
HierNet: A Hierarchical Deep Learning Model for
SCA on Long Traces

Suvadeep Hajra∗ and Debdeep Mukhopadhyay∗
∗Indian Institute of Technology Kharagpur, India

Abstract—Side-channel analysis (SCA) compromises the secu-
rity of cryptographic devices by exploiting various side-channel
leakages such as power consumption, electromagnetic (EM)
emanations, or timing variations, posing a practical threat to
the security and privacy of modern digital systems. In power or
EM SCA, statistical or machine learning methods are employed
to extract secret information from power/EM traces. In many
practical scenarios, raw power/EM traces can span hundreds
of thousands of features, with relevant leakages occurring over
only a few small segments. Consequently, existing SCAs often
select a small number of features before launching the attack,
making their success highly dependent on the feasibility of feature
selection. However, feature selection may not always be possible,
such as in the presence of countermeasures like masking or
jitters.

Several recent works have employed deep learning (DL)
methods to conduct SCA on long raw traces, thereby reducing
dependence on feature selection steps. However, these methods of-
ten perform poorly against various jitter-based countermeasures.
While some of these methods have shown high robustness to
several jitter-based countermeasures on relatively shorter traces,
we demonstrate in this work that their performance deteriorates
as trace lengths increase. To mitigate these limitations of the
existing models, we develop a hierarchical DL model for SCA
on long traces that is effective against masking, random delay
and clock jitter countermeasures. The proposed model, HierNet,
extracts information from long traces using a two-level informa-
tion assimilation process. At the base level, a DL model with
shift-invariance is employed to extract information from smaller
trace segments. Subsequently, a top-level DL model integrates the
outputs of the base model to generate the final output. HierNet
has been experimentally evaluated against various combinations
of masking, random delay, and clock jitter countermeasures,
using traces up to 250K features long. The results have been
compared with three existing SCA benchmark models. They
demonstrate HierNet’s superiority in several scenarios, such as on
long traces or against clock jitter countermeasures, showcasing
the ability of HierNet to reach the guessing entropy 1 using fewer
than or close to 10 attack traces while the benchmark models fail
to do the same using as many as 5K attack traces. Additionally,
HierNet exhibits significantly better performance in low-training-
data scenarios.

Index Terms—SCA, Deep Learning, Shift-invariance, Trans-
former Network

I. INTRODUCTION

In modern days, cryptographic systems serve as the foun-
dation of security and privacy in digital systems. However,
these cryptographic systems can be vulnerable to attacks that
exploit unintentional information leakage from physical imple-
mentations. Side-Channel Analysis (SCA) [1] exploits these
unintended channels of information leakage, such as power
consumption [2], electromagnetic emanations (EM) [3], or

timing variations [1], arising from the physical implementation
of cryptographic systems to compromise their security. In this
work, we concentrate on power/EM SCA.

A CMOS device’s power consumption, or EM depends on
the data being processed within the device. This characteristic
is leveraged by SCAs to extract the secret key used in a cryp-
tographic device. SCAs involve the collection of power/EM
profiles (commonly referred to as power/EM traces) from
one or more devices during their execution and recovering
the secret key by analyzing these traces using statistical
techniques or machine learning methods. Template attack [4]
and stochastic attack [5] are two classical approaches to SCAs.
More recently, various machine learning (ML) techniques [6],
including deep learning (DL) [7], are introduced in SCA.

In many practical scenarios, the raw power/EM traces can
be more than 100K features long in which the leakages of
the relevant cryptographic operations occur over a few small
segments (known as Points-of-Interest or PoIs). However, most
of the existing works in SCA literature conduct attacks on
some pre-selected high signal-to-noise ratio (SNR) features
or on a pre-selected attack window containing the PoIs. For
example, classical SCA like template and stochastic attacks
select a few (in the order of 100) high SNR features prior
to the actual attack. Similarly, most of the ML and DL-based
methods are investigated on some pre-selected attack window
of size in the order of 1K. However, in implementations pro-
tected by masking countermeasures [8], such feature selection
requires the knowledge of additional intermediate variables of
the cryptographic implementation, which might not always be
available. Moreover, even with such knowledge, the feature
selection might not be possible in the presence of jitter-based
countermeasures (like random delay [9], clock jitter [10], and
shuffling [11]). Therefore, the success of the most of the
existing SCAs depends on the feasibility of feature selection.

Several deep learning (DL) based research efforts [12]–[16]
have focused on improving the scalability and effectiveness
of DL models for long attack windows or raw traces, thereby
reducing their sensitivity to the attack window selection. Those
models have demonstrated good performance even without
selecting any smaller attack window. Moreover, several works,
such as [13], [14], have demonstrated significantly improved
performance when attacking long traces compared to attacking
a smaller, selected attack window. However, the performance
of most of those methods vastly deteriorates in the presence
of countermeasures like random delay and clock jitter. For
example, the investigation of [14] reveals that their methods
might require more than 30 times more traces for the success-

1

.

. . .

. . .

. . .

Seg 1 Seg 2 Seg m

Final Prediction

shift−invariant shift−invariant shift−invariant
EstraNet EstraNet EstraNet

transformer layer with absolute positional encoding

Top−Level Model

t = [t0, . . . , tn−1]

x0 x1 xm−1

Fig. 1. HierNet Architecture. All parameters except the last layer of the base
models are shared.

ful attack (to reach the guessing entropy 1) when subjected
to desynchronized traces as compared to synchronized traces.
Similarly, the results of [16] illustrate that the DL models from
[13] may fail to reach the guessing entropy 1 even when using
up to 5K traces if the traces are desynchronized using clock
jitter effect. In contrast, these models require only around 10
traces to achieve the same result in the absence of clock jitter.
In [17], Bursztein et al. have not shown the success of their DL
model, GPAM, against jitter-based countermeasures, though
they have demonstrated its success on traces with lengths more
than 10M .

Recently, [16] introduced a Transformer Network-based
DL model for SCA on long traces, which has demonstrated
state-of-the-art results against random delay and clock jitter
countermeasures along with the masking countermeasure. In
this work, we closely analyze EstraNet and show that its
performance gradually deteriorates as trace lengths increase.
To address this limitation, we introduce HierNet, a hierarchical
DL model for SCA. Unlike EstraNet, which attempts to
assimilate information from the entire trace using a stack of
monolithic layers, HierNet employs a two-level information
assimilation approach. HierNet uses an EstraNet model to
process smaller trace segments at the lower level. A second-
level TN model then aggregates the outputs from EstraNet
across all segments to produce the final result, as illustrated
in Figure 1. HierNet retains EstraNet’s resilience against
masking, random delay, and clock jitter countermeasures while
effectively addressing its limitations with longer traces.

Contributions:

The contributions of the work are the following:

• EstraNet, the shift-invariant DL model recently intro-
duced in [16], demonstrated the state-of-the-art perfor-
mance against various combinations of masking, random
delay and clock jitter countermeasures. The model also
has linear time and memory cost, making it computa-
tionally scalable to long traces. We investigate the attack
efficacy of EstraNet on longer traces. We identify that the

performance of EstraNet degrades with increasing attack
window size or trace length, necessitating a) more effort
in hyper-parameter tuning, b) potential overfitting issues,
and c) diminished performance.

• We introduce HierNet, a hierarchical DL model for SCA
on long traces. HierNet employs a two-level hierarchical
DL architecture. At the first level, it utilizes an EstraNet
model to assimilate information from smaller trace seg-
ments. At the top level, another TN model aggregates
the outputs of EstraNet from all segments. This top-level
TN model incorporates a novel self-attention mechanism
with absolute positional encoding.

• We experimentally evaluate HierNet against various com-
binations of masking, random delay, and clock jitter coun-
termeasures using traces with lengths upto 250K features,
comparing its performance with three benchmark DL
models. The results show that HierNet can significantly
outperform the benchmark models, particularly against
clock jitter countermeasures, or on longer traces. HierNet
can reach the guessing entropy 1 using less than or
close to ten attack traces, whereas the benchmark models
struggle to reach the same even using 5K attack traces
in these scenarios. HierNet has also demonstrated signfi-
cantly better performance on low training data scenarios.

The paper is organized as follows. Section II introduces the
notations and provides background information. In Section III,
we briefly describe the EstraNet model. Section IV investigates
the effectiveness of EstraNet on long traces. In Section V,
we introduce the proposed HierNet architecture. Section VI
presents the empirical evaluation of HierNet and compares
it with three benchmark models. In Section VII, we discuss
the limitations of our empirical evaluation and explore future
directions for the work. Finally, we conclude the paper in
Section VIII.

II. PRELIMINARIES

A. Notations

The notational conventions used in the paper are as follows.
A letter in the capital (like X), the corresponding small
letter (like x), and the corresponding calligraphic letter (like
X) are respectively used to represent a random variable, an
instantiation, and the domain of the random variable. Similarly,
a capital letter in bold (like X) and the corresponding small
letter in bold (like x) are respectively used to represent a
random vector and its instantiation. We use a capital letter in
Roman style (like M) to represent a matrix. The i-th element
of a vector x is represented by x[i]. Similarly, the element
of i-th row and j-th column of a matrix M is represented by
M[i, j]. The notations P[·] and E[·] are respectively used to
represent a random variable’s probability distribution function
and expectation.

