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ABSTRACT
AES implementation has been vastly analysed against side-channel
attacks in the last two decades particularly targeting resource-
constrainedmicrocontrollers. Still, less research has been conducted
on AES implementations on advanced hardware platforms. In this
study, we examine the resilience of AES on an ARM Cortex A72
processor within the Raspberry Pi 4B model. Unlike their microcon-
troller counterparts, these platforms operate within the complex
ecosystem of an operating system (OS), resulting in EM traces
characterized by low signal-to-noise ratios and jitter. We discuss
the inefficacy of traditional CPA attacks in the presence of noise,
misalignment, and jitter (in trace and trigger signals). The inter-
rupts and daemons cause these effects, resulting in context switch
overheads leading to increased variability in execution times. Addi-
tionally, there are no fixed methods or set rules for pre-processing;
the approach varies depending on the target device. Our experi-
ments show that CPA is ineffective against masked and unmasked
AES implementations on ARM Cortex A72. Therefore, we resort
to deep learning-based side-channel analysis (DL-SCA) techniques,
that do not require extensive data pre-processing and can effectively
work with EM traces that have low signal-to-noise ratios. Using
DL-SCA we could recover the AES secret key. Our experiments un-
derscore the formidable challenge posed by breaking AES on ARM
Cortex processors compared to conventional microcontroller-based
implementations. Importantly, our findings extend beyond previous
studies, marking the first successful attack on ARM Cortex A72 and
demonstrating the efficacy of DL-SCA even when pre-processing
techniques are varied and not standardized.
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1 INTRODUCTION
AES (Advanced Encryption Standard) [26] is a symmetric encryp-
tion algorithm, vital for upholding data confidentiality and security.
It has been extensively explored in literature and has undergone
rigorous scrutiny against traditional cryptanalysis and side-channel
vulnerabilities on microcontrollers and FPGAs. Correspondingly,
several countermeasures are proposed, to be incorporated as part
of software and hardware implementations. In recent years, devices
such as smartphones, tablets, automotive systems, and medical
devices have been equipped with more advanced processors, in-
cluding the ARM Cortex M and A series. They perform complex
and resource-intensive operations to provide a wide range of func-
tionalities. However, there is limited research conducted on such
platforms.

In [6] authors present DPA attacks on a bitsliced implementation
of AES running on a 1 GHz ARM Cortex-A8 processor with OS
in the background. Jauvart et. al [17] analysed side-channel vul-
nerabilities on ARM Cortex-M3 and demonstrated that standard
cryptographic pairings are susceptible to SCAs, highlighting the
need for optimized countermeasures to minimize leakage. In [29],
the authors employed machine learning to build a side-channel dis-
assembler for the ARM-Cortex M0. They achieved a high success
rate in distinguishing between instruction groups, demonstrating
the feasibility of using side-channel data to deduce executed in-
structions. A correlation power attack on the AES-128 encryption
algorithm of the Crypto++ library has been shown in [14]. The
attack is conducted on ARM cortex-A8, modifying the frequency
from 1GHz to 600 MHz. Though they conduct side channel analysis
on ARM Cortex M and A series, they are old models and in recent
years more advanced processors have been in the market.

In this study, we focus on the security of AES implementations
on the more intricate ARM Cortex-A 72 device on the Raspberry
Pi platform with full OS running in the background. The existing
literature suggests that AES is vulnerable to side-channel leakage.
However, in this work, we aim to explore the magnitude of dif-
ficulty in mounting such an attack on complex processors. Our
investigations begin by evaluating the trace quality using stan-
dard leakage assessment methods and probing the feasibility of
recovering the correct key in known key settings. Raspberry Pi, as
expected, proved to be a difficult target to attack, where the electro-
magnetic (EM) traces collected during the AES run are shown to
have low SNR and high misalignments. In the absence of concrete
methods to filter out noise and obtain traces with leaky sample
points, we resort to ad-hoc pre-processing techniques. However,
these techniques are insufficient to successfully employ correlation
power analysis (CPA). Deep neural network-based side channel
attacks [15, 19, 20, 25] have shown promising results without the
need for preprocessing techniques. The extensive range of hyper-
parameters enhances the performance of side-channel attacks on
AES implementations, even when strong countermeasures are in
place.

