64 results sorted by ID
Possible spell-corrected query: incentive
FLock: Robust and Privacy-Preserving Federated Learning based on Practical Blockchain State Channels
Ruonan Chen, Ye Dong, Yizhong Liu, Tingyu Fan, Dawei Li, Zhenyu Guan, Jianwei Liu, Jianying Zhou
Applications
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
Optimizing Liveness for Blockchain-Based Sealed-Bid Auctions in Rational Settings
Maozhou Huang, Xiangyu Su, Mario Larangeira, Keisuke Tanaka
Cryptographic protocols
Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....
FLIP-and-prove R1CS
Anca Nitulescu, Nikitas Paslis, Carla Ràfols
Cryptographic protocols
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
FaultyGarble: Fault Attack on Secure Multiparty Neural Network Inference
Mohammad Hashemi, Dev Mehta, Kyle Mitard, Shahin Tajik, Fatemeh Ganji
Attacks and cryptanalysis
The success of deep learning across a variety of
applications, including inference on edge devices, has led to
increased concerns about the privacy of users’ data and deep
learning models. Secure multiparty computation allows parties
to remedy this concern, resulting in a growth in the number
of such proposals and improvements in their efficiency. The
majority of secure inference protocols relying on multiparty
computation assume that the client does not deviate from the
protocol and...
Securing Lightning Channels against Rational Miners
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Subhra Mazumdar
Cryptographic protocols
Payment channel networks (e.g., the Lightning Network in Bitcoin) constitute one of the most popular scalability solutions for blockchains. Their safety relies on parties being online to detect fraud attempts on-chain and being able to timely react by publishing certain transactions on-chain. However, a cheating party may bribe miners in order to censor those transactions, resulting in loss of funds for the cheated party: these attacks are known in the literature as timelock bribing attacks....
A Decentralized Federated Learning using Reputation
Olive Chakraborty, Aymen Boudguiga
Applications
Nowadays Federated learning (FL) is established as one of the best techniques for collaborative machine learning. It allows a set of clients to train a common model without disclosing their sensitive and private
dataset to a coordination server. The latter is in charge of the model aggregation. However, FL faces some problems, regarding the security of updates, integrity of computation and the availability of a server.
In this paper, we combine some new ideas like clients’ reputation with...
CheckOut: User-Controlled Anonymization for Customer Loyalty Programs
Matthew Gregoire, Rachel Thomas, Saba Eskandarian
Applications
To resist the regimes of ubiquitous surveillance imposed upon us in every facet of modern life, we need technological tools that subvert surveillance systems. Unfortunately, while cryptographic tools frequently demonstrate how we can construct systems that safeguard user privacy, there is limited motivation for corporate entities engaged in surveillance to adopt these tools, as they often clash with profit incentives. This paper demonstrates how, in one particular aspect of everyday life --...
Maypoles: Lightning Striking Twice
Clara Shikhelman
Applications
The Lightning Network (LN) is a second layer solution built on top of Bitcoin, aimed to solve Bitcoin's long transaction waiting times and high transaction fees. Empirical and theoretical studies show that the LN is tending towards the hub and spoke network topology. In this topology most of the nodes, the spokes, open a single channel to one of the few well-connected nodes, the hubs. This topology is known to be prone to failures, attacks, and privacy issues. In this work we introduce the...
Max Attestation Matters: Making Honest Parties Lose Their Incentives in Ethereum PoS
Mingfei Zhang, Rujia Li, Sisi Duan
Attacks and cryptanalysis
We present staircase attack, the first attack on the incentive mechanism of the Proof-of-Stake (PoS) protocol used in Ethereum 2.0 beacon chain. Our attack targets the penalty of the incentive mechanism that penalizes inactive participation. Our attack can make honest validators suffer from penalties, even if they strictly follow the specification of the protocol. We show both theoretically and experimentally that if the adversary controls 29.6% stake in a moderate-size system, the attack...
To Broadcast or Not to Broadcast: Decision-Making Strategies for Mining Empty Blocks
Chon Kit Lao, Rui Jiang, Luyao Zhang, Fan Zhang, Ye Wang
Applications
Resource efficiency in blockchain systems remains a pivotal concern in their design. While Ethereum often experiences network congestion, leading to rewarding opportunities for miners through transaction inclusions, a significant amount of block space remains underutilized. Remarkably, instances of entirely unutilized blocks contribute to resource wastage within the Ethereum ecosystem. This study delves into the incentives driving miners to produce empty blocks. We ascertain that the...
Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks
Zeta Avarikioti, Stefan Schmid, Samarth Tiwari
Applications
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for increasing the blockchain throughput, however, their benefit depends on the overall users’ liquidity. Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs. However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for small...
Safeguarding Physical Sneaker Sale Through a Decentralized Medium
Marwan Zeggari, Aydin Abadi, Renaud Lambiotte, Mohamad Kassab
Applications
Sneakers were designated as the most counterfeited fashion item online, with three times more risk in a trade than any other fashion purchase. As the market expands, the current sneaker scene displays several vulnerabilities and trust flaws, mostly related to the legitimacy of assets or actors. In this paper, we investigate various blockchain-based mechanisms to address these large-scale trust issues. We argue that (i) pre-certified and tracked assets through the use of non-fungible tokens...
TandaPay Whistleblowing Communities: Shifting Workplace Culture Towards Zero-Tolerance Sexual Harassment Policies
Joshua Davis, Dr. Rashid Minhas, Michelle Casario, William Bentley, Kevin Cosby
Cryptographic protocols
Abstract—Corporate sexual harassment policies often prioritize liability mitigation over the creation of a corporate culture free of harassment. Victims of sexual harassment are often required to report claims individually to HR. This can create an environment of self-censorship when employees feel that they cannot trust HR to act as an unbiased mediator. This problem is compounded when corporations have a culture that is tolerant of certain types of harassment. Forcing employees to report...
Deep Bribe: Predicting the Rise of Bribery in Blockchain Mining with Deep RL
Roi Bar-Zur, Danielle Dori, Sharon Vardi, Ittay Eyal, Aviv Tamar
Applications
Blockchain security relies on incentives to ensure participants, called miners, cooperate and behave as the protocol dictates. Such protocols have a security threshold – a miner whose relative computational power is larger than the threshold can deviate to improve her revenue. Moreover, blockchain participants can behave in a petty compliant manner: usually follow the protocol, but deviate to increase revenue when deviation cannot be distinguished externally from the prescribed behavior. The...