B. Side-Channel Analysis

The power consumption and electromagnetic (EM) emis-
sions of a semiconductor device are influenced by the values
manipulated within the device. SCA takes advantage of this
behavior in semiconductor devices to extract information about

2

the sensitive variables in a cryptographic implementation,
revealing the device’s secret key. To achieve this, in an SCA,
an attacker gains control of the target device, also referred
to as the Device Under Test (DUT). Then he/she collects
power or EM measurements, known as traces, by repeatedly
executing the encryption/decryption algorithm with various
plaintexts/ciphertexts. Subsequently, the attacker employs sta-
tistical tests to deduce the device’s secret key from the traces.

SCA can be categorized into two types: profiling SCA and
non-profiling SCA. In profiling SCA, the attacker possesses a
clone of the DUT under control. With this clone device, he/she
can create a profile of the DUT’s power consumption or EM
emission characteristics and employs this profile to carry out
the attack on the DUT. On the other hand, in non-profiling
SCA, the attacker lacks a clone device and, therefore, cannot
build a power/EM profile a priory. Instead, he/she attempts to
recover the secret key solely from the traces of the DUT. This
paper considers profiling SCA.

C. Deep Learning based Profiling SCA
Like any profiling SCA, DL-based profiling SCA also

involves a two-phase process. In the initial phase, known as
the profiling phase, the attacker configures a predefined key
in the clone device and acquires a large number of traces
by executing encryption (or decryption) operations on well-
known plaintexts (or ciphertexts) using the device. For each
trace, the attacker calculates the value of an intermediate
secret variable denoted as Z = F (X,K). Here, X represents
a component of the random plaintext (or ciphertext), K
represents a component of the known key, and F (·, ·) denotes
a cryptographic primitive. Then, the attacker uses the traces
and the values of the intermediate variable Z to train a DL
model to predict Z from the L, where L represents a trace.
More specifically, the DL model takes a trace L as its input
and outputs a probability distribution over the values of Z. Let
f(·; θ∗) denote the trained DL model, with θ∗ denoting the
model parameters. The output of the DL model for a trace, l,
can be given as p = f(l; θ∗) where p ∈ R|Z| with p[j], for
j = 0, · · · , |Z| − 1, denoting the predicted probability of the
intermediate variable Z = j.

In the attack phase, attacker collect multiple traces {̃li}Ta−1
i=0

by executing the DUT. Let {p̃i}Ta−1
i=0 be the corresponding

plaintexts (or ciphertexts). Then, he/she uses the set of attack
trace-plaintext pairs {(̃li, p̃i)}Ta−1

i=0 to compute the score of
each key k ∈ K as

δ̂k =

Ta−1∑
i=0

log pi[F (p̃i, k)] (1)

where pi = f (̃li; θ∗) is the output of the DL model for the i-
th trace. The key with the highest score, i.e., k̂ = argmaxk δ̂k,
is considered as the predicted key. The prediction is said to
be correct if k̂ = k∗ holds. Alternatively, the rank of the
correct key within the list of all possible keys, sorted based
on their respective scores δ̂k, serves as a metric to determine
the success level of the attack. The rank of the correct key
averaged over multiple repetitions of the attack, referred to
as guessing entropy, is a widely used metric to evaluate the
success of an attack.

D. Transformer Network

A Transformer Network (TN) is a type of DL model
composed of multiple transformer layers. The input trace is
fed into the first transformer layer, and the output of each
layer serves as the input for the subsequent layer. The final
output of the last transformer layer is considered the output
of the TN model.

Each transformer layer consists of a self-attention layer
and a position-wise feed-forward layer. It takes a sequence
X = [x0, . . . ,xn−1]

T ∈ Rn×d of n feature vectors as input
and outputs another sequence Y = [y0, . . . ,yn−1]

T ∈ Rn×d

where n is the sequence length (trace length in the context
of SCA) and d is the dimension of the feature vectors. The
output Y is given by

Ŷ = fSA(X) + X

Y = fPFF (Ŷ) + Ŷ

where fSA : Rn×d 7→ Rn×d is the function representing
the self-attention layer and fPFF : Rn×d 7→ Rn×d, is the
function representing the position-wise feed-forward layer.
The position-wise feed-forward layer independently applies a
non-linear transformation to each feature vector, increasing the
non-linearity (and, thus, its representation power) of the TN
model. On the other hand, the self-attention layer captures
the inter-dependencies among different features [15], [16],
[18]. It is worth mentioning that the number of parameters
in both the self-attention and position-wise feed-forward layer
is independent of the sequence length n. Therefore, it can scale
to a very long sequence without being prone to overfitting.

The self-attention layer is a key component of a Transformer
Network (TN). Different variations of this layer lead to vastly
different types of TN models, each varying significantly in
performance and computational cost. In the next part of this
section, we briefly describe the self-attention layer and some
of its variations, setting the groundwork for the following
discussion.

1) Self-attention Layer: Let the sequence
X = [x0, . . . ,xn−1]

T ∈ Rn×d of n feature vectors is the input
of a self-attention layer and Ŷ = [ŷ0, . . . , ŷn−1]

T ∈ Rn×d be
the corresponding output sequence. Then, in a self-attention
layer, each output feature vector ŷi, for i = 0, . . . , n − 1, is
computed as

ŷi =

n−1∑
j=0

k(f(xi), g(xj))∑n−1
l=0 k(f(xi), g(xl))

h(xj) (2)

where f(xi), g(xi), and h(xi) are some vector valued func-
tions of input feature xi, and k : Rdk × Rdk 7→ R+ is
called the kernel function. The kernel function outputs a high
score, k(f(xi), g(xj)), if it finds the features xi, and xj to
be related and a low score otherwise. In summary, in self-
attention, each output feature, ŷi, is computed by taking the
weighted sum of the input features h(x0), . . . , h(xn−1) where
the weight for the j-th input feature is given by the normalized
score k(f(xi), g(xj))/

∑n−1
l=0 k(f(xi), g(xl)). Therefore, if

the i-th feature is related to (or dependent on) the j-th feature,
the weight of the j-th input feature in the i-th output feature
can be significantly greater than weights of the other features,

3

increasing the component of the j-th feature (in the input)
in the i-th feature (in the output). In that way, self-attention
layer can combine the information of the i and j-th features,
capturing the dependency between the input features.

One of the most common kernel used in TN literature
is obtained by setting the kernel as k(f(xi), g(xj)) =
exp(⟨f(xi), g(xj)⟩/

√
dk), where ⟨·, ·⟩ represents the dot prod-

uct between two vectors and dk is the dimension of the outputs
of f(·) and g(·). The above kernel leads to following self-
attention known as softmax self-attention:

ŷi =

n−1∑
j=0

exp
(
⟨f(xi), g(xj)⟩/

√
dk
)∑n−1

l=0 exp
(
⟨f(xi), g(xl)⟩/

√
dk
)h(xj) (3)

=

n−1∑
j=0

softmax
(
⟨f(xi), g(xj)⟩/

√
dk
)
h(xj) (4)

In the self-attention mechanism of the form of Eq. (2), the
attention score from feature xi to feature xj does not depend
on their positions, i or j, in the input sequence. Therefore,
the actual order of the features in the input sequence does not
affect the attention scores. In other words, permuting the input
sequence also permutes the output sequence in the same way.

In many tasks, we want the attention a feature gives to
another feature to depend on their absolute positions or the
distance between them. For instance, in the presence of
random delay or clock jitter countermeasures, the distances
between the informative features remain almost the same
across all traces. These properties have been exploited in the
TN models proposed in [16], [18] by making the self-attention
shift-invariant. This approach is described as follows:

Relative Positional Encoding: To make the self-attention
shift-invariant, one can incorporate relative positional encoding
into kernel function by generalizing it to kr(f(xi), g(xj), e(i−
j)), where e(i− j) is a vector space encoding of the relative
distance i − j. Therefore, the output of the resultant self-
attention takes the form

ŷi =

n−1∑
j=0

kr(f(xi), g(xj), e(i− j))∑n−1
l=0 kr(f(xi), g(xl), e(i− l))

h(xj) (5)

With relative positional encoding, the kernel function re-
turns a high score not only based on the similarity between
xi, and xj , but also considering their relative distance i− j.

Another scenario where incorporating position information
into the attention scores is beneficial is when there is no jitter-
based countermeasure in the implementation. In the absence of
such countermeasures, the positions of the informative features
in the input sequence remain consistent across all traces. To
exploit this property, one approach is to make the attention
scores dependent on the absolute positions of the features. In
this work, we achieve this by incorporating absolute positional
encoding into the self-attention layer. We introduce the self-
attention with absolute positional encoding in Section V-B.

In the next section, we briefly describe the architecture of
EstraNet and then explore its limitations with longer traces.

III. ESTRANET MODEL

We first provide a brief overview of the EstraNet architec-
ture, followed by its key component, the GaussiP attention.

A. The Overall Architecture

The overall EstraNet architecture is shown in Figure 2a.
Being a transformer network, EstraNet consists of multiple
EstraNet layers stacked one after another. The output sequence
of the top EstraNet layer (the sequence {y0, . . . ,ym−1},
where each yi ∈ Rd) is reduced to a single d-dimensional
vector ȳ using a softmax attention layer. The output ȳ is then
fed to a classification layer for the final classification.

Like a transformer layer, each EstraNet layer consists
of a self-attention layer and a position-wise feed-forward
layer (shown in Figure 2b). However, instead of vanilla self-
attention, the EstraNet layer uses a novel self-attention named
GaussiP attention. The standard layer normalization operation
of the vanilla transformer layer is also replaced by a novel
layer-centering operation in EstraNet layer.

