the desynchronization effect [5], the CNN is trained with data augmen-
tation that implements random shifts (again up to 50 samples). For each epoch,
we generate 200 000 augmented profiling traces (double the number of the pro-
filing traces). We apply our hyperparameter search until we generate at least
100 successful CNN models able to reduce the GE of the correct key to 0. In
Figure 14, we provide an example result from a CNN model with the following
layer-wise structure:

X → [C(fi, 30, 15)→ E → BN → AP (2, 2)]3 → [FC(200)→ E]2 → S(256)→ Ŷ,
(18)

where filters fi are set to 16, 32, and 48 for the three convolution layers. The
learning rate is set to 1e-4, and weights are initialized with random uniform

method.

In Figure 14, we see how the first two convolution layers conv 1 and conv 2

process relevant and irrelevant features. These layers mostly fit all features with-
out compression. Layers conv 3, fc 1, and fc 2 start to implement the compres-
sion of irrelevant features related to key bytes different from k2, more specifically
after epoch 50. Looking at layers conv 3, fc 1, and fc 2, we conclude that these
three layers implement bottlenecks, but the PI values suggest that this model
should be trained for more epochs, as we see a growing trend for relevant features
and generalization (given by P̂ I(X l

a;Y)), while PI values related to irrelevant
features are continuously decreasing.

37

Fig. 14: Perceived information values from a CNN trained with the desynchro-
nized ASCADr dataset.

1. Where. Bottleneck layers are usually implemented by layers closer to the
output layer. When a CNN has more than two convolution layers, we ob-
served that the bottleneck happens from the third convolution layer.

2. What. The bottleneck is implemented less efficiently when the network is
trained on a more noisy dataset. Irrelevant features (and probably other
noise sources) are preserved until the last hidden layer with some level of
compression. Relevant features, which are necessary to defeat masking, are
usually (but not always) preserved more intensively, allowing the model to
implement a second-order attack successfully.

F Experimental Setup Activation Patching

To apply effective activation patches for a secret mask m, we developed the
following procedure, which is visualized in Figure 15:

1. Take activations at layer l, X l
p, X

l
a.

38

2. Use Principal Component Analysis (PCA) to simplify the number of com-
ponents.22

3. Find component(s) corresponding to m using Signal-to-Noise Ratio, selecting
components that have SNR > mean(SNR).

4. Replace selected component(s) in attack set with average of the selected
component(s) for X l

p where m = 0.

5. Invert the PCA for the patched components to get new activations X
′l
a .

6. Observe the effect on PI with output of model for both original label S-box(dj⊕
kj) and target label S-box(dj ⊕ kj)⊕ m.

Fig. 15: Diagram of setup for activation patching.

G A Cautionary Note

While we can visualize the evolution of perceived information for selected shares,
and this allows for a significantly better understanding of both the post-exploitation
analysis and the training dynamics of the networks, it does rely on evaluator
expertise to determine what masks/shares should be included in the analysis.
Indeed, for ASCADr in particular, we showcase that both S-box input and output
shares are used by the models to extract the key, but in our initial experiments,
we did not include the input masks. We showcase the corresponding plots for the

22 Using PCA is inspired by the ablation experiments that remove irrelevant compo-
nents to verify the faithfulness of the found algorithms in [8].

39

MLP model23 in Figure 16. In this figure, the plots look reasonable: unnecessary
features get compressed, and the relevant features do not. However, when we
know the plots are incomplete, from the fc 2 layer onward, we can clearly see
that PI for the label increases before PI for the output shares. However, this can
be straightforwardly explained by the model using input shares.

We include this appendix to emphasize that while the explanations generated
by our method are useful in explaining model behavior, they require a critical
examination. If there is some odd behavior in the plots, an evaluator should
carefully consider whether additional exploitable leakage could be present and,
when possible, include more features in the analyses than presumed necessary.

Fig. 16: Old PI evolution for ASCADr MLP.

23 Same hyperparameters as in Eq. (13) but different training run.

40

	I Know What Your Layers Did: Layer-wise Explainability of Deep Learning Side-channel Analysis
	Introduction
	Background
	Notations and Terminology
	Deep Learning-based Profiling SCA Against Masked Implementations
	Mechanistic Interpretability

	Related Work
	Explainability Methodology for Profiling SCA - ExDL-SCA
	Quantitative Measures of Side-channel Leakages in Hidden Layer Representations
	ExDL-SCA Steps

	Compression in Deep Neural Networks
	Compression of Irrelevant (Key Byte) Features in First-order Masked Datasets

	Validating Results Using Activation Patching
	Experimental Results
	Datasets
	Reading the Plots
	ASCADr
	ESHARD
	Discussion

	Conclusions and Future Works
	Alternative MI Estimation Methods
	Algorithm for the Mask Shares Explainability
	Random Hyperparameter Search
	Impact of Hyperparameters for Probe q
	On Overfitting in ESHARD Models

	Results with ASCADr Desynchronized Dataset
	Experimental Setup Activation Patching
	A Cautionary Note