On How Zero-Knowledge Proof Blockchain Mixers Improve, and Worsen User Privacy
Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi Zhou, Lifeng Gao, Pascal Berrang, Benjamin Livshits, Arthur Gervais
Applications
Zero-knowledge proof (ZKP) mixers are one of the most widely used blockchain privacy solutions, operating on top of smart contract-enabled blockchains. We find that ZKP mixers are tightly intertwined with the growing number of Decentralized Finance (DeFi) attacks and Blockchain Extractable Value (BEV) extractions. Through coin flow tracing, we discover that 205 blockchain attackers and 2,595 BEV extractors leverage mixers as their source of funds, while depositing a total attack revenue of...
A note on machine learning applied in ransomware detection
Manuela Horduna, Simona-Maria Lăzărescu, Emil Simion
Foundations
Ransomware is a malware that employs encryption to hold a victim's data, causing irreparable loss and monetary incentives to individuals or business organizations.
The occurrence of ransomware attacks has been increasing significantly and as the attackers are investing more creativity and inventiveness into their threats, the struggle of fighting against ill-themed activities has become more difficult and even time and energy-draining.
Therefore, recent researches try to shed some light on...
A Control Theoretic Approach to Infrastructure-Centric Blockchain Tokenomics
Oguzhan Akcin, Robert P. Streit, Benjamin Oommen, Sriram Vishwanath, Sandeep Chinchali
Applications
There are a multitude of Blockchain-based physical infrastructure systems, ranging from decentralized 5G wireless to electric vehicle charging networks. These systems operate on a crypto-currency enabled token economy, where node suppliers are rewarded with tokens for enabling, validating, managing and/or securing the system. However, today's token economies are largely designed without infrastructure systems in mind, and often operate with a fixed token supply (e.g., Bitcoin). Such fixed...
An Efficient and Decentralized Blockchain-based Commercial Alternative (Full Version)
Marwan Zeggari, Renaud Lambiotte, Aydin Abadi, Louise Axon, Mohamad Kassab
Applications
While online interactions and exchanges have grown exponentially over the past decade, most commercial infrastructures still operate through centralized protocols, and their success essentially depends on trust between different economic actors. Digital advances such as blockchain technology has led to a massive wave of Decentralized Ledger Technology (DLT) initiatives, protocols and solutions. This advance makes it possible to implement trustless systems in the real world, which, combined...
Diamonds are Forever, Loss-Versus-Rebalancing is Not
Conor McMenamin, Vanesa Daza, Bruno Mazorra
Applications
The always-available liquidity of automated market makers (AMMs) has been one of the most important catalysts in early cryptocurrency adoption. However, it has become increasingly evident that AMMs in their current form are not viable investment options for passive liquidity providers. This is because of the cost incurred by AMMs providing stale prices to arbitrageurs against external market prices, formalized as loss-versus-rebalancing (LVR) [Milionis et al., 2022].
In this paper, we...
Rapidash: Foundations of Side-Contract-Resilient Fair Exchange
Hao Chung, Elisaweta Masserova, Elaine Shi, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols
Fair exchange is a fundamental primitive enabled by blockchains, and is widely adopted in applications such as atomic swaps, payment channels, and DeFi. Most existing designs of blockchain-based fair exchange protocols consider only the participating users as strategic players, and assume the miners are honest and passive. However, recent works revealed that the fairness of commonly deployed fair exchange protocols can be broken entirely in the presence of user-miner collusion. In...
Privacy when Everyone is Watching: An SOK on Anonymity on the Blockchain
Roy Rinberg, Nilaksh Agarwal
Applications
Blockchain technologies rely on a public ledger, where typically all transactions are pseudoanonymous
and fully traceable. This poses a major flaw in its large scale adoption of cryptocurrencies, the primary
application of blockchain technologies, as most individuals do not want to disclose their finances to the pub-
lic. Motivated by the explosive growth in private-Blockchain research, this Statement-of-Knowledge (SOK)
explores the ways to obtain privacy in this public ledger ecosystem....
MPC for Tech Giants (GMPC): Enabling Gulliver and the Lilliputians to Cooperate Amicably
Bar Alon, Moni Naor, Eran Omri, Uri Stemmer
Cryptographic protocols
In the current digital world, large organizations (sometimes referred to as tech giants) provide service to extremely large numbers of users. The service provider is often interested in computing various data analyses over the private data of its users, which in turn have their incentives to cooperate, but do not necessarily trust the service provider.
In this work, we introduce the \emph{Gulliver multi-party computation model} (GMPC) to realistically capture the above scenario. The GMPC...
Suborn Channels: Incentives Against Timelock Bribes
Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos
Cryptographic protocols
As the Bitcoin mining landscape becomes more competitive, analyzing potential attacks under the assumption of rational miners becomes increasingly relevant. In the rational setting, blockchain users can bribe miners to reap an unfair benefit. Established protocols such as Duplex Micropayment Channels and Lightning Channels are susceptible to bribery, which upends their financial guarantees. Indeed, we prove that in a two-party contract in which the honest party can spend an output right...
He-HTLC: Revisiting Incentives in HTLC
Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, Kartik Nayak
Cryptographic protocols
Hashed Time-Locked Contracts (HTLCs) are a widely used primitive in blockchain systems such as payment channels, atomic swaps, etc. Unfortunately, HTLC is incentive-incompatible and is vulnerable to bribery attacks. The state-of-the-art solution is MAD-HTLC (Oakland'21), which proposes an elegant idea that leverages miners' profit-driven nature to defeat bribery attacks.
In this paper, we show that MAD-HTLC is still vulnerable as it only considers a somewhat narrow set of passive...
Colordag: An Incentive-Compatible Blockchain
Ittai Abraham, Danny Dolev, Ittay Eyal, Joseph Y. Halpern
Applications
We present $\textit{Colordag}$, a blockchain protocol where following the prescribed strategy is, with high probability, a best response as long as all miners have less than $1/2$ of the mining power. We prove the correctness of Colordag even if there is an extremely powerful adversary who knows future actions of the scheduler: specifically, when agents will generate blocks and when messages will arrive. The state-of-the-art protocol, Fruitchain, is an $\varepsilon$-Nash equilibrium as long...