B. GaussiP Attention

The GaussiP attention is similar to self-attention with
relative positional encoding given in Eq. (5). However, it
uses a form of Gaussian kernel over the relative distance
i − j and special encoding to facilitate a) information flow
from one feature to a distant feature, and b) controllable
sparsity of the attention scores. Moreover, it uses a closed-form
approximation for the denominator in Eq. (5). More precisely,
the GaussiP attention’s kernel takes the form:

kGPA (i− j) = exp
(
−||i− j||22

2

)
= exp

(
−
β2
2s

2
p(i− j − cpn)

2||Wpp||22
2

)
(6)

= exp

(
−
β̂2
2s

2
p(i/n− j/n− cp)

2||Wpp||22
2

)
, (7)

where i = β2spWp(b+ip) and j = β2spWp(b+jp+cpnp)
be the encoding of the positional indices i and j, with sp ∈
R+, cp ∈ (0, 1), Wp ∈ Rde×d, p ∈ Rd being the parameters
and β̂2 = nβ2 > 0 being a hyper-parameter of the model.
To make the time and memory complexity of the attention
linear with respect to the sequence length n, the above kernel
is approximately factorized using the dp-dimensional Fourier
feature map defined as

ϕfr(x) =
1√
dp

[sin(wT
0 x), . . . , sin(wT

dp−1x),

cos(wT
0 x), . . . , cos(wT

dp−1x)]
T , (8)

where w0, . . . ,wdp−1 are the i.i.d. (independent and iden-
tically distributed) samples from de dimensional Gaussian
distribution with zero mean and identity covariance matrix
ensuring

kGPA (i− j) ≈ ϕfr(i)
Tϕfr(j) (9)

to hold. Furthermore, the GaussiP attention approximates the
term

∑n−1
l=0 kGPA (i− l) in the closed form n/β̂2sp||Wpp||2.

Therefore, the output feature vectors ŷis, of the resultant
GaussiP attention,

4

. . .

. . .

Softmax Attention

EstraNet Layer

. . .

EstraNet Layer

Two Convolutional Blocks

. . .

tn−1t0 t1 tn−2

y0

ȳ

x0 xm−1

ym−1

(a) EstraNet Architecture.

addition

addition

Layer Centering

PoswiseFF

Multi−Head

Attention
GaussiP

Layer Centering

y

x

(b) EstraNet Layer.

Fig. 2. Schematic of EstraNet [16] Architecture.

ŷT
i =

∑n−1
j=0 kGPA (i− j)h(xj)

T∑n−1
l=0 kGPA (i− l)

, following Eq. (5), (10)

≈ β̂2sp||Wpp||2
n

n−1∑
j=0

(
ϕfr(i)

Tϕfr(j)
)
h(xj)

T

≈ β̂2sp||Wpp||2
n

[
ϕfr(i)

T
n−1∑
j=0

ϕfr(j)h(xj)
T

]
, (11)

for all i = 0, . . . , n−1, can be computed in linear time and
memory with respect to n.

One significant advantage of the GaussiP attention is that the
i-th output feature puts high attention around i− j − cpn = 0
or j = i− cpn, allowing information flow from features near
i − cpn to feature i. Since i − cpn can be far away from
i (by setting cp ∈ (0, 1) properly), GaussiP attention allows
information flow from one region of the traces to a distant
region, enabling integration of the leakages of different secret
shares of a masking protected implementation to form the
unmasked secret. Another advantage of the GaussiP attention
is that by setting β̂2 appropriately or learning a proper value
of sp, the sharpness and sparseness of the attention scores can
be adjusted. More precisely, when β̂2sp is small, the GaussiP
attention puts high attention on a larger trace segment. On
the other hand, the high attention scores can be made to
concentrate on a very small region of the traces by making
β̂2sp large. This property of GaussiP attention makes it highly
effective for SCA on long traces, where each PoI spans over
a very small part of the entire trace.

C. Multi-head GaussiP Attention

In implementations protected by masking countermeasures,
the intermediate secret variable is split into multiple shares
such that any proper subset of the shares is independent of
the unmasked secret. Therefore, to successfully attack such
implementations, one needs to combine the information from
the leakages of all the shares. However, in many masked

implementations (e.g., software implementations), different
secret shares leak at different regions (which may be long
distances apart from each other) of the traces. Thus, to attack
such implementations, the DL models must be able to combine
the leakages from distant regions.

Though the vanilla GaussiP attention allows information
flow from features near i − cpn to feature i for all i, such
flow of information may be too sparse to be able to combine
the leakages from the distant regions. In EstraNet, Hajra et al.
solve this problem using multi-head GaussiP attention. More
precisely, an h-head GaussiP attention, where h is a positive
integer, computes a hdv-dimensional output by concatenat-
ing the outputs of h parallel GaussiP attentions. The hdv-
dimensional output is then projected back to d-dimensional
output ŷ using a d× hdv-dimensional projection matrix Wo.
The cp parameter of each of the h GaussiP attentions is
initialized to different values, facilitating information flow
from h different regions,

(
i− c

(0)
p n

)
, . . . ,

(
i− c

(h−1)
p n

)
, to

the i-th feature.

IV. PERFORMANCE DEGRADATION OF ESTRANET WITH
INCREASING TRACE LENGTHS

A. Limitation of GaussiP Attention

The performance of GaussiP attention deteriorates drasti-
cally as the size of the attack window increases gradually. To
illustrate the point, we recall from Eq. (10) that an output
feature of the GaussiP attention is computed as

ŷi ≈
n−1∑
j=0

kGPA(i− j)∑n−1
l=0 kGPA(i− l)

h(xj) =

n−1∑
j=0

wjh(xj) (12)

where wj ≜ kGPA(i− j)/
∑n−1

l=0 kGPA(i− l) is the weight
for the j-th input feature vector xj . Note that since kGPA is
a Gaussian kernel, it puts high attention to a small contiguous
segment, say H = [a, b], of the input sequence where 0 ≤
a < b < n. Within this high-attention segment H, a smaller
segment, say I ⊆ H, corresponds to some high SNR features.
Thus, we can re-write Eq. (12) as

ŷi ≈
∑
j∈I

wjh(xj) +
∑

j∈H\I

wjh(xj) +
∑
j /∈H

wjh(xj) (13)

When β̂2 hyper-parameter of kGPA remains constant, the
number of high attention features, i.e., |H|, increases almost
linearly with the increase of the attack window size n (as
explained in Appendix A). However, among this H features,
the high SNR features I remain almost the same. Conse-
quently, the norm of the signal part ||∑j∈I wjh(xj)||2 within
ŷi remains almost the same while the norm of the noise part,
i.e., ||∑j∈H\I wjh(xj) +

∑
j /∈H wjh(xj)||2 increases with

the attack window size n, reducing the effective SNR of ŷi.
One way to alleviate the above problem is to increase the value
of β̂2 with the increase in the attack window size, making the
size of high SNR features |H| close to the number of high
SNR features |I|. However, increasing the β̂2 hyper-parameter
with the increase in the attack window size, the propagation of
information through the EstraNet layers becomes too sparse,
making the model untrainable. Alternatively, one can increase

5

TABLE I
THE TGE1 (LOWER IS BETTER) VALUES OBTAINED FROM THE ESTRANET MODEL ON TRACES WITH INCREASING TRACE LENGTH. FOR EACH

EXPERIMENT, THE MODEL HAS BEEN TRAINED THRICE. THE TABLE SHOWS THE TGE1 FROM ALL THREE TRAINING RUNS.

Dataset Window size 10K Full-length Traces Double-length Traces
run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

ASCADf 13 9 15 6 13 30 > 5K > 5K > 5K

ASCADr 4 6 5 > 5K > 5K > 5K > 5K > 5K > 5K

CHES20 11 4 7 5 6 5 > 5K > 5K > 5K

both β̂2 and the number of heads, h, of the multi-head
GaussiP attention. The larger value of β̂2 helps to prevent
the deterioration of the effective SNR at the outputs of the
GaussiP attention, and the larger value of h increases the
flow of information through the EstraNet layers, increasing
the model’s ability to combine leakages from distant PoIs.
However, the approach has several drawbacks:

1) EstraNet might require significantly more tuning of
several hyper-parameters like β̂2 and h, increasing the
compute cost of the training significantly.

2) Increasing the hyper-parameter h increases the model’s
number of parameters, increasing the model’s training
and inference cost. Moreover, having more parameters
increases the risk of overfitting during training, signifi-
cantly increasing the required training traces to train the
model effectively.

3) Since the GaussiP attention is only an approximation of
the Gaussian kernel, the weights, wjs, for the features
in the set {j : j /∈ H} in Eq. (13) are not exactly
zeros, but some small values. When the size of the attack
window is very large and the attentions are focused on
very small regions (by setting β̂2 to a high value), the set
{j : j /∈ H} becomes very large, increasing the compo-
nent

∑
j /∈H wjh(xj) in Eq. (13) to a significant value.

That, in turn, reduces the effective SNR of the GaussiP
attention’s outputs, making the training of EstraNet more
difficult for the longer attack window sizes.

Next section experimentally verifies the above arguments.