Our contributions in this paper are twofold:

(1) We present an evaluation of AES implementation in the
practical settingwith real devices. Due to the environmental
noise from the full-fledged OS running in the background,
classical CPA has been proven ineffective against AES on
ARMCortex A72.We demonstrate the capability of DL-SCA
to achieve successful key extraction without the need for
preprocessing, an instance of DL-SCA employed in attack-
ing a real-world target.
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(2) The AES dataset generated in our study proves invalu-
able for further investigation, particularly in the realm
of DL-SCA. While existing public datasets such as Chip-
Whisperer [23], DPAv4.2 [2], AES RD [1], AES HD [9], AS-
CAD [4, 7], and CHES CTF [3] exist, many of them remain
vulnerable to classical attacks. Our dataset1 offers enhanced
explainability for DL-SCA, addressing the need for a novel
dataset in this domain.

2 BACKGROUND
In this section, we lay the groundwork for the approaches that will
be employed throughout the paper. Firstly, we introduce the basic
concept of side-channel attacks (SCA). Next, we discuss leakage
assessment fundamentals, followed by an overview of non-profiling
and profiling-based attacks. Finally, we delve into the explanation
of deep-learning-based SCA.

2.1 Side-Channel Attacks (SCA)
Side-channel attacks, abbreviated as SCA, represent a significant
threat to the physical implementation of cryptographic algorithms.
Despite the theoretical security of cryptographic algorithms, their
physical executions can inadvertently leak information through
various physical channels, such as power consumption [18] and
electromagnetic emanation [5]. These unintentional disclosures,
often termed as side-channel traces or simply traces, are then ana-
lyzed to recover secret data.

The two most common types of attacks are non-profiling and
profiling attacks. In non-profiling attacks, attackers utilize statistical
analysis to exploit the traces and recover secret data. Conversely,
profiling attacks involve attackers having access to a device similar
to the target device, commonly known as a clone device, enabling
them to construct a leakage profile by fully accessing the device.
This leakage profile is then utilized by the attackers to recover
secret data from the actual target device.

2.2 Leakage Assessment
To assess the quality of the measured traces, Test Vector Leakage As-
sessment (TVLA) [16] can be employed. The principle behind TVLA
involves using statistical tests to observe differences in distribution
between two datasets. The standard approach entails conducting a
Welch t-test on datasets obtained from sending fixed and random
inputs (denoted as 𝑥 and 𝑦, respectively):

𝑡 =
𝑥 − 𝑦√︂
𝜎2
𝑥

𝑁𝑥
+ 𝜎2

𝑦

𝑁𝑦

,

where 𝑥 , 𝑦, 𝜎2
𝑥 , and 𝜎2

𝑦 represent the mean and variance of 𝑥𝑖 and
𝑦𝑖 , respectively.

If the absolute values of 𝑡 , referred to as |𝑡 |-values, exceed the
threshold of 4.5, it indicates, with 99.999% confidence, the presence
of data-dependent leakage in the measured traces. Such findings
may suggest potential leakages in the implementation.

1We will publish the full dataset upon acceptance.

2.3 Non-Profiling Attacks
One of the most commonly utilized non-profiling attacks is Cor-
relation Power Analysis (CPA) [10]. The essence of this approach
lies in employing Pearson correlation to ascertain the relation-
ship between intermediate values computed from various secret
hypotheses and the actual leakage values. Attackers leverage in-
termediate values computed as a function 𝑓 of known inputs 𝑝
and (hypothetical) secret 𝑘 ∈ 𝐾 . Specifically, attackers compute
𝐻 = 𝑓 (𝑝, 𝑘). Subsequently, these intermediate values are compared
with the actual leakage traces 𝑇 obtained while processing the
genuine secret 𝑘∗. The secret 𝑘 exhibiting the highest (absolute)
correlation can then be estimated as the true secret value.