WeRLman: To Tackle Whale (Transactions), Go Deep (RL)
Roi Bar-Zur, Ameer Abu-Hanna, Ittay Eyal, Aviv Tamar
Applications
The security of proof-of-work blockchain protocols critically relies on incentives. Their operators, called miners, receive rewards for creating blocks containing user-generated transactions. Each block rewards its creator with newly minted tokens and with transaction fees paid by the users. The protocol stability is violated if any of the miners surpasses a threshold ratio of the computational power; she is then motivated to deviate with selfish mining and increase her rewards.
Previous...
FairTraDEX: A Decentralised Exchange Preventing Value Extraction
Conor McMenamin, Vanesa Daza, Matthias Fitzi, Padraic O'Donoghue
Applications
We present FairTraDEX, a decentralized exchange (DEX) protocol based on frequent batch auctions (FBAs), which provides formal game-theoretic guarantees against extractable value. FBAs when run by a trusted third-party provide unique game-theoretic optimal strategies which ensure players are shown prices equal to the liquidity provider's fair price, excluding explicit, pre-determined fees. FairTraDEX replicates the key features of an FBA that provide these game-theoretic guarantees using a...
XCC: Theft-Resilient and Collateral-Optimized Cryptocurrency-Backed Assets
Theodore Bugnet, Alexei Zamyatin
Cryptographic protocols
The need for cross-blockchain interoperability is higher than ever. Today, there exists a plethora of blockchain-based cryptocurrencies, with varying levels of adoption and diverse niche use cases, and yet communication across blockchains is still in its infancy. Despite the vast potential for novel applications in an interoperable ecosystem, cross-chain tools and protocols are few and often limited.
Cross-chain communication requires a trusted third party, as the Fair Exchange problem is...
LedgerHedger: Gas Reservation for Smart-Contract Security
Itay Tsabary, Alex Manuskin, Roi Bar-Zur, Ittay Eyal
Applications
In smart contract blockchain platforms such as Ethereum, users interact with the system by issuing transactions. System operators called miners or validators add those transactions to the blockchain. Users attach to each transaction a fee, which is collected by the miner who placed it in the blockchain. Miners naturally prioritize better-paying transactions. This process creates a volatile fee market due to limited throughput and fluctuating demand. The fee required to place a transaction in...
Generalized Proof of Liabilities
Yan Ji, Konstantinos Chalkias
Cryptographic protocols
Proof of liabilities (PoL) allows a prover to prove his/her liabilities to a group of verifiers. This is a cryptographic primitive once used only for proving financial solvency but is also applicable to domains outside finance, including transparent and private donations, new algorithms for disapproval voting and publicly verifiable official reports such as COVID-19 daily cases. These applications share a common nature in incentives: it's not in the prover's interest to increase his/her...
MUSE: Secure Inference Resilient to Malicious Clients
Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, Raluca Ada Popa
Cryptographic protocols
The increasing adoption of machine learning inference in applications has led to a corresponding increase in concerns surrounding the privacy guarantees offered by existing mechanisms for inference. Such concerns have motivated the construction of efficient secure inference protocols that allow parties to perform inference without revealing their sensitive information. Recently, there has been a proliferation of such proposals, rapidly improving efficiency. However, most of these protocols...
FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker
Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, Vassilis Zikas
Applications
Frontrunning is a major problem in DeFi applications, such as blockchain-based exchanges. Albeit, existing solutions are not practical and/or they make external trust assumptions. In this work we propose a market-maker-based crypto-token exchange, which is both more efficient than existing solutions and offers provable resistance to frontrunning attack. Our approach combines in a clever way a game theoretic analysis of market-makers with new cryptography and blockchain tools to defend...
Efficient State Management in Distributed Ledgers
Dimitris Karakostas, Nikos Karayannidis, Aggelos Kiayias
Applications
Distributed ledgers implement a storage layer, on top of which a shared state is maintained in a decentralized manner. In UTxO-based ledgers, like Bitcoin, the shared state is the set of all unspent outputs (UTxOs), which serve as inputs to future transactions. The continuously increasing size of this shared state will gradually render its maintenance unaffordable. Our work investigates techniques that minimize the shared state of the distributed ledger, i.e., the in-memory UTxO set. To this...
Blitz: Secure Multi-Hop Payments Without Two-Phase Commits
Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei
Cryptographic protocols
Payment-channel networks (PCN) are the most prominent approach to tackle the scalability issues of current permissionless blockchains. A PCN reduces the load on-chain by allowing arbitrarily many off-chain multi-hop payments (MHPs) between any two users connected through a path of payment channels. Unfortunately, current MHP protocols are far from satisfactory. One-round MHPs (e.g., Interledger) are insecure as a malicious intermediary can steal the payment funds. Two-round MHPs (e.g.,...
SoK: Algorithmic Incentive Manipulation Attacks on Permissionless PoW Cryptocurrencies
Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gaži, Sarah Meiklejohn, Edgar Weippl
Applications
A long standing question in the context of cryptocurrencies based on Nakamoto consensus is whether such constructions are
incentive compatible, i.e., the intended properties of the system emerge from the appropriate utility model for participants. Bribing and other related attacks, such as front-running or Goldfinger attacks, aim to directly influence the incentives of actors within (or outside) of the targeted cryptocurrency system. The theoretical possibility of bribing at tacks on...
Achieving State Machine Replication without Honest Players
Conor McMenamin, Vanesa Daza, Matteo Pontecorvi
Foundations
Existing standards for player characterisation in tokenised state machine replication protocols depend on honest players who will always follow the protocol, regardless of possible token increases for deviating. Given the ever-increasing market capitalisation of these tokenised protocols, honesty is becoming more expensive and more unrealistic. As such, this out-dated player characterisation must be removed to provide true guarantees of safety and liveness in a major stride towards universal...
Anonymity and Rewards in Peer Rating Systems
Lydia Garms, Siaw-Lynn Ng, Elizabeth A. Quaglia, Giulia Traverso
Cryptographic protocols
When peers rate each other, they may choose to rate inaccurately in order to boost their own reputation or unfairly lower another’s. This could be successfully mitigated by having a reputation server incentivise accurate ratings with a reward. However, assigning rewards becomes a challenge when ratings are anonymous, since the reputation server cannot tell which peers to reward for rating accurately. To address this, we propose an anonymous peer rating system in which users can be rewarded...
From Zebras to Tigers: Incentivizing participation in Crowd-sensing applications through fair and private Bitcoin rewards
Tassos Dimitriou
Applications
In this work we develop a rewarding framework that can be used as a building block in crowd-sensing applications. Although a core requirement of such systems is user engagement, people may be reluctant to participate as sensitive information about them may be leaked or inferred from submitted data. Thus monetary incentives could help attract a large number of participants, thereby increasing not only the amount but also the quality of sensed data. Our first contribution in this work is to...