B. Experimental Evaluation of EstraNet on Longer Traces

To experimentally verify the above arguments, we investi-
gate the effectiveness of EstraNet with increasing trace lengths.
Towards that goal, we trained and evaluated EstraNet on
three datasets used in the previous chapter: ASCAD fixed key
(ASCADf), ASCAD random key (ASCADr), and CHES CTF
2020 (CHES20) datasets. These datasets respectively contain
100K, 250K, and 62.5K features. We conducted three sets
of experiments on each of three datasets. In the first set,
we selected an attack window of 10K from each dataset. In
the second set, we trained and evaluated the model on the
full-length traces. In the third set, we doubled the length of
each trace by concatenating the trace with itself once, and
then performed experiments on these double-length traces. The
results are summarized in Table I. As in the previous chapter,
each experiment is repeated three times. The number of attack
traces required to reach guessing entropy 1 (TGE1) in the three
training runs of each experiment are shown in the table. From

the table, it can be observed that for the attack window of
10K, EstraNet requires close to 10 attack traces to reach the
guessing entropy 1 across all three datasets. When attacks are
performed on the full-length traces, EstraNet fails to reach the
guessing entropy 1 using as many as 5K traces in one dataset
(ASCADr dataset), although it performs reasonably well on the
remaining two datasets. However, when attacks are performed
on the double-length traces, EstraNet is unable to reach the
guessing entropy 1 using 5K attack traces in any of the three
datasets.

Following the arguments of the previous section, we tune β̂2

and H hyper-parameters to improve EstraNet’s performance
on longer traces. Towards that goal, we trained it on the
ASCADf dataset using double-length traces, varying combi-
nations of β̂2 and H while keeping other hyper-parameters
constant. The results are summarized in Table II. From the
table, it can be observed that the best performance from
EstraNet is achieved with β̂2 = 300 and h = 16. For this
combination of hyper-parameters, the model can reach TGE1

significantly below 5K in only one out of the three training
runs. In the other two training runs, however, it failed to reduce
the TGE1 below 5K. This indicates that even with substantial
hyper-parameter tuning, EstraNet may not consistently achieve
good performance on longer traces

It is worth noting that although EstraNet struggles on
longer traces, it performs well with smaller attack windows.
However, in practical applications, such as those involving
implementations protected by masking or jitter-based counter-
measures, selecting sufficiently smaller attack windows from
full-length traces may not be feasible. In such scenarios,
applying EstraNet could be challenging.

In the next section, we introduce HierNet, a hierarchical
TN model for SCA. HierNet inherits EstraNet’s effectiveness
against masking, random delay, and clock jitter countermea-
sures while addressing its limitations on longer traces, as
shown in Table III).

V. HIERNET: A HIERARCHICAL DL MODEL FOR SCA
The core idea behind HierNet is to process a long trace in

segmented manner using EstraNet models and then combine
the output of all segments using a top-level DL model (as
shown in Figure 1). This approach has several advantages.
First, EstraNet may not effectively work on the entire trace
but can perform very well on relatively smaller segments.
Therefore, applying EstraNet in a segmented manner retains its
effectiveness against countermeasures like masking, random
delay, and clock jitter while addressing its limitations with
increasing trace length. Second, the top-level DL model can

6

TABLE II
THE TGE1 (LOWER IS BETTER) VALUES OBTAINED FROM THE ESTRANET MODEL ON THE ASCADF DATASET WITH DOUBLE-LENGTH TRACES FOR

VARIOUS COMBINATIONS OF H AND β̂2 . FOR EACH HYPER-PARAMETER, THE MODEL HAS BEEN TRAINED THRICE. THE TABLE SHOWS THE TGE1 FROM
ALL THREE TRAINING RUNS.

h = 8 h = 12 h = 16

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3
β̂2 = 150 > 5K > 5K > 5K > 5K > 5K > 5K > 5K > 5K > 5K

β̂2 = 300 > 5K > 5K > 5K > 5K 32 > 5K > 5K > 5K 7

TABLE III
THE TGE1 (LOWER IS BETTER) VALUES OBTAINED FROM THE HIERNET

MODEL ON TRACES WITH INCREASING TRACE LENGTH.

Dataset Full-length Traces Double-length Traces
run 1 run 2 run 3 run 1 run 2 run 3

ASCADf 2 2 2 2 2 2

ASCADr 3 2 3 3 5 5

CHES20 2 2 2 3 3 3

be designed differently from EstraNet, considering different
criteria. For instance, the shift-invariance of EstraNet helps
mitigate the effects of random delay and clock jitter counter-
measures, as demonstrated in the previous chapter. However,
when a trace passes through the EstraNet models at the bottom
level of HierNet during the forward pass, the effects of those
countermeasures get nullified. Therefore, the top-level DL
model might exploit this fact by being sensitive to the absolute
positions of the informative features in its input sequence. In
fact, we design our top-level DL model to be sensitive to
the absolute ordering of the input sequence by incorporating
absolute positional encoding into the model.

We summarize the approach used in HierNet more pre-
cisely. In HierNet, the input trace t is first segmented into
multiple relatively smaller overlapping segments, denoted as
s0, s1, . . . , sm−1. Each segment si is independently processed
by EstraNet models, producing outputs x0,x1, . . . ,xm−1,
where xi ∈ Rd represents the output of EstraNet applied
to segment si. Next, a top-level DL model (a single layer
TN with absolute positional encoding) generates the final
output by considering the sequence {x0,x1, . . . ,xm−1} as its
input. Several design factors in HierNet are crucial, including
the segmentation strategy, the design of the top-level model,
and parameter sharing among EstraNet models for different
segments. We discuss these factors in detail below.

A. Segmentation

HierNet inherits the robustness of EstraNet against random
delay and clock jitter countermeasures by employing EstraNet
models to process each trace segment. However, segmenting
the input trace in HierNet can potentially compromise this
robustness. For example, misalignments in traces may cause
some PoI near a segment boundary to oscillate between
segments. In one trace, the PoI might belong to one segment,
while in another trace, it could be shifted to a different one,
resulting in the PoI not being processed in any segment.
Such issue can be mitigated by making the segment length
reasonably large. Additionally, we ensure significant overlap

between consecutive segments. Specifically, if one segment
ends at feature t, the next segment starts from feature t − o,
ensuring that the span from t−o to t belongs to both segments
(as illustrated in Figure 1). It’s important to note that if
the displacements are bounded by length o, each PoI will
always remain within one of the two consecutive segments.
However, if displacements exceed o, increasing the value
of o (a hyper-parameter in HierNet) can enhance HierNet’s
robustness against larger desynchronizations, albeit at the cost
of increased computational overhead.

B. Designing the Top-level DL Model

When designing the top-level DL model, we primarily
consider three criteria. First, we aim to ensure that the
model’s parameterization remains consistent across different
trace lengths and segmentations. The number of segments,
denoted as m, can vary depending on the trace length and
chosen segment length, thereby affecting the input length to
the top-level model. Therefore, we select a model whose
parameterization is independent of the input length. Second,
the model should effectively capture long-distance dependen-
cies to combine leakages from all input elements using a
minimal number of layers. Finally, we require the model to
easily incorporate absolute positional encoding. Based on these
criteria, we selected a single-layer TN model as the top-level
DL model, as it meets all three requirements. This model
includes a self-attention layer and a position-wise feed-forward
layer, as described in Section II-D. We used a softmax self-
attention layer and incorporated absolute positional encoding
into the self-attention operation. A brief description of this
operation is provided in the following section.

1) Self-attention with Absolute Positional Encoding: In the
presence of random delay or clock jitter countermeasure, the
displacements of PoIs across the traces are likely to remain
bounded within a segment. Therefore, they will not affect the
order of the input sequence {x0, . . . ,xm−1} of the top-level
DL model. More precisely, if the leakage related to some
intermediate variable appears in the i-th segment for some
trace, its position is unlikely to change for the other traces.
In other words, the indices of the informative features of the
input sequence {x0, . . . ,xm−1} will remain the same across
all traces. To exploit such phenomenon, we incorporate the
absolute positional encoding in the self-attention layer of the
top-level TN.

In brief, in vanilla self-attention (the softmax self-attention
in Eq. 4), the i-th output feature ŷi, i = 0, 1, . . . ,m − 1, is
computed as

7

ŷi =

m−1∑
j=0

pijh(xj)

with pij , the attention weight from the i-th feature to the j-th
feature, is given as

pij = softmax
(
⟨f(xi), g(xj)⟩√

dk

)
=

exp
(
⟨h(xi), g(xj)⟩/

√
dk

)∑n−1
l=0 exp

(
⟨f(xi), g(xl)⟩/

√
dk

) ,
where f(·), g(·) and h(·) are three vector valued functions of

the input feature xi (i = 0, . . . ,m− 1), ⟨·, ·⟩ denotes the dot
product between two vectors and dk be the dimension of the
outputs of f (or g). We incorporate the absolute positional
encoding into the computation of attention probabilities as
follows:

paij = (1− γ) · softmax
(
⟨f(xi), g(xj)⟩√

dk

)
+ γ · softmax

(
⟨i, j⟩
√
dk

)
(14)

= (1− γ)
exp

(
⟨f(xi), g(xj)⟩/

√
dk

)∑n−1
l=0 exp

(
⟨f(xi), g(xl)⟩/

√
dk

)
+ γ

exp
(
⟨i, j⟩/

√
dk

)∑n−1
l=0 exp

(
⟨i, l⟩/

√
dk

) , (15)

where 0,1, . . . ,m− 1 are m distinct vectors and γ ∈ [0, 1]
is a hyper-parameter. The values of vectors 0,1, . . . ,m− 1
are learned along with other parameters of the model during
training. Note that the first component of the R.H.S. of
Eq. 14 or 15 computes the attention probability based on the
similarity (or inter-dependency) between the two features, xi

and xj . On the other hand, the second component computes
the probability based on their absolute positions or indices i,
j. The hyper-parameters γ controls the relative weights of the
two components in the final attention probability paij .