The Pearson correlation between 𝑥 and 𝑦 can be computed as
follow:

𝑟 (𝑥,𝑦) =
∑𝑁
𝑖=1 ((𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦))√︃∑𝑁

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦)2
. (1)

To correlate intermediate values with proper leakage, they must
first be mapped using an appropriate leakage model tailored to the
target device. Typically, a leakagemodel is employed to approximate
the behaviour of measured traces. For software implementations,
the leakage is often assumed to follow the Hamming weight (HW)
model. Conversely, for hardware implementations, the Hamming
distance (HD) model is commonly utilized. Additionally, an identity
mapping (ID) can serve as an alternative leakage model.

2.4 Profiling Attacks
Profiling attacks operate under the assumption of a worst-case sce-
nario where attackers possess access to a clone device identical
to the target device. With full control over this cloned device, at-
tackers can acquire knowledge (referred to as a profile) to exploit
the actual target device. In this scenario, attackers may manipulate
or obtain the key of the clone device, while the key of the target
device remains unknown to them. Additionally, attackers have the
capability to collect multiple traces from a known set of random
plaintexts (or ciphertexts) from both devices.

Initially, attackers obtain profiling traces from the clone device,
subsequently acquiring attack traces from the target device for
exploitation. The objective of attackers is to recover the unknown
secret key from the target device. One of the most prevalent profil-
ing attacks is Template Attacks (TA) [12, 13]

As explained, profiling attacks can be delineated into two phases:
the profiling phase and the attack phase. During the profiling phase,
a distinguisher F is constructed from the set of profiling traces.
This distinguisher yields a conditional probability mass function
Pr(𝑻 |𝑍 = 𝑧). In the attack phase, the distinguisher returns a proba-
bility score for each hypothetical sensitive value. Specifically, we
obtain 𝒚𝑖 = F (𝒕𝑖 ), where 𝒕𝑖 represents an attack trace. The log-
likelihood score for each key 𝑘 ∈ K is computed as follows:

𝑠𝑁𝑎
(𝑘) =

𝑁𝑎∑︁
𝑖=1

log(𝒚𝑖 [𝑧𝑖,𝑘 ]),

where 𝑁𝑎 denotes the number of attack traces used and 𝑧𝑖, 𝑘 =

𝐶 (𝑝𝑖 , 𝑘) represents the hypothetical sensitive values based on key
𝑘 , with 𝑝𝑖 being the corresponding public variable to trace 𝒕𝑖 , and
𝐶 denoting the cryptographic primitive.
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Subsequently, the keys are ranked based on their log-likelihood
scores in descending order and classified into a guess vector 𝑮 =

[𝐺0,𝐺1, . . . ,𝐺 |K |−1], where𝐺0 corresponds to the score of themost
likely key candidate, and 𝐺 |K |−1 represents the score for the least
likely key candidate. The rank of each key is denoted by its index in
the guess vector 𝑮 . The guessing entropy 𝐺𝐸 [27] is defined as the
average rank of the correct key 𝑘∗ across multiple experiments. A
successful attack is achieved when𝐺𝐸 = 0, indicating that𝑁𝑎 attack
traces are sufficient. We denote 𝑁𝑇𝐺𝐸 as the minimum number of
traces required to achieve 𝐺𝐸 = 0.

2.5 Deep Learning-based Side-Channel Attacks
(DL-SCA)

Recent reports indicate that Deep Learning (DL)-based approaches
have surpassed classical profiling-based attacks [11, 21, 28]. DL-
based Side-Channel Analysis (DL-SCA) offers several advantages.
Firstly, it effectively handles jitter or de-synchronization in traces
owing to its shift-invariant property [11]. Additionally, DL-SCA can
accommodate masked implementations. Traditional SCA requires
combining time samples where the mask and the masked value are
processed, posing challenges in identifying precise time samples
and complicating matters further with trace de-synchronization.
DL-SCA, however, automates the combination of these samples dur-
ing training and can directly target masking implementations [22].