Audita: A Blockchain-based Auditing Framework for Off-chain Storage
Danilo Francati, Giuseppe Ateniese, Abdoulaye Faye, Andrea Maria Milazzo, Angelo Massimo Perillo, Luca Schiatti, Giuseppe Giordano
Applications
The cloud changed the way we manage and store data. Today, cloud storage services offer clients an infrastructure that allows them a convenient source to store, replicate, and secure data online. However, with these new capabilities also come limitations, such as lack of transparency, limited decentralization, and challenges with privacy and security. And, as the need for more agile, private and secure data solutions continues to grow exponentially, rethinking the current structure of cloud...
Cerberus Channels: Incentivizing Watchtowers for Bitcoin
Georgia Avarikioti, Orfeas Stefanos Thyfronitis Litos, Roger Wattenhofer
Applications
Bitcoin and similar blockchain systems have a limited transaction throughput because each transaction must be processed by all parties, on-chain. Payment channels relieve the blockchain by allowing parties to execute transactions off-chain while maintaining the on-chain security guarantees, i.e., no party can be cheated out of their funds. However, to maintain these guarantees all parties must follow blockchain updates ardently. To alleviate this issue, a channel party can hire a...
Pay To Win: Cheap, Crowdfundable, Cross-chain Algorithmic Incentive Manipulation Attacks on PoW Cryptocurrencies
Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gazi, Sarah Meiklejohn, Edgar Weippl
Applications
In this paper we extend the attack landscape of bribing attacks on cryptocurrencies by presenting a new method, which we call
Pay-To-Win (P2W). To the best of our knowledge, it is the first approach capable of facilitating double-spend collusion across different blockchains. Moreover, our technique can also be used to specifically incentivize transaction exclusion or (re)ordering. For our construction we rely on smart contracts to render the payment and receipt of bribes trustless for the...
Balance: Dynamic Adjustment of Cryptocurrency Deposits
Dominik Harz, Lewis Gudgeon, Arthur Gervais, William J. Knottenbelt
Applications
Financial deposits are fundamental to the security of cryptoeconomic protocols as they serve as insurance against potential misbehaviour of agents.
However, protocol designers and their agents face a trade-off when choosing the deposit size.
While substantial deposits might increase the protocol security, for example by minimising the impact of adversarial behaviour or risks of currency fluctuations, locked-up capital incurs opportunity costs.
Moreover, some protocols require...
Towards a Smart Contract-based, Decentralized, Public-Key Infrastructure
Christos Patsonakis, Katerina Samari, Mema Roussopoulos, Aggelos Kiayias
Cryptographic protocols
Public-key infrastructures (PKIs) are an integral part of the security foundations of digital communications. Their widespread deployment has allowed the growth of important applications, such as, internet banking and e-commerce. Centralized PKIs (CPKIs) rely on a hierarchy of trusted Certification Authorities (CAs) for issuing, distributing and managing the status of digital certificates, i.e., unforgeable data structures that attest to the authenticity of an entity's public key....
Flux: Revisiting Near Blocks for Proof-of-Work Blockchains
Alexei Zamyatin, Nicholas Stifter, Philipp Schindler, Edgar Weippl, William J. Knottenbelt
Cryptographic protocols
The term near or weak blocks describes Bitcoin blocks whose PoW does not meet the required target difficulty to be considered valid under the regular consensus rules of the protocol. Near blocks are generally associated with protocol improvement proposals striving towards shorter transaction confirmation times. Existing proposals assume miners will act rationally based solely on intrinsic incentives arising from the adoption of these changes, such as earlier detection of blockchain...
MathCoin: A Blockchain Proposal that Helps Verify Mathematical Theorems In Public
Borching Su
Applications
A public blockchain is proposed in an attempt to enable the coin holders to participate in verifying mathematical theorems for public access. Incentives are designed to encourage any party to contribute their knowledge by buying tokens of mathematical propositions that they believe are true. The proposed blockchain is a platform for people to exchange their belief in mathematical propositions. An implementation of this blockchain proposal, once established, will provide the general public...
But Why does it Work? A Rational Protocol Design Treatment of Bitcoin
Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi, Vassilis Zikas
Cryptographic protocols
An exciting recent line of work has focused on formally investigating the core cryptographic assumptions underlying the security of Bitcoin. In a nutshell, these works conclude that Bitcoin is secure if and only if the majority of the mining power is honest. Despite their great impact, however, these works do not address an incisive question asked by positivists and Bitcoin critics, which is fuelled by the fact that Bitcoin indeed works in reality: Why should the real-world system adhere to...
Sentiment Protocol: A Decentralized Protocol Leveraging Crowd Sourced Wisdom
Anton Muehlemann
Applications
The wisdom of the crowd is a valuable asset in today's society. It is not only important in predicting elections but also plays an essential rôle in marketing and the financial industry. Having a trustworthy source of opinion can make forecasts more accurate and markets predictable. Until now, a fundamental problem of surveys is the lack of incentives for participants to provide accurate information. Classical solutions like small monetary rewards or the chance of winning a prize are often...
Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus
Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Alexander Spiegelman
The decentralized cryptocurrency Bitcoin has experienced great success but also encountered many challenges. One of the challenges has been the long confirmation time. Another challenge is the lack of incentives at certain steps of the protocol, raising concerns for transaction withholding, selfish mining, etc. To address these challenges, we propose Solida, a decentralized blockchain protocol based on reconfigurable Byzantine consensus augmented by proof-of-work. Solida improves on Bitcoin...
Privacy-respecting Reward Generation and Accumulation for Participatory Sensing Applications
Tassos Dimitriou
Cryptographic protocols
Participatory or crowd-sensing applications process sensory data contributed by users and transform them to simple visualizations (such as for example noise or pollution levels) that help create an accurate representation of the surrounding environment. Although contributed data is of great interest to individuals, the involvement of citizens and community groups, however, is still limited. Hence, incentivizing users to increase participation seems crucial for the success of participatory...
Role-Based Ecosystem for Design, Development, and Deployment of Secure Multi-Party Data Analytics Applications
Andrei Lapets, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank Varia, Azer Bestavros, Frederick Jansen
Implementation
Software applications that employ secure multi-party computation (MPC) can empower individuals and organizations to benefit from privacy-preserving data analyses when data sharing is encumbered by confidentiality concerns, legal constraints, or corporate policies. MPC is already being incorporated into software solutions in some domains; however, individual use cases do not fully convey the variety, extent, and complexity of the opportunities of MPC. This position paper articulates a...