C. Parameter Sharing among the EstraNet Models

To keep the total number of parameters of HierNet small
and to prevent the model from overfitting, the parameters of all
the EstraNet models are shared among themselves. However,
during our initial experiments, we observed that sharing the
parameters of the last softmax layer of the EstraNet models
resulted in a deceleration of the training convergence for
HierNet. We hypothesize that the parameter-sharing of the
softmax attention layer was forcing each segment’s output
towards a unified representation, thereby slowing the training
progress. Consequently, we opted not to share the parameters
of the last layer of the EstraNet models.

The overall architecture of HierNet is shown in Figure 1.
In the next section, we experimentally evaluate HierNet.

VI. EXPERIMENTAL RESULTS

HierNet has been evaluated using three SCA datasets of
masked implementations. The evaluation is structured into
two distinct parts. In the first part, we conduct the evaluation
on long traces with the added random delay effect. In the
second part, the evaluation is carried out against the added
effect of clock jitter countermeasure on limited-size attack
windows. The performance of HierNet is compared with three
benchmark DL models.

A. Datasets Used

To carry out the experimental evaluation, we used two
datasets of first-order masked AES implementation, namely
ASCAD Fixed Key1 (ASCADf) and ASCAD Random Key2

(ASCADr) datasets, and a second-order masked implementa-
tion of Clyde-128 Tweakable Block Cipher, namely CHES
2020 CTF dataset3 (CHES20). The first two datasets were
collected from an 8-bit ATMega8515 microcontroller, whereas
the third dataset was collected from ARM Cortex-M0 mi-
crocontroller. Following the previous literature, we target the
output of the third sbox of the first round for the first two
datasets and the 17th column from the right of the state matrix
after the first subbyte operation for the third dataset. The other
details of the datasets are given in Appendix B. The statistics
of the datasets are summarized in Table IV.

TABLE IV
STATISTICS OF THE DATASETS

ASCADf ASCADr CHES20
of Profiling traces 50K 200K 200K
of Validation traces 5K 10K 10K
of Attack traces 5K 10K 10K
Trace Length 100K 250K 62.5K
Mask order 1 1 2

B. Benchmark Models

We compare the performance of HierNet with three bench-
mark models, referred to as EffCNN [19], PolyCNN [12], and
LSTMNet [13]. The EffCNN models are CNN models with
a flattening layer, whereas the PolyCNN model is a CNN
model with a global average-pooling layer. On the other hand,
LSTMNet uses softmax attention after a bi-directional LSTM
layer to accumulate information spread over a long trace.
Further details of the models can be found in Appendix C.
Since EstraNet is already found to perform poorly on longer
traces in Section IV-B, we do not compare it with HierNet in
this section.

C. Details of Hyper-parameters and Training

HierNet uses EstraNet model as the first-level DL model in
its architecture. The hyper-parameters related to EstraNet in
HierNet are adopted from [16], with a few exceptions. Notably,
following the recommendation of [16], the β̂2 hyper-parameter
of the EstraNet model has been tuned for each dataset. In the
top-level DL model, we use absolute positional encoding with
γ hyper-parameter set to 1. We set the number of heads of
the self-attention layers to 8, though setting it to some other
value like 1 also provides similar results. HierNet introduces
two new hyper-parameters: segment length and the overlap
length between two consecutive segments. Across all datasets,

1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1
/ATM AES v1 fixed key

2https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1
/ATM AES v1 variable key

3https://ctf.spook.dev/

8

TABLE V
THE TGE1 VALUES (LOWER IS BETTER) FOR DIFFERENT DL MODELS AGAINST THE RANDOM DELAY COUNTERMEASURE. THE ATTACKS HAVE BEEN

PERFORMED ON THE FULL-LENGTH TRACES (I.E., TRACES WITH LENGTHS OF 100K , 250K , AND 62.5K FOR THE ASCADF, ASCADR, AND CHES20
DATASETS, RESPECTIVELY). THE COLUMNS LABELED Best, Med., AND Avg. RESPECTIVELY DISPLAY THE BEST, MEDIAN, AND AVERAGE TGE1 VALUES

COMPUTED FROM THREE INDEPENDENT TRAINING TRIALS FOR EACH MODEL. ENTRIES MARKED WITH ‘-’ INDICATE THAT THE AVERAGE VALUE IS
UNAVAILABLE BECAUSE THE MODEL FAILED TO REACH GUESSING ENTROPY 1 USING 5K ATTACK TRACES IN SOME OF THE TRAINING RUNS.

Dataset Model Attack Desync 600 Attack Desync 1000

Best Med. Avg. Best Med. Avg.

PolyCNN 2626 > 5K − 2102 > 5K −
ASCADf EffCNN 2854 > 5K − 2812 > 5K −

LSTMNet 157 208 1135.7 146 248 972.7

HierNet 2 2 2.3 2 2 2.0

PolyCNN 5 286 711.7 4 326 445.7

ASCADr EffCNN − − − − − −
LSTMNet 4 7 8.3 5 6 9.0

HierNet 2 2 2.3 2 3 2.7

PolyCNN 689 > 5K − 1946 > 5K −
CHES20 EffCNN − − − − − −

LSTMNet 2 4 3.7 2 2 4.0

HierNet 1 2 2.0 2 2 2.0

the segment length has been set to 5K, and the overlap length
is set to 2K.

We train HierNet for 4M steps utilizing the Adam op-
timizer. Following the previous literature [16], [18] of TN
for SCA, it has been trained using a cosine decay with a
linear warmup learning rate schedule. More precisely, the
learning rate is linearly increased from 0 to the maximum
value of 2.5e-4 over twarmup training steps. Subsequently,
it is gradually reduced to 0.004 × 2.5e-4 over the remaining
4M−twarmup steps, following a cosine learning rate schedule.
The default value for twarmup is set to 1M ; however, it was
observed that, in some instances, the model did not train
effectively for this default value. In such cases, twarmup was
increased to either of 2M or 4M .

D. Comparison with Benchmark Models in the Presence of
Random Delay on Long Traces

In this section, we compare HierNet with the benchmark
models in the presence of random delay on long traces. To
achieve this, we conduct experiments on full-length traces
from the three datasets, which are 100K, 250K, and 62.5K
features long, respectively, with added random delay. The
comparisons are carried out in two parts. In the first part,
we use all available training traces from the datasets to train
the models. In the second part, we compare their performance
when fewer training traces are used to train them.

Experimental Setup: to introduce random delay effect, we
added random shifts in the traces. In the profiling traces, the
random delay has been introduced using a profiling desync
of 600. In other words, we shifted each profiling traces
by a random displacement in the range [0, 600). The data
augmentation has been performed using a desync of 400.
Evaluations of the trained models were conducted for two
attack desyncs: 600 and 1000. We use the minimum number of
attack traces required to reach the guessing entropy 1, denoted
by TGE1, as the performance metric for the DL models.

Results with All Training Traces: We begin by comparing
HierNet with the benchmark models, utilising all profiling
traces from the respective datasets to train the model. There-
fore, we utilize 50K traces from the ASCADf dataset, and
200K traces each from the ASCADr and CHES20 datasets
for training. The results are detailed in Table V. From the
data presented in the table, it becomes apparent that HierNet
exhibits notable performance, requiring approximately 2 to 3
traces to reach the guessing entropy 1 across all datasets. Con-
versely, the performance of the PolyCNN model is poor across
all three datasets, with relatively better performance in the
ASCADr dataset. Similarly, the EffCNN model exhibits poor
performance across all datasets. Specifically, our investigation
revealed that the training of the model on the ASCADr and
CHES20 datasets progresses too slowly to reduce the training
loss significantly below the level of random guessing, even
after 60 hours of training in our experimental environment
(as illustrated in Appendix D). In contrast, HierNet models
require only 24 to 40 hours for the complete training. The
LSTMNet model performs significantly worse on the ASCADf
dataset, although its performance is comparable to HierNet on
the ASCADr and CHES20 datasets.

Comparison with Reduced Number of Training Traces:
We perform further evaluation using a reduced number of
profiling traces to train the models. Specifically, we compare
HierNet and LSTMNet on the ASCADr and CHES20 datasets,
utilizing a random subset of 50K profiling traces from the
datasets’ total of 200K profiling traces to train the models.
Note that, due to their poor performance on the full training
data, PolyCNN and EffCNN models are not included in this
comparison. Additionally, since LSTMNet performs poorly
compared to HierNet with the full training data of the ASCADf
dataset, we do not compare them again using a lesser number
of training traces from that dataset. The results are presented
in Table VI. From the table, it is evident that HierNet models
can still reach the guessing entropy 1 using only three or

9

TABLE VI
THE TGE1 VALUES (LOWER IS BETTER) FOR THE LSTMNET, AND HIERNET MODELS WHEN THE MODELS ARE TRAINED USING 50K PROFILING

TRACES. THE COLUMNS LABELED Best, Med., AND Avg. RESPECTIVELY DISPLAY THE BEST, MEDIAN, AND AVERAGE TGE1 VALUES COMPUTED FROM
THREE INDEPENDENT TRAINING TRIALS FOR EACH MODEL. ENTRIES MARKED WITH ‘-’ INDICATE THAT THE AVERAGE VALUE IS UNAVAILABLE

BECAUSE THE MODEL FAILED TO REACH THE GUESSING ENTROPY 1 USING 5K ATTACK TRACES IN SOME OF THE TRAINING RUNS.