In this study, we adopt a similar approach, employing Convolu-
tional Neural Networks (CNNs), a commonly used learning para-
digm in DL.

CNNs typically comprise three types of layers: convolutional,
pooling, and fully connected layers. The convolution layer com-
putes the output of neurons connected to local regions in the input,
with each neuron computing a dot product between the weights
and input within a small region (convolution kernel). The pooling
layer downsamples the number of features by combining outputs
from a group of neurons in the previous layer into a single neuron
in the next layer, usually by taking the max or average. Finally, in
fully connected layers, every neuron in one layer is connected to
every neuron in another layer.

2.5.1 Random Search Hyperparameters for CNN. As optimizing
the CNN model is not the focus of this study, we did not delve into
further investigations for its optimization. Instead, we opted for
hyperparameter tuning using random search. This method has been
employed previously [24, 30, 31]. The concept involves defining a set
of parameters and creating multiple models with randomly selected
parameters from the set. These models are then trained with the
random parameters on the training data, and their performances are
evaluated on the validation data. Subsequently, the best-performing
models are selected and deployed for targeting the attack traces.

In Table 1, we provide the parameter spaces that we use for
random hyperparameter search. Note that in this work, we do not
aim to find the most optimal model, however, we show that it is
possible to design a network that will allow successful key recovery,
and as such the study on how to find the most optimal network
will be left for future works.

Parameters Range

Batch Size 100, 200, ... 1000
Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Optimizer RMSprop, Adam
Layers 1,2,...,8
Neurons 10,20,50,100,200,300,400,500

Kernel Initializers {random,glorot,he}_uniform
Pooling {max,average}_pool

Pooling size 2,4,6,8,10
Convolution layer 1,2,3,4

Filters 4,8,12,16
Kernels 26, 28, ..., 52
Padding 0, 4, ..., 16

Table 1: Range for hyperparameter random search

Algorithm 1 Single S-box Operation with Sleep Operations

1: Sleep()
2: 𝑥 ← plaintext ⊕ key_byte
3: ciphertext← S-box[𝑥]
4: Sleep()

3 EXPERIMENTS
For experiments, we use the Raspberry Pi Model 4B board featuring
the ARM Cortex-A72 processor as our designated platform. To
collect the side-channel traces, we used the high-sensitivity Riscure
EM probe (ZVC45 series) with built-in amplifier, measured on the
LeCroy oscilloscope. We also used a high-pass filter.

One of the initial tasks is to find the location for EM probe place-
ment to get side-channel traces with observable leakage. Finding
optimal placement can be quite challenging. We considered areas
near the processor and the decoupling capacitors on both the top
and bottom sides of the board to obtain useful traces.

We implemented AES-128 in C language, on the Raspberry Pi,
and collected a set of traces, for each designated probe position
on the board. Employing various methodologies, including TVLA
assessments with fixed versus random key differentials and CPA
analysis, we scrutinized the traces for discernible patterns indica-
tive of cryptographic leakage. We note that, while performing our
experiments, a full OS is running on the board. In this work, we
discuss the challenges encountered and potential mitigation.

3.1 Challenges
Our first goal is to find an appropriate position on the board, that
can leak data-dependent side channel information. We run the code
snippet described in Algorithm 1, focusing only on the trace part
containing the AES S-box operation. The corresponding TVLA plot
at one probe position is shown in Figure 1, indicating the presence
of leakage. We noted the positions with potential leakage. We can
see that there are several sample points corresponding to the S-
box operation, that result in TVLA results being less than -4.5 and
greater than 4.5. This implies that there is in fact leakage in the
locations. However, as TVLA only tells us whether there is leakage
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Figure 1: TVLA for Algorithm 1 on 100K traces and 500K
sample points. The dashed lines indicate the threshold [-
4.5,4.5].

or not, but not whether it is exploitable, we still have to proceed
first with a key recovery attack.