On the Necessity of a Prescribed Block Validity Consensus: Analyzing Bitcoin Unlimited Mining Protocol
Ren Zhang, Bart Preneel
Bitcoin has not only attracted many users but also been considered as a technical breakthrough by academia. However, the expanding potential of Bitcoin is largely untapped due to its limited throughput. The Bitcoin community is now facing its biggest crisis in history as the community splits on how to increase the throughput. Among various proposals, Bitcoin Unlimited recently became the most popular candidate, as it allows miners to collectively decide the block size limit according to the...
2017/192
Last updated: 2017-04-07
Improved Hybrid Consensus Scheme with Privacy-preserving Property
Shuyang Tang, Zhiqiang Liu, Zhen Liu, Yu Long, Shengli Liu
Proof-of-work-based consensus, adopted in Bitcoin,
has already drawn much attention from cryptocurrency and
block chain community. Despite its nice decentralization prop-
erty, it has significant limitation in terms of efficiency since
transactions can not be confirmed within seconds. In 2016, hybrid
consensus was proposed to partially deal with this issue by
introducing committee responsible for validating transactions.
However, there still exists some issues with respect to this...
IKP: Turning a PKI Around with Blockchains
Stephanos Matsumoto, Raphael M. Reischuk
Applications
Man-in-the-middle attacks in TLS due to compromised CAs have been mitigated by log-based PKI enhancements such as Certificate Transparency. However, these log-based schemes do not offer sufficient incentives to logs and monitors, and do not offer any actions that domains can take in response to CA misbehavior. We propose IKP, a blockchain-based PKI enhancement that offers automatic responses to CA misbehavior and incentives for those who help detect misbehavior. IKP’s decentralized nature...
Blockchain-Free Cryptocurrencies: A Framework for Truly Decentralised Fast Transactions
Xavier Boyen, Christopher Carr, Thomas Haines
The "blockchain" distributed ledger pioneered by Bitcoin is effective at preventing double-spending, but inherently attracts (1) "user cartels" and (2) incompressible delays, as a result of linear verification and a winner-takes-all incentive
lottery.
We propose to forgo the blocks and chain entirely, and build a truly distributed ledger system based on a lean graph of cross-verifying transactions, which now become the main and only objects in the system. A fully distributed consensus...
Beyond Bitcoin -- Part II: Blockchain-based systems without mining
Pasquale Forte, Diego Romano, Giovanni Schmid
Cryptographic protocols
Nowadays the decentralized transaction ledger functionality implemented through
the blockchain technology is at the highest international interest because of the
prospects both on opportunities and risks. There are a number of advantages
inherently embedded in blockchain-based systems, and a pletora of new applications
and services relying on concepts and technologies inspired by those of Bitcoin are
emerging. But at the same time some weaknesses and limitations are evident, and
we argue...
SPORT: Sharing Proofs of Retrievability across Tenants
Frederik Armknecht, Jens-Matthias Bohli, David Froelicher, Ghassan O. Karame
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants’...
Demystifying incentives in the consensus computer
Loi Luu, Jason Teutsch, Raghav Kulkarni, Prateek Saxena
Cryptocurrencies like Bitcoin and the more recent Ethereum
system allow users to specify scripts in transactions and contracts to support
applications beyond simple cash transactions. In this work, we analyze the
extent to which these systems can enforce the correct semantics of scripts.
We show that when a script execution requires nontrivial computation effort,
practical attacks exist which either waste miners' computational resources or
lead miners to accept incorrect script results....
Mixcoin: Anonymity for Bitcoin with accountable mixes
Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll, Edward W. Felten
Applications
We propose Mixcoin, a protocol to facilitate anonymous payments in Bitcoin and similar cryptocurrencies. We build on the emergent phenomenon of currency mixes, adding an accountability mechanism to expose theft. We demonstrate that incentives of mixes and clients can be aligned to ensure that rational mixes will not steal. Our scheme is efficient and fully compatible with Bitcoin. Against a passive attacker, our scheme provides an anonymity set of all other users mixing coins...
One Weird Trick to Stop Selfish Miners: Fresh Bitcoins, A Solution for the Honest Miner.
Ethan Heilman
Abstract—A recent result in Bitcoin is the selfish mining strategy in which a selfish cartel withholds blocks they mine to gain an advantage. This strategy is both incentive-compatible and harmful to Bitcoin. In this paper we introduce a new defense against selfish mining that improves on the previous best result, we raise the threshold of mining power necessary to profitably selfishly mine from 25% to 32% under all propagation advantages. While the security of our system uses unforgeable...
Rational Protocol Design: Cryptography Against Incentive-driven Adversaries
Juan Garay, Jonathan Katz, Ueli Maurer, Bjoern Tackmann, Vassilis Zikas
Foundations
Existing work on “rational cryptographic protocols” treats each party (or coalition of parties) running the protocol as a selfish agent trying to maximize its utility. In this work we propose a fundamentally different approach that is better suited to modeling a protocol under attack from an external entity. Specifically, we consider a two-party game between an protocol designer and an external attacker. The goal of the attacker is to break security properties such as correctness or privacy,...
Tolerant Algebraic Side-Channel Analysis of {AES}
Yossef Oren, Avishai Wool
Implementation
We report on a Tolerant Algebraic Side-Channel Analysis (TASCA) attack on an AES implementation, using an optimizing pseudo-
Boolean solver to recover the secret key from a vector of Hamming
weights corresponding to a single encryption. We first develop a boundary on the maximum error rate that can be tolerated as a function of the set size output by the decoder and the number of measurements. Then, we show that the TASCA approach is capable of recovering the secret key from errored traces...
Is privacy compatible with truthfulness?
David Xiao
In the area of privacy-preserving data mining, a differentially
private mechanism intuitively encourages people to share their data
because they are at little risk of revealing their own information.
However, we argue that this interpretation is incomplete because
external incentives are necessary for people to participate in
databases, and so data release mechanisms should not only be
differentially private but also compatible with incentives, otherwise the
data collected may be false. We...