Dataset Model Attack Desync 600 Attack Desync 1000

Best Med. Avg. Best Med. Avg.

ASCADr LSTMNet 2987 4893 − 2615 2812 −
HierNet 2 2 2.3 2 3 2.7

CHES20 LSTMNet 2 > 5K − 4 > 5K −
HierNet 1 2 1.7 2 2 2.0

fewer attack traces in both datasets. In contrast, the LSTMNet
models necessitate over 2K attack traces on the ASCADr
dataset to reach the guessing entropy 1. On the CHES20
dataset, though the LSTMNet model has reached the guessing
entropy 1 using fewer than five attack traces in one training
run, it fails to reach the same using less than 5K traces in the
remaining two runs.

In summary, PolyCNN and EffCNN exhibit poor perfor-
mance on longer traces. While LSTMNet shows more re-
silience to increasing trace length, achieving comparable per-
formance to HierNet may require significantly more training
data. These results clearly demonstrate HierNet’s advantage
over the three benchmark models in handling longer traces.
The following section further compares HierNet with the
benchmark models against the clock jitter countermeasure.

E. Comparison with Benchmark Models in the Presence of
Clock Jitter Effect

An advantage in attacking countermeasures involving global
trace desynchronizations, such as in many random delay
countermeasures, lies in the ease with which these effects
can be simulated during the training phase. Consequently, data
augmentation can be readily applied, increasing the effective
training data size and enhancing the robustness of the DL
models to such misalignments. In contrast, the clock jit-
ter countermeasure introduces small, local desynchronization
throughout the full traces, leading to significant variation
in distances between peaks within and across traces. While
various data augmentation techniques are available for simu-
lating the clock jitter effect [10], these approaches result in
significant information loss due to the removal of informative
features during the processing. Consequently, relying solely
on data augmentation during training of the DL models to
perform effectively against the clock jitter countermeasure may
be infeasible.

In this section, we assess HierNet’s performance against
clock jitter by conducting attacks after introducing the clock
jitter effect into the traces. It is crucial to note that prior
studies, such as [20], have demonstrated successful attacks
against the clock jitter effect under the assumption of a
stronger adversary who has access to both the clean version
and the noisy version of the traces. However, as in [10], [16],
we consider a weaker adversary who lacks the access to the
clean version of the noisy traces.

Generation of Clock Jitter Effect: We employed the
methodology outlined in [10], [16], [20] to introduce the clock
jitter effect into the traces. Specifically, we generated a noisy
trace for each trace within the dataset using the following pro-
cedure. For every feature in the original trace, we performed
one of the following three actions with equal probabilities:
a) excluding the feature from the noisy trace, b) including
the feature in the noisy trace, and c) including the feature
along with an additional feature, where the additional feature
is the average of the current and following features in the
source trace. Notably, this method aligns with the application
of the clock jitter effect using the algorithm proposed by Wu
et al. [20], with the parameter clock_jitters_level set
to 1. It is pertinent to mention that Hajra et al. [16] also
employed the same algorithm for introducing the clock jitter
effect. However, prior to applying the clock jitter effect, they
doubled the trace length by duplicating each feature in the
source trace twice to avoid the loss of any informative features.
In contrast, we do not perform such preprocessing. Therefore,
our attack setup is more challenging compared to that of [16].

TABLE VII
SELECTED ATTACK WINDOWS FOR THE EXPERIMENTS WITH ADDED

CLOCK JITTER EFFECT.

Dataset
ASCADf ASCADr CHES20

Attack Window [40K, 50K] [78K, 88K] [46K, 56K]

Increasing the Number of Traces in the Training Data: In
Section VI-D, it was observed that the performance of the DL
models improves with the increase of the number of training
traces, although HierNet achieves its optimal performance with
a significantly smaller number of training traces. To investigate
whether the DL models can also be robust to clock jitter
by using more training traces, we conduct experiments with
an increased number of training traces. More precisely, the
number of training traces for a dataset was increased to x-
fold as follows: for each trace in the clean dataset, x noisy
traces were added to the noisy dataset. Each of the x noisy
traces was independently created by introducing clock jitter
effects to the corresponding clean trace. Since the process
adds x noisy traces in the noisy dataset for each trace in
the clean dataset, it increases the size of the noisy dataset
x-fold. Note that increasing the number of training traces in
this manner does not increase the information content of the
dataset, as multiple traces are generated from the same clean

10

TABLE VIII
THE TGE1 VALUES (LESSER IS BETTER) FOR DIFFERENT DL MODELS ON

THE THREE DATASETS WITH ADDED CLOCK JITTER EFFECT. WE HAVE
PERFORMED THE ATTACKS ON A SELECTED ATTACK WINDOW OF SIZE
10K FOR THESE EXPERIMENTS. AS BEFORE, EACH MODEL HAS BEEN

INDEPENDENTLY TRAINED THREE TIMES. WE HAVE SHOWN THE MEDIAN
OF THE THREE RESULTS IN THE TABLE.

Dataset Training Model
Data Size PolyCNN EffCNN LSTM HierNet
100K > 5K > 5K > 5K 55

ASCDf 200K 544 384 > 5K 23

400K 442 60 197 22

800K 262 34 160 17

200K > 5K > 5K > 5K 20

ASCDr 400K > 5K 88 > 5K 16

800K 25 40 23 13

200K > 5K > 5K > 5K > 5K

CHS20 400K > 5K > 5K > 5K 10

800K > 5K > 5K > 5K 12

traces. However, creating multiple traces by introducing clock
jitter effects independently to the same clean trace should help
the DL models become robust to the variations introduced by
the clock jitter effect.

Selection of Attack Window: Due to constraints in our
computational resources, we could not conduct attacks on
the full-length traces. Instead, the attacks were carried out
on an attack window of size 10K. It should be noted that,
earlier, Hajra et al. [16] also conducted attacks on selected
attack windows with a length of 10K. For each dataset,
they chose the attack windows so that the windows contain
the maximum number of high SNR features. We adopt the
same attack windows for the experiments in this section. The
details of these attack windows are outlined in Table VII. It
is important to note that the selection of the attack windows
assumes the feasibility of SNR-based window selection, which
may not hold in many practical attack scenarios. However, we
emphasize that window selection was performed to minimize
compute usage, and we hope that the conclusions drawn from
these experiments will also apply to full-length traces, albeit
with a different scaling of the number of training traces.

Training Details: All benchmark models have been
trained as outlined in Appendix C. The HierNet models were
trained according to the procedure detailed in Section VI-C. As
in Section VI-D, data augmentation was applied to all models
during training. Specifically, each training trace was shifted
by a random displacement within the range [0, 200) on-the-fly
during the training.

Results: The attack results of the DL models under dif-
ferent numbers of training traces are presented in Table VIII.
Similar to Section VI-D, the table uses TGE1 – the minimum
number of attack traces required to reach the guessing entropy
1 – as the metric for assessing the effectiveness of the models.
In these experiments also, each DL model was independently
trained three times, and the table displays the median value of
the three results.

In the case of the ASCADr dataset, the results of the DL
models are presented for three distinct sizes of the training
data: 200K, 400K, and 800K. As evident from the table, with
200K training traces, HierNet achieves guessing entropy 1

with approximately 20 attack traces, whereas all other models
fail to reach guessing entropy 1 even with as many as 5K
attack traces. As the number of training traces increases, the
other DL models can reach the guessing entropy 1. However,
they require four times more training traces to achieve perfor-
mance comparable to HierNet.

For the ASCADf dataset, the presented table displays attack
results across four distinct training data sizes: 100K, 200K,
400K, and 800K. With 100K training traces, only HierNet
can reach the guessing entropy 1 with fewer than 5K attack
traces. As the number of training traces increases to 800K,
the performance of EffCNN approaches that of HierNet.
Conversely, the PolyCNN and LSTMNet models fail to reach
performance comparable to HierNet, even with eight times
more training traces.

The CHES20 dataset poses a challenging scenario for the
CNN and LSTM-based DL models, though HierNet perform
well. Specifically, HierNet achieves its optimal performance
(reaching the guessing entropy 1 with approximately 10 attack
traces) with only 400K training traces. However, the CNN
and LSTM-based models fail to reach the same even using
5K attack traces. Furthermore, even when the models are
trained with more training traces, their performance does not
improve. In fact, in our experiments, we observe that as the
number of training traces increases, these models become
challenging to train, as indicated in Figure 3. We speculate that
these models struggle to learn meaningful information from
the traces during the training. Therefore, when trained with a
smaller number of training traces, the models tend to overfit
the noise, leading to a relatively faster decrease in training loss.
However, more training traces mitigate overfitting, leading to
a reduced convergence rate in the training loss during training.