Despite this approach, we could not perform successful key re-
covery (as shown in Figure 2). Notably, the presence of low signal-
to-noise ratio (SNR) and consequential jitter induced by background
operating system activities posed considerable obstacles. We cannot
conclude whether the position of the probe is non-leaky or if the
noise is too high to retrieve the key. Additionally, we also observed
that the TVLA corresponding to the noisy operations have good
TVLA values, and even higher than AES. This implies that, while
the sleep or NOP operations are being executed, several background
activities are corresponding to the OS, scheduling, interrupts, dae-
mons etc, that are constantly executing and leaking information,
that is captured. Additionally, we can also note that ARM Cortex
A72 supports multi core functionality on the Raspberry Pi board.
This implies that, even while AES is running, the EM signals not
only correspond to AES but to the background operations. This
results in low SNR traces, that cannot help with the CPA attack to
retrieve secret key bytes.

Upon careful observation of the traces, we noticed that there is
jitter in the traces and trigger. To avoid the loss of useful sample
points, we fixed the rising edge of the trigger and added sleep
operations after the AES implementation. This ensures that the
jitter on the falling edge does not result in the loss of useful sample
points in the trace signal. To find a better location, we remove the
metal casing on the processor, ensuring no damage or disruption
to the device. Figure 4 shows the position of the Riscure EM probe
on the RPi board, after removing the metal casing on the processor.

To isolate the noise from the target AES operation, we integrated
deliberate sleep operations preceding and following AES computa-
tions, essentially making our algorithm as shown in Algorithm 2 for
a fixed 𝑘 (here 𝑘 = 5). We visually monitored the trace shape and
obtained a possible leaky position as shown in Figure 4 on top of
the processor. The resulting trace is shown in Figure 3. We then run
a single S-box implementation, with NOP operations, before and
after. The corresponding traces produce TVLA leakage, but when
we performed a CPA attack on 2K traces and 500K sample points
in each trace, it was to no avail as shown in Figure 5. Then we
went back to the implementation Algorithm 2 and varied 𝑘 ∈ [1, 5].

Figure 2: Unsuccessful CPA attack, to retrieve first key byte,
with 250K sample points. The grey colour indicates an over-
lapping correlation for each sample point, for the wrong key
guess and the green colour indicates the correlation for the
correct key byte guess.

Figure 3: EM Trace for Algorithm 2 with 𝑘 = 5 and sampling
rate 5GS/s.

We noticed that the trace length is not proportional to the sleep
period but to the number of sleep operations. We attribute this
to the context switching performed by the operation during the
transition from sleep to the AES operations (as marked inside the
blue dashed box).

Algorithm 2Algorithm to find suitable position for trace collection

1: Sleep()
2: for 𝑖 ← 1 to 𝑘 do
3: AES-128()
4: Sleep()
5: for 𝑗 ← 1 to 𝑖 do
6: AES-128()
7: end for
8: end for
9: Sleep()

We again attribute this limitation to the complex interplay of
various factors from the target device, such as signal integrity,
noise interference, and jitter in the traces. The traces not only are
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Figure 4: Raspberry Pi board with EM probe positioned on
the ARM Cortex A72 Processor

being influenced by the background operations, they are also very
misaligned due to the jitter in trace and trigger. We further analyze
the traces to notice that as confirmed by the trigger length, the time
taken to compute the S-box operation keeps changing due to these
challenges. In Figure 6, we show a contour plot for these triggers
corresponding to 1,000 traces and 2,000 sample points.

We can see the falling edge of the trigger extensively moving
in the range of [800, 1400]. We can notice some triggers crossing
the capture range and some falling in the range of [200, 600]. This
implies that the sample points for S-box computation move along
the trace, which will undoubtedly fail CPA. This also implies that
the TVLA leakage observed in Figure 1, is not a result of the data-
dependent leakage of AES.