Privacy-friendly Incentives and their Application to Wikipedia (Extended Version)
Jan Camenisch, Thomas Groß, Peter Hladky, Christian Hoertnagl
Applications
Double-blind peer review is a powerful method to achieve high quality and thus trustworthiness of user-contributed content. Facilitating such reviews requires incentives as well as privacy protection for the reviewers. In this paper, we present the concept of privacy-friendly incentives and discuss the properties required from it. We then propose a concrete cryptographic realization based on ideas from anonymous e-cash and credential systems. Finally, we report on our software's integration...
Guarantees for Customers of Incentive Anonymizing Networks
Timothy Atkinson, Marius Silaghi
Cryptographic protocols
We raise and propose solutions to the problem of guaranteeing that a user of incentive remailing services for anonymization cannot lose money if he does not get full service, i.e., if his message does not reach its destination. Applications such as voting over the Internet or reviewing of articles require anonymous delivery of messages. An anonymizing technique was proposed several decades ago by Chaum and is based on a group of volunteer agents called {\em mixnet}. However, mixnets are not...
\textit{Federated Learning} (FL) is a distributed machine learning paradigm that allows multiple clients to train models collaboratively without sharing local data. Numerous works have explored security and privacy protection in FL, as well as its integration with blockchain technology. However, existing FL works still face critical issues. \romannumeral1) It is difficult to achieving \textit{poisoning robustness} and \textit{data privacy} while ensuring high \textit{model accuracy}....
Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
The success of deep learning across a variety of applications, including inference on edge devices, has led to increased concerns about the privacy of users’ data and deep learning models. Secure multiparty computation allows parties to remedy this concern, resulting in a growth in the number of such proposals and improvements in their efficiency. The majority of secure inference protocols relying on multiparty computation assume that the client does not deviate from the protocol and...
Payment channel networks (e.g., the Lightning Network in Bitcoin) constitute one of the most popular scalability solutions for blockchains. Their safety relies on parties being online to detect fraud attempts on-chain and being able to timely react by publishing certain transactions on-chain. However, a cheating party may bribe miners in order to censor those transactions, resulting in loss of funds for the cheated party: these attacks are known in the literature as timelock bribing attacks....
Nowadays Federated learning (FL) is established as one of the best techniques for collaborative machine learning. It allows a set of clients to train a common model without disclosing their sensitive and private dataset to a coordination server. The latter is in charge of the model aggregation. However, FL faces some problems, regarding the security of updates, integrity of computation and the availability of a server. In this paper, we combine some new ideas like clients’ reputation with...
To resist the regimes of ubiquitous surveillance imposed upon us in every facet of modern life, we need technological tools that subvert surveillance systems. Unfortunately, while cryptographic tools frequently demonstrate how we can construct systems that safeguard user privacy, there is limited motivation for corporate entities engaged in surveillance to adopt these tools, as they often clash with profit incentives. This paper demonstrates how, in one particular aspect of everyday life --...
The Lightning Network (LN) is a second layer solution built on top of Bitcoin, aimed to solve Bitcoin's long transaction waiting times and high transaction fees. Empirical and theoretical studies show that the LN is tending towards the hub and spoke network topology. In this topology most of the nodes, the spokes, open a single channel to one of the few well-connected nodes, the hubs. This topology is known to be prone to failures, attacks, and privacy issues. In this work we introduce the...
We present staircase attack, the first attack on the incentive mechanism of the Proof-of-Stake (PoS) protocol used in Ethereum 2.0 beacon chain. Our attack targets the penalty of the incentive mechanism that penalizes inactive participation. Our attack can make honest validators suffer from penalties, even if they strictly follow the specification of the protocol. We show both theoretically and experimentally that if the adversary controls 29.6% stake in a moderate-size system, the attack...
Resource efficiency in blockchain systems remains a pivotal concern in their design. While Ethereum often experiences network congestion, leading to rewarding opportunities for miners through transaction inclusions, a significant amount of block space remains underutilized. Remarkably, instances of entirely unutilized blocks contribute to resource wastage within the Ethereum ecosystem. This study delves into the incentives driving miners to produce empty blocks. We ascertain that the...
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for increasing the blockchain throughput, however, their benefit depends on the overall users’ liquidity. Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs. However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for small...
Sneakers were designated as the most counterfeited fashion item online, with three times more risk in a trade than any other fashion purchase. As the market expands, the current sneaker scene displays several vulnerabilities and trust flaws, mostly related to the legitimacy of assets or actors. In this paper, we investigate various blockchain-based mechanisms to address these large-scale trust issues. We argue that (i) pre-certified and tracked assets through the use of non-fungible tokens...
Abstract—Corporate sexual harassment policies often prioritize liability mitigation over the creation of a corporate culture free of harassment. Victims of sexual harassment are often required to report claims individually to HR. This can create an environment of self-censorship when employees feel that they cannot trust HR to act as an unbiased mediator. This problem is compounded when corporations have a culture that is tolerant of certain types of harassment. Forcing employees to report...
Blockchain security relies on incentives to ensure participants, called miners, cooperate and behave as the protocol dictates. Such protocols have a security threshold – a miner whose relative computational power is larger than the threshold can deviate to improve her revenue. Moreover, blockchain participants can behave in a petty compliant manner: usually follow the protocol, but deviate to increase revenue when deviation cannot be distinguished externally from the prescribed behavior. The...
Zero-knowledge proof (ZKP) mixers are one of the most widely used blockchain privacy solutions, operating on top of smart contract-enabled blockchains. We find that ZKP mixers are tightly intertwined with the growing number of Decentralized Finance (DeFi) attacks and Blockchain Extractable Value (BEV) extractions. Through coin flow tracing, we discover that 205 blockchain attackers and 2,595 BEV extractors leverage mixers as their source of funds, while depositing a total attack revenue of...
Ransomware is a malware that employs encryption to hold a victim's data, causing irreparable loss and monetary incentives to individuals or business organizations. The occurrence of ransomware attacks has been increasing significantly and as the attackers are investing more creativity and inventiveness into their threats, the struggle of fighting against ill-themed activities has become more difficult and even time and energy-draining. Therefore, recent researches try to shed some light on...
There are a multitude of Blockchain-based physical infrastructure systems, ranging from decentralized 5G wireless to electric vehicle charging networks. These systems operate on a crypto-currency enabled token economy, where node suppliers are rewarded with tokens for enabling, validating, managing and/or securing the system. However, today's token economies are largely designed without infrastructure systems in mind, and often operate with a fixed token supply (e.g., Bitcoin). Such fixed...