In conclusion, the results suggest that HierNet demonstrates
robust performance against clock jitter countermeasures across
all three datasets. In contrast, the benchmark models might fail
to perform comparably to HierNet even when they are trained
using eight times more training traces. The findings also
reveal scenarios where HierNet excels while all the benchmark
models fail to be trained effectively even with more training
data, underscoring the need for further research to improve
their performance in such contexts.

F. Training Time

In our experimental environment (Google Colab TPU), the
training time of LSTMNet can be more than five times slower
for traces with lengths around 10K features, while it is about
two times slower for longer traces (around 100K features).
The training time of the PolyCNN and EstraNet models varies
between 3 to 12 times compared to HierNet on shorter traces
(around 10K features), but their training becomes much slower
on longer traces (around 100K features). In some cases, the
training loss of these models did not decrease significantly
below the level of random guessing, even after training for
more than three times the total duration of HierNet. While
an improved learning rate schedule might accelerate their
training on longer traces, we still expect them to be slower
than HierNet.

11

200K 400K 800K

0.4 0.8 1.2
·106

0.2

0.4

0.6

0.8

Training Steps

Tr
ai

ni
ng

lo
ss

(a) Training loss of the LSTMNet model

0.4 0.8 1.2 1.6 2
·106

0.6

0.64

0.68

Training Steps

Tr
ai

ni
ng

lo
ss

(b) Training loss of the PolyCNN model

1 2 3 4
·105

0.6

0.64

0.68

Training Steps

Tr
ai

ni
ng

lo
ss

(c) Training loss of the EffCNN model

Fig. 3. Improvement in the training loss of the LSTMNet, PolyCNN, and EffCNN models during their training on the CHES20 dataset with the added
clock jitter effect. The green, blue, and red lines, respectively, show the progress of the training loss for the models’ training with 200K, 400K, and 800K
training traces. It can be seen in the figures that the training loss of all three models does not reduce much while trained with 800K training traces, whereas
it decreases faster while the models are trained with smaller 200K and 400K training traces. The behavior indicates that the models are overfitting to the
noise while trained with fewer training traces. Though the overfitting is prevented by increasing the number of training traces to 800K, the lack of enough
improvement in the models’s training loss indicates that the models are unable to extract useful information from the traces.

While comparing the training time of HierNet with Es-
traNet, it’s worth noting that due to the overlapping segmen-
tation in HierNet, its per-step training time is slightly higher
than EstraNet’s. Specifically, in our experiments, HierNet’s
per-step training time was between 1 and 1.5 times that of
EstraNet across the three datasets. However, HierNet requires
fewer training steps to converge, making the total training time
comparable to EstraNet.

VII. DISCUSSIONS AND FUTURE WORKS

a) Limitations of our Analysis: In the experiments in-
volving random delay (Section VI-D), some DL models,
including HierNet, exhibit continued improvement with their
training’s progress on the ASCADr and CHES20 datasets.
However, the rate of improvement gradually diminishes over
time. Due to computational constraints, we terminated the
training when the rate of improvement became very slow.
Therefore, there is a possibility of achieving slightly improved
results for some DL models, including HierNet, through better
training. However, we expect that the results would not deviate
significantly from those reported in Table V. We also want to
point out that the CNN and LSTM-based models have been
trained for a duration more than two or three times longer than
the TN-based models.

b) HierNet against Random Delay Interrupt Counter-
measure: The Random Delay Interrupt (RDI) countermeasure
inserts random delays into multiple intermediate positions of
traces, causing drastic variation in the distances between the
PoIs across the traces. Since HierNet segments the traces into
multiple segments and it is shift-invariant in each segment,
it assumes that the intermediate distances between the PoIs
within each segment remain approximately constant. Such
an assumption may not be true in the presence of RDI.
Therefore, HierNet may not be directly applicable against
RDI countermeasures. Notably, the study by Wu et al. [20]
on synthetic RDI datasets demonstrated that DL models find
RDI countermeasures challenging to overcome. Alternatively,
various previously proposed pre-processing techniques [20]–
[22] can be used to mitigate the RDI effects from the traces
before training the DL models. It should also be noted that
these pre-processing techniques may not completely eliminate
the desynchronizations introduced by RDI. The pre-processed
traces may still exhibit misalignment, albeit to a lesser extent.

Therefore, HierNet, which has demonstrated its effectiveness
against traces with bounded desynchronizations, could be a
suitable choice for attacking the pre-processed traces. Investi-
gating this aspect could be a future research direction.

c) HierNet against Shuffling Countermeasure: In the
shuffling countermeasure [11], the order of execution of mul-
tiple parallel operations of a cryptographic algorithm (e.g.,
sub-byte operations of different bytes in an AES encryption)
is randomly shuffled, resulting in different permutations in
the positions of leakages of the respective operations across
traces. This shuffling might cause the relative distances be-
tween the PoIs to vary significantly, posing a challenge to
the usefulness of DL models like EstraNet on such traces.
However, HierNet, which segments entire traces into multiple
segments and processes each segment independently, can still
be employed against shuffling countermeasures. To illustrate
this approach, consider targeting the sub-byte operations of
the first round in an encryption scheme. If the approximate
length of each sub-byte operation is known, the traces can be
segmented accordingly, and HierNet can be applied based on
that segmentation. However, utilizing HierNet in this manner
necessitates knowledge of the approximate length of the opera-
tions. Such knowledge might be deduced when the source code
of the implementation is available, following the procedures
proposed in [23].

VIII. CONCLUSIONS

DL-based SCA has shown significant success in overcoming
various countermeasures. However, the proper selection of the
attack window is critical for its effectiveness. Consequently,
several studies have explored methods to enhance the perfor-
mance of DL models on longer attack windows or long raw
traces, thereby reducing the dependency on the attack window
selection. Despite these efforts, the performance of most of
the existing DL models deteriorates in the presence of jitter-
based countermeasures or as trace length increases. Therefore,
developing DL models that perform well on long raw traces
while remaining robust to the jitter-based countermeasures
remains an important yet challenging task.

EstraNet, a TN-based model, was recently introduced to
perform SCA on long traces. The model has demonstrated
state-of-the-art performance against various combinations of
masking, random delay, and clock jitter countermeasures. In

12

this work, we closely analyze EstraNet and reveal that its
performance gradually deteriorates as trace lengths increase.
To address this limitation, we propose HierNet, a two-level
hierarchical DL model for SCA. At the bottom level, HierNet
employs EstraNet models to process smaller segments of the
traces. At the top level, another TN model is used to integrate
information from the outputs of the EstraNet models. This top-
level TN model incorporates a novel self-attention layer with
absolute positional encoding.

Extensive evaluations of HierNet have been conducted
against various combinations of masking, random delay, and
clock jitter countermeasures using several SCA datasets. The
performance of HierNet has been compared with three existing
benchmark DL models. The results indicate that HierNet
outperforms the benchmark models on longer traces or against
clock jitter countermeasure, showcasing its ability to reach
the guessing entropy 1 using fewer than or close to 10
attack traces while the benchmark models are unable to reach
the same using as many as 5K attack traces. Additionally,
HierNet demonstrates significantly better performance on low
training data scenarios. In conclusion, the success of HierNet
establishes it as a promising method for SCA.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in CRYPTO ’96, California, USA,, ser.
LNCS, N. Koblitz, Ed., vol. 1109, 1996, pp. 104–113.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO, USA, 1999, ser. LNCS, vol. 1666. Springer, 1999, pp. 388–
397.

[3] J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA): Mea-
sures and counter-measures for smart cards,” in E-smart 2001, France,
Proceedings, ser. LNCS, I. Attali and T. P. Jensen, Eds., vol. 2140.
Springer, 2001, pp. 200–210.

[4] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in CHES, USA,
2002, ser. LNCS, B. S. K. Jr., Ç. K. Koç, and C. Paar, Eds., vol. 2523.
Springer, 2002, pp. 13–28.

[5] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in CHES, UK, 2005, ser. LNCS, J. R. Rao
and B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 30–46.

[6] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for
side-channel evaluations,” TCHES, vol. 2019, no. 1, pp. 209–237, 2019.

[7] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in SPACE, India,
2016, ser. LNCS, vol. 10076. Springer, 2016, pp. 3–26.

[8] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in CRYPTO, USA,
1999, ser. LNCS, vol. 1666. Springer, 1999, pp. 398–412.

[9] J. Coron and I. Kizhvatov, “An efficient method for random delay
generation in embedded software,” in CHES, Switzerland, 2009, ser.
LNCS, vol. 5747. Springer, 2009, pp. 156–170.

[10] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures - profiling
attacks without pre-processing,” in CHES, Taiwan, 2017, ser. LNCS,
vol. 10529. Springer, 2017, pp. 45–68.

[11] C. Herbst, E. Oswald, and S. Mangard, “An AES smart card implemen-
tation resistant to power analysis attacks,” in ACNS, Singapore, 2006,
ser. LNCS, J. Zhou, M. Yung, and F. Bao, Eds., vol. 3989, 2006, pp.
239–252.

[12] L. Masure, N. Belleville, E. Cagli, M. Cornelie, D. Couroussé, C. Du-
mas, and L. Maingault, “Deep learning side-channel analysis on large-
scale traces - A case study on a polymorphic AES,” in ESORICS, UK,
2020, ser. LNCS, vol. 12308. Springer, 2020, pp. 440–460.

[13] X. Lu, C. Zhang, P. Cao, D. Gu, and H. Lu, “Pay attention to raw traces:
A deep learning architecture for end-to-end profiling attacks,” TCHES,
vol. 2021, no. 3, pp. 235–274, 2021.