We have also tried the standard realignment method, such as
Dynamic Time Warping (DTW) [8]. However, it is not working as
well, since there is a lack of reference traces, and the computational
complexity is too costly in this scenario. As such, we use the follow-
ing preprocessing method, due to its simplicity, to select a subset
of traces and discard the unwanted ones.

3.2 Preprocessing
As described previously, we observed de-synchronization from the
traces, evident from the varying trigger lengths observed for a single
S-box operation. To address this issue, we initiated a preliminary
preprocessing phase to refine the traces. Our approach is as follows:

(1) Examination of Trigger Lengths: We began by scrutinizing
the lengths of the triggers.

(2) Distribution Plotting: Subsequently, we plotted the distri-
bution of trigger lengths.

(3) Mode Identification: From the distribution, we identified
the mode of the trigger length.

(4) Trace Selection: Traces exhibiting trigger lengths akin to
the mode were selected, constituting approximately 8-18%
of the total collected traces.

Figure 5: Unsuccessful CPA attack with the metal casing
removed on the board, to retrieve first key byte, with 500K
traces (grey refers to the wrong key guesses and green refers
to correct guess).

Figure 6: A contour plot representing 1000 triggers with fixed
rising edge corresponding to the traces of a single S-box op-
eration without the sleep operation.

These steps will result in traces with better alignment.

3.3 Leakage Assessment Using TVLA
With the above observations, we implemented a single S-box op-
eration with fixed and random key bytes on unprotected AES C
implementation and collected the EM traces. We do this experiment
on O0 implementation (implying no optimization), and the traces
are preprocessed.

First, we plot and observe the shape of the traces we have col-
lected. In Figure 7, we plotted the first 1, 000 traces obtained for
unprotected and masked implementation. For masked implemen-
tation, we implemented the masked version used in the ASCAD
dataset ([7], Algorithm 1) and we targeted the AddRoundKeys and
SubBytes operation (lines 6-8). As can be observed from the plots,
there is de-sychronization, in the sense that the traces are not fully
aligned. We also observed that there are shifts in the amplitude (due
to the signal being affected by background processes), as can be ob-
served quite clearly in Figure 7a, which results in the traces getting
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(a) First 1, 000 traces for unprotected AES

(b) First 1, 000 traces for masked AES

Figure 7: Traces with random keys

clipped. These indicate that the environmental noise is not only
causing the de-synchronization but also affecting the leakages. We
make similar observations for the case of masked implementation
in Figure 7b.

We then proceed with TVLA to assess the quality of the leakage.
Encouragingly, these analyses confirmed the presence of leakage in
the identified position, affirming our hypothesis, as can be observed
in Figure 8a. This process is done using 300,000 traces, alternating
between fixed and random input to the AES.

As can be seen from Figure 8b for masked AES implementation,
unlike the one observed from Figure 8a, even though there are sev-
eral points exceeding the threshold, it leaks less than unprotected
AES C implementation, which is expected for the countermeasure
protected implementation. Next, we proceed to perform CPA anal-
ysis on these preprocessed traces.

3.4 Analysis using CPA (non-profiled)
We conducted CPA on both protected and unprotected traces (300, 000
traces). First, we investigated the unprotected traces and we tried
to recover one byte of the secret key. After the CPA experiment,
we observed that the secret key could not be recovered, as shown
in Figure 9. Here, we can safely assume that de-synchronization in
the traces plays a major role in preventing univariate attacks like
CPA. This also highlights that even though the TVLA test clearly
indicates potential leakages, it might not be necessarily exploitable.

In the next phase, we performed CPA onmasked implementation,
assuming the knowledge of the mask. In this case, we assume the
role of evaluator who knows the random mask value and uses this
knowledge to mount the attack to recover the secret key. Notice

(a) TVLA of unprotected AES C implementation

(b) TVLA of masked AES C implementation

Figure 8: TVLA for complete AES implementation

(a) CPA on unprotected AES with ID leakage model

(b) CPA on unprotected AES with HW leakage model

Figure 9: CPA on unprotected implementations

that a higher-order attack without knowledge of the mask will be
6
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even harder to mount. As shown by Figure 10, the correct key does
not stand out and hence, it is not recovered.