While online interactions and exchanges have grown exponentially over the past decade, most commercial infrastructures still operate through centralized protocols, and their success essentially depends on trust between different economic actors. Digital advances such as blockchain technology has led to a massive wave of Decentralized Ledger Technology (DLT) initiatives, protocols and solutions. This advance makes it possible to implement trustless systems in the real world, which, combined...
The always-available liquidity of automated market makers (AMMs) has been one of the most important catalysts in early cryptocurrency adoption. However, it has become increasingly evident that AMMs in their current form are not viable investment options for passive liquidity providers. This is because of the cost incurred by AMMs providing stale prices to arbitrageurs against external market prices, formalized as loss-versus-rebalancing (LVR) [Milionis et al., 2022]. In this paper, we...
Fair exchange is a fundamental primitive enabled by blockchains, and is widely adopted in applications such as atomic swaps, payment channels, and DeFi. Most existing designs of blockchain-based fair exchange protocols consider only the participating users as strategic players, and assume the miners are honest and passive. However, recent works revealed that the fairness of commonly deployed fair exchange protocols can be broken entirely in the presence of user-miner collusion. In...
Blockchain technologies rely on a public ledger, where typically all transactions are pseudoanonymous and fully traceable. This poses a major flaw in its large scale adoption of cryptocurrencies, the primary application of blockchain technologies, as most individuals do not want to disclose their finances to the pub- lic. Motivated by the explosive growth in private-Blockchain research, this Statement-of-Knowledge (SOK) explores the ways to obtain privacy in this public ledger ecosystem....
In the current digital world, large organizations (sometimes referred to as tech giants) provide service to extremely large numbers of users. The service provider is often interested in computing various data analyses over the private data of its users, which in turn have their incentives to cooperate, but do not necessarily trust the service provider. In this work, we introduce the \emph{Gulliver multi-party computation model} (GMPC) to realistically capture the above scenario. The GMPC...
As the Bitcoin mining landscape becomes more competitive, analyzing potential attacks under the assumption of rational miners becomes increasingly relevant. In the rational setting, blockchain users can bribe miners to reap an unfair benefit. Established protocols such as Duplex Micropayment Channels and Lightning Channels are susceptible to bribery, which upends their financial guarantees. Indeed, we prove that in a two-party contract in which the honest party can spend an output right...
Hashed Time-Locked Contracts (HTLCs) are a widely used primitive in blockchain systems such as payment channels, atomic swaps, etc. Unfortunately, HTLC is incentive-incompatible and is vulnerable to bribery attacks. The state-of-the-art solution is MAD-HTLC (Oakland'21), which proposes an elegant idea that leverages miners' profit-driven nature to defeat bribery attacks. In this paper, we show that MAD-HTLC is still vulnerable as it only considers a somewhat narrow set of passive...
We present $\textit{Colordag}$, a blockchain protocol where following the prescribed strategy is, with high probability, a best response as long as all miners have less than $1/2$ of the mining power. We prove the correctness of Colordag even if there is an extremely powerful adversary who knows future actions of the scheduler: specifically, when agents will generate blocks and when messages will arrive. The state-of-the-art protocol, Fruitchain, is an $\varepsilon$-Nash equilibrium as long...
The security of proof-of-work blockchain protocols critically relies on incentives. Their operators, called miners, receive rewards for creating blocks containing user-generated transactions. Each block rewards its creator with newly minted tokens and with transaction fees paid by the users. The protocol stability is violated if any of the miners surpasses a threshold ratio of the computational power; she is then motivated to deviate with selfish mining and increase her rewards. Previous...
We present FairTraDEX, a decentralized exchange (DEX) protocol based on frequent batch auctions (FBAs), which provides formal game-theoretic guarantees against extractable value. FBAs when run by a trusted third-party provide unique game-theoretic optimal strategies which ensure players are shown prices equal to the liquidity provider's fair price, excluding explicit, pre-determined fees. FairTraDEX replicates the key features of an FBA that provide these game-theoretic guarantees using a...
The need for cross-blockchain interoperability is higher than ever. Today, there exists a plethora of blockchain-based cryptocurrencies, with varying levels of adoption and diverse niche use cases, and yet communication across blockchains is still in its infancy. Despite the vast potential for novel applications in an interoperable ecosystem, cross-chain tools and protocols are few and often limited. Cross-chain communication requires a trusted third party, as the Fair Exchange problem is...
In smart contract blockchain platforms such as Ethereum, users interact with the system by issuing transactions. System operators called miners or validators add those transactions to the blockchain. Users attach to each transaction a fee, which is collected by the miner who placed it in the blockchain. Miners naturally prioritize better-paying transactions. This process creates a volatile fee market due to limited throughput and fluctuating demand. The fee required to place a transaction in...
Proof of liabilities (PoL) allows a prover to prove his/her liabilities to a group of verifiers. This is a cryptographic primitive once used only for proving financial solvency but is also applicable to domains outside finance, including transparent and private donations, new algorithms for disapproval voting and publicly verifiable official reports such as COVID-19 daily cases. These applications share a common nature in incentives: it's not in the prover's interest to increase his/her...
The increasing adoption of machine learning inference in applications has led to a corresponding increase in concerns surrounding the privacy guarantees offered by existing mechanisms for inference. Such concerns have motivated the construction of efficient secure inference protocols that allow parties to perform inference without revealing their sensitive information. Recently, there has been a proliferation of such proposals, rapidly improving efficiency. However, most of these protocols...
Frontrunning is a major problem in DeFi applications, such as blockchain-based exchanges. Albeit, existing solutions are not practical and/or they make external trust assumptions. In this work we propose a market-maker-based crypto-token exchange, which is both more efficient than existing solutions and offers provable resistance to frontrunning attack. Our approach combines in a clever way a game theoretic analysis of market-makers with new cryptography and blockchain tools to defend...
Distributed ledgers implement a storage layer, on top of which a shared state is maintained in a decentralized manner. In UTxO-based ledgers, like Bitcoin, the shared state is the set of all unspent outputs (UTxOs), which serve as inputs to future transactions. The continuously increasing size of this shared state will gradually render its maintenance unaffordable. Our work investigates techniques that minimize the shared state of the distributed ledger, i.e., the in-memory UTxO set. To this...
Payment-channel networks (PCN) are the most prominent approach to tackle the scalability issues of current permissionless blockchains. A PCN reduces the load on-chain by allowing arbitrarily many off-chain multi-hop payments (MHPs) between any two users connected through a path of payment channels. Unfortunately, current MHP protocols are far from satisfactory. One-round MHPs (e.g., Interledger) are insecure as a malicious intermediary can steal the payment funds. Two-round MHPs (e.g.,...