[14] G. Perin, L. Wu, and S. Picek, “Exploring feature selection scenarios for
deep learning-based side-channel analysis,” Cryptology ePrint Archive,
2021.

[15] E. Bursztein, L. Invernizzi, K. Král, D. Moghimi, J. M. Picod, and
M. Zhang, “Generic attacks against cryptographic hardware through
long-range deep learning,” CoRR, vol. abs/2306.07249, 2023.

[16] S. Hajra, S. Chowdhury, and D. Mukhopadhyay, “EstraNet: An efficient
shift-invariant transformer network for side-channel analysis,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2024, no. 1, p. 336–374, 2023.

[17] E. Bursztein, L. Invernizzi, K. Král, D. Moghimi, J. Picod, and
M. Zhang, “Generalized power attacks against crypto hardware using
long-range deep learning,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2024, no. 3, pp. 472–499, 2024.

[18] S. Hajra, S. Saha, M. Alam, and D. Mukhopadhyay, “TransNet:
Shift invariant transformer network for side channel analysis,” in
AFRICACRYPT 2022, Fes, Morocco, 2022, Proceedings, ser. LNCS,
L. Batina and J. Daemen, Eds. Springer Nature Switzerland, 2022,
pp. 371–396.

[19] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” TCHES, vol. 2020,
no. 1, pp. 1–36, 2020.

[20] L. Wu and S. Picek, “Remove some noise: On pre-processing of
side-channel measurements with autoencoders,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 4, pp. 389–415, 2020.

[21] F. Durvaux, M. Renauld, F. Standaert, L. van Oldeneel tot Oldenzeel,
and N. Veyrat-Charvillon, “Efficient removal of random delays from
embedded software implementations using hidden markov models,” in
CARDIS, Austria, ser. Lecture Notes in Computer Science, S. Mangard,
Ed., vol. 7771. Springer, 2012, pp. 123–140.

[22] G. Chiari, D. Galli, F. Lattari, M. Matteucci, and D. Zoni, “A deep-
learning technique to locate cryptographic operations in side-channel
traces,” 2024.

[23] L. Masure and R. Strullu, “Side channel analysis against the ANSSI’s
protected AES implementation on ARM,” IACR Cryptol. ePrint Arch.,
p. 592, 2021.

[24] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD database,”
J. Cryptogr. Eng., vol. 10, no. 2, pp. 163–188, 2020.

[25] D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo,
G. Leander, G. Leurent, I. Levi, C. Momin, O. Pereira, T. Peters,
F. Standaert, B. Udvarhelyi, and F. Wiemer, “Spook: Sponge-based
leakage-resistant authenticated encryption with a masked tweakable
block cipher,” IACR Trans. Symmetric Cryptol., vol. 2020, no. S1, pp.
295–349, 2020.

APPENDIX A
RELATION BETWEEN |H| AND n

Let us formally define H (introduced in Section IV-A) to
be the set {j : kGPA(i − j) > δ} for some δ ∈ (0, 1) and
some i ∈ {0, 1, . . . , n− 1}. Then

|H| = |{j : kGPA(i− j) > δ}|
=

∣∣∣{j : β̂2sp(i/n− j/n− cp)||Wpp||2 <
√
2log (1/δ)

}∣∣∣
=

∣∣∣∣∣
{
j : (i/n− j/n− cp) <

√
2log (1/δ)

β̂2sp||Wpp||2

}∣∣∣∣∣
= |{j : (i/n− j/n− cp) < C}|

where C =

√
2log (1/δ)

β̂2sp||Wpp||2
. The parameters cp and sp are

independent of n or β̂2 and ||Wpp||2 is constant. Therefore,
when β̂2 remains the same, |H| increases almost linearly with
n.

APPENDIX B
DETAILS OF DATASET

This section provides a detailed description of the datasets
used.

13

ASCAD Fixed Key (ASCADf): The ASCAD fixed key
dataset, referred to as the ASCADf dataset, is a collection
of EM traces collected from a masked implementation of
AES executed on the 8-bit microcontroller ATMega8515. This
dataset comprises a total of 60K traces. Out of these, 50K
traces were used for training, while two sets of 5K traces each
were used for validation and testing. Each trace in the dataset
is 100K features long. In line with earlier literature [13], [16],
[19], [24], we aim to attack the third key byte of the first-round
key and use the identity leakage model.

ASCAD Random Key (ASCADr): Similar to the ASCADf
dataset, the ASCAD random key dataset, referred to as the AS-
CADr dataset, also corresponds to a masked implementation of
AES executed on an 8-bit ATMega8515 microcontroller. How-
ever, for the ASCADf dataset, the secret key remains constant
across all profiling traces, whereas for the ASCADr dataset,
it varies randomly. The dataset consists of 200K profiling
traces and 100K attack traces. Unless stated otherwise, all
profiling traces have been utilized for training the DL models,
while two disjoint random samples of 10K attack traces were
used for validation and testing, respectively. Each trace in the
dataset spans 250K features. To reduce memory usage, the
traces were compressed to a length of 125K by replacing
each consecutive pair of features of the original traces with
their average. Therefore, the attacks were conducted on the
compressed traces of length 125K. Similar to the ASCADf
dataset, we attack the third key byte of the first round key
using the identity leakage model.

CHES 2020 CTF SW3 (CHES20): The CHES 2020 CTF
presents a SCA challenge targeting the masked implementation
of the Clyde-128 Tweakable Block Cipher (TBC) used in the
Spook AEAD encryption scheme [25]. The challenge encom-
passes various datasets derived from distinct implementations
of the cipher. In this study, we utilize the dataset correspond-
ing to a second-order masked implementation executed on
an ARM Cortex-M0 microcontroller. The dataset comprises
200K profiling traces and 500K attack traces. Unless stated
otherwise, all profiling traces are employed for training the
DL models, while for validation and testing, two separate and
randomly selected sets of attack traces, each containing 10K
traces, are utilized. It should be noted that Clyde-128 employs
a (4 × 32)-bit state, with 4 representing the size of the non-
linear S-box and 32 indicating the size of the linear L-box.
Consistent with the approach in [16], we attack the four bits
of the 17th column (from the right) of the state after the first
round sbox operation.

APPENDIX C
DETAILS OF THE BENCHMARK MODELS

This section provides short descriptions of the benchmark
DL models.

LSTMNet: LSTMNet [13] is a family of DL models
that incorporate LSTM layers to aggregate information from
multiple Points of Interest (PoIs). These models exhibit linear
scalability with respect to input length, making those well-
suited for processing very long traces. In their work [13], Lu et
al. demonstrated LSTMNet’s proficiency in attacking available

20 40 60 80 100 120 1404

5

6

7

Training Steps

Tr
ai

ni
ng

lo
ss

model 1 model 2 model 3

(a) The ASCADr Dataset.

1 100 200 300 400 5000.5

0.6

0.7

0.8

Training Steps

Tr
ai

ni
ng

lo
ss

model 1 model 2 model 3

(b) The CHES20 Dataset.

Fig. 4. Training loss of three independent training of EffCNN model on the
ASCADr and CHES20 datasets.

full-length raw traces. For the ASCADf and ASCADr datasets,
we trained the respective models available in their online
repository4 to conduct the attack. Since no model is available
for the CHES20 dataset, following [16], we used the model
designed for the ASCADr dataset to train on this dataset. The
models were trained for a maximum of 4K epochs, employing
the Adam optimizer with a learning rate of 1e-4.

PolyCNN: The PolyCNN model [12], introduced by
Masure et al. [12], is designed for attacking implementations
protected by code polymorphism. The model is comprised of
multiple convolutional blocks succeeded by a global average-
pooling layer. [12] has demonstrated that the model can
perform very well on very long traces. Consequently, we
employ PolyCNN as a benchmark model in our study. The
model underwent training for a maximum of 5K epochs,
utilizing the Adam optimizer with a learning rate of 1e-5.

EffCNN: In their work [19], Zaid et al. proposed a
methodology for constructing CNN-based models for SCA.
They successfully demonstrated the applicability of their
methodology in creating compact CNN models suitable for
both synchronized and desynchronized trace scenarios. How-
ever, it is worth noting that when applying their methodology
to very long traces with large trace desynchronizations, the re-
sultant models become large and exhibit slow training speeds.
Despite these considerations, we utilize models constructed
through their methodology as benchmark models in our study.
It is important to emphasize that distinct models have been
constructed based on their methodology for different datasets.
The training process involved a maximum of 2K epochs,
utilizing the Adam optimizer with a learning rate of 2.5e-5.

APPENDIX D
PLOTS OF TRAINING LOSS OF EFFCNN MODEL ON THE

ASCADR AND CHES20 DATASETS

In Figure 4, we illustrate the EffCNN model’s training
loss convergence in the experiments with the ASCADr and
CHES20 datasets. Figure 4a displays the training loss for
the ASCADr dataset, indicating negligible improvement even

4https://github.com/lxj-sjtu/TCHES2021 Pay attention to the raw traces

14

after 150 epochs. Notably, training for 150 epochs on this
dataset took approximately 50 hours, whereas HierNet models
achieved full convergence within 24 to 40 hours. Similarly,
Figure 4b shows that even after 500 epochs (equivalent to
80 hours of training), the training loss did not significantly
decrease compared to random guessing.

15