(a) CPA on masked AES with ID leakage model

(b) CPA on masked AES with HW leakage model

Figure 10: CPA on masked AES with knowledge of mask
(567, 582 traces)

As shown by both analyses, we can observe that with CPA even
with the knowledge of the implementation and after performing
the realignment, the secret key could not be recovered.

Challenges in Profiling and Mitigating Noise from Back-
ground Processes. Even though we worked around the unstable
trigger via preprocessing, we have not resolved the issue of jittery
traces with noise induced by the full OS running in the background.
One approach that we hypothesise is if the EM signals correspond-
ing to the background processes and OS can be profiled without
AES or S-box operations. Then, it can provide insights into the noise
being added during AES implementation. But, we should recall that
the chosen processor allows scheduling and supports multi-cores.
This means it is impossible to accurately profile the background
noise, during the execution of the sensitive algorithms. Additionally,
due to the sleep operations (which are essential to managing the
issues with the jitter in the trigger), there is more context switching,
resulting in noise, that cannot be replicated during profiling.

Therefore, we finally move to deep neural network techniques,
that have been shown in the literature, to retrieve secret informa-
tion, even in the presence of countermeasures, low SNR traces,
jitters and de-synchronization.

While more extensive and target-specific pre-processing may
result in perfect alignment of the traces allowing CPA-based key
recovery. However, there is no standard or proposed method for pre-
processing in the literature. Even in real product evaluations, the

pre-processing is catered to each target individually. To overcome
this factor, in the next section, we explore deep learning based
methods which are known to perform pre-processing agnostic
evaluations to some extent [11].

4 ANALYSIS USING DL-SCA (PROFILED)
We investigate DL-SCA in a profiled setting. Previous studies have
shown that CNNs can perform successful key recovery even in
the presence of countermeasures. The shift invariant property of
CNN have a natural tendency to overcome countermeasures like
jitter or de-synchronization. However, CNN has a large number of
hyperparameters to tune (e.g., the number of layers, kernel size,
type of activation functions, etc.) compared to machine learning
or classical SCA. Furthermore, it has been pointed out that the
hyperparameters influence greatly on the performance.

To deal with the hyperparameters, we have performed a basic
random parameter search. We run a trial of 100 experiments, in
which a CNN is provided with random hyperparameters, and the
performance is evaluated on the validation dataset first to determine
the best model, and finally tested on a real test set.

4.1 Dataset and Model Training
To prepare the dataset and to find the hyperparameters for training
the model, we use the following procedure, which is commonly
used in DL-SCA setting:

• We first split the training and test set, and further split the
test set into test and validation set.

• We perform a random search on the hyperparameters space
to find best model, based on the performance result on the
validation dataset.

• After 100 trials, we used the best model obtained to perform
the attack on the test set.

We consider 2 scenarios, namely fixed and random key settings
for the profiling phase. As the name suggests, in fixed key, the key
will be fixed for both the training and testing phase, and in random
key setting, the key will be randomized during the training phase
and in the attack phase, the key will be fixed. This is to prevent
bias during training, where the training/profiling learns about the
key instead of the leakage of intermediate values. For experiments
conducted under the fixed key setting, we randomized the order of
traces and then divided them into training and testing sets.

In Table 2, we describe the different datasets used for the exper-
iments and the number of traces required to perform DL-SCA. It
also shows the number of training and testing traces, as well as the
number of features used for these different datasets.

4.2 Results for DL-SCA
To evaluate the performance, we use the guessing entropy (𝐺𝐸)
metric. We denote 𝑁𝑇𝐺𝐸 to be the least number of traces required
to attain 𝐺𝐸 = 0. In Figure 11, we plotted the 𝐺𝐸s obtained for
different datasets.