A long standing question in the context of cryptocurrencies based on Nakamoto consensus is whether such constructions are incentive compatible, i.e., the intended properties of the system emerge from the appropriate utility model for participants. Bribing and other related attacks, such as front-running or Goldfinger attacks, aim to directly influence the incentives of actors within (or outside) of the targeted cryptocurrency system. The theoretical possibility of bribing at tacks on...
Existing standards for player characterisation in tokenised state machine replication protocols depend on honest players who will always follow the protocol, regardless of possible token increases for deviating. Given the ever-increasing market capitalisation of these tokenised protocols, honesty is becoming more expensive and more unrealistic. As such, this out-dated player characterisation must be removed to provide true guarantees of safety and liveness in a major stride towards universal...
When peers rate each other, they may choose to rate inaccurately in order to boost their own reputation or unfairly lower another’s. This could be successfully mitigated by having a reputation server incentivise accurate ratings with a reward. However, assigning rewards becomes a challenge when ratings are anonymous, since the reputation server cannot tell which peers to reward for rating accurately. To address this, we propose an anonymous peer rating system in which users can be rewarded...
In this work we develop a rewarding framework that can be used as a building block in crowd-sensing applications. Although a core requirement of such systems is user engagement, people may be reluctant to participate as sensitive information about them may be leaked or inferred from submitted data. Thus monetary incentives could help attract a large number of participants, thereby increasing not only the amount but also the quality of sensed data. Our first contribution in this work is to...
The cloud changed the way we manage and store data. Today, cloud storage services offer clients an infrastructure that allows them a convenient source to store, replicate, and secure data online. However, with these new capabilities also come limitations, such as lack of transparency, limited decentralization, and challenges with privacy and security. And, as the need for more agile, private and secure data solutions continues to grow exponentially, rethinking the current structure of cloud...
Bitcoin and similar blockchain systems have a limited transaction throughput because each transaction must be processed by all parties, on-chain. Payment channels relieve the blockchain by allowing parties to execute transactions off-chain while maintaining the on-chain security guarantees, i.e., no party can be cheated out of their funds. However, to maintain these guarantees all parties must follow blockchain updates ardently. To alleviate this issue, a channel party can hire a...
In this paper we extend the attack landscape of bribing attacks on cryptocurrencies by presenting a new method, which we call Pay-To-Win (P2W). To the best of our knowledge, it is the first approach capable of facilitating double-spend collusion across different blockchains. Moreover, our technique can also be used to specifically incentivize transaction exclusion or (re)ordering. For our construction we rely on smart contracts to render the payment and receipt of bribes trustless for the...
Financial deposits are fundamental to the security of cryptoeconomic protocols as they serve as insurance against potential misbehaviour of agents. However, protocol designers and their agents face a trade-off when choosing the deposit size. While substantial deposits might increase the protocol security, for example by minimising the impact of adversarial behaviour or risks of currency fluctuations, locked-up capital incurs opportunity costs. Moreover, some protocols require...
Public-key infrastructures (PKIs) are an integral part of the security foundations of digital communications. Their widespread deployment has allowed the growth of important applications, such as, internet banking and e-commerce. Centralized PKIs (CPKIs) rely on a hierarchy of trusted Certification Authorities (CAs) for issuing, distributing and managing the status of digital certificates, i.e., unforgeable data structures that attest to the authenticity of an entity's public key....
The term near or weak blocks describes Bitcoin blocks whose PoW does not meet the required target difficulty to be considered valid under the regular consensus rules of the protocol. Near blocks are generally associated with protocol improvement proposals striving towards shorter transaction confirmation times. Existing proposals assume miners will act rationally based solely on intrinsic incentives arising from the adoption of these changes, such as earlier detection of blockchain...
A public blockchain is proposed in an attempt to enable the coin holders to participate in verifying mathematical theorems for public access. Incentives are designed to encourage any party to contribute their knowledge by buying tokens of mathematical propositions that they believe are true. The proposed blockchain is a platform for people to exchange their belief in mathematical propositions. An implementation of this blockchain proposal, once established, will provide the general public...
An exciting recent line of work has focused on formally investigating the core cryptographic assumptions underlying the security of Bitcoin. In a nutshell, these works conclude that Bitcoin is secure if and only if the majority of the mining power is honest. Despite their great impact, however, these works do not address an incisive question asked by positivists and Bitcoin critics, which is fuelled by the fact that Bitcoin indeed works in reality: Why should the real-world system adhere to...
The wisdom of the crowd is a valuable asset in today's society. It is not only important in predicting elections but also plays an essential rôle in marketing and the financial industry. Having a trustworthy source of opinion can make forecasts more accurate and markets predictable. Until now, a fundamental problem of surveys is the lack of incentives for participants to provide accurate information. Classical solutions like small monetary rewards or the chance of winning a prize are often...
The decentralized cryptocurrency Bitcoin has experienced great success but also encountered many challenges. One of the challenges has been the long confirmation time. Another challenge is the lack of incentives at certain steps of the protocol, raising concerns for transaction withholding, selfish mining, etc. To address these challenges, we propose Solida, a decentralized blockchain protocol based on reconfigurable Byzantine consensus augmented by proof-of-work. Solida improves on Bitcoin...
Participatory or crowd-sensing applications process sensory data contributed by users and transform them to simple visualizations (such as for example noise or pollution levels) that help create an accurate representation of the surrounding environment. Although contributed data is of great interest to individuals, the involvement of citizens and community groups, however, is still limited. Hence, incentivizing users to increase participation seems crucial for the success of participatory...
Software applications that employ secure multi-party computation (MPC) can empower individuals and organizations to benefit from privacy-preserving data analyses when data sharing is encumbered by confidentiality concerns, legal constraints, or corporate policies. MPC is already being incorporated into software solutions in some domains; however, individual use cases do not fully convey the variety, extent, and complexity of the opportunities of MPC. This position paper articulates a...
Bitcoin has not only attracted many users but also been considered as a technical breakthrough by academia. However, the expanding potential of Bitcoin is largely untapped due to its limited throughput. The Bitcoin community is now facing its biggest crisis in history as the community splits on how to increase the throughput. Among various proposals, Bitcoin Unlimited recently became the most popular candidate, as it allows miners to collectively decide the block size limit according to the...
Proof-of-work-based consensus, adopted in Bitcoin, has