We observed that for unprotected implementation, the secret key
can be recovered easily using CNN, as shown by its fast convergence
to 𝐺𝐸 = 0, requiring < 10, 000 traces to recover the correct key
byte. We also observed that for masked implementation, we could
recover the correct key byte, albeit with more traces. In Table 2, we
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Dataset No of Feats. No of Traces (%)2 No of Train No of Test NTGE

Fixed Key 405 303, 692 (10.12%) 100, 000 30, 000 6, 132
Random Key 354 260, 396 (8.14%) 142, 426 30, 000 9, 279
Fixed Key Masked 624 567, 582 (18.92%) 400, 000 100, 000 92, 670
Random Key Masked 904 443, 587 (13.44%) 244, 000 100, 000 75, 647
Full Unprotected AES3 2000 2, 889, 890 (72.25%) 200, 000 50, 000 46, 061

Table 2: Dataset used for experiment

present the 𝑁𝑇𝐺𝐸 result for the different datasets. It can be noted
that for all datasets, the correct key bytes can be recovered.

The performance of all 100 CNNs while running a random hy-
perparameter search can be observed in Figure 12 and Figure 13.
We can observe that for unprotected AES implementation (both
fixed and random keys), with random hyperparameter search, most
of the models will eventually converge to 𝐺𝐸 = 0, which means
that the DL models have no difficulty in learning the dataset.

On the contrary, for the case of masked implementations, we
observed that the performances vary by a lot, and in the end, there
is only 1 model for each case, in which the𝐺𝐸 converges to 0. This
indicates that even the masked dataset, DL-SCA is having difficulty
in learning the leakage, and by using a random hyperparameter
search, one setting eventually leads to a model which can learn the
dataset and recover the key.

4.2.1 Results for DL-SCA on Full AES. In previous experiments,
the dataset is preprocessed to reduce the time samples. From the
CPA results, we know that the pre-processing does not necessarily
lead to key recovery, but it helps in the case of DL-SCA. In this case,
we consider the case that we do not do feature selection or pre-
processing, and use all the traces and the features (2, 000 features).

We plot the results in Figure 14. We observe that in this case, the
models eventually have difficulty in learning the leakage, and in
the end, only 1 model successfully learns the leakage, in contrast
to previously multiple models and on higher 𝑁𝑇𝐺𝐸 as well (46, 061
compared to 9, 279), as shown in Table 2, last row.

5 CONCLUSION
In this work, we investigate the difficulty of mounting a side-
channel attack on AES implemented in C on an ARM Cortex A72
processor, with a full OS running in the background. The ARM Cor-
tex A72 operates within a complex ecosystem with an operating
system, multitasking, and context switching, resulting in variability
and noise. It handles interrupts, daemons, and other background
processes that contribute to execution time variability. We con-
firmed the traces have low SNR and one of the high contributing
factors is the misalignment of trace signals incurred by the high
jitter. Therefore, we employed preprocessing techniques, to handle
some level of de-synchronization, which significantly reduced the
number of useful traces. Upon observing TVLA leakage, we pro-
ceeded with CPA on filtered traces in known key settings. However,
the leakage from the correct key does not stand out.

2Fixed Key and Random Key datasets were used with a standard AES implementation.
3This dataset includes traces from an unprotected AES implementation without any
countermeasures.

As there is no standard method to perform pre-processing and is
usually adapted for each target, we explore deep learning-assisted
side-channel analysis. As proven in existing literature, we can re-
cover the secret key, further highlighting the capability of DL-SCA.
Though this is an expected result, we should note that, so far DL-
SCA has been used on public datasets that are already vulnerable to
classical SCA techniques. But, in this work, we break a dataset with
DL-SCA where key recovery with standard CPA is not possible.
Even though deep learning (DL) is successful in these attacks, we do
not fully understand why it works, necessitating further research
on the explainability of deep neural networks. Additionally, appro-
priate budgeting for countermeasures should be considered, given
the evidence that conducting the attack is extremely challenging.
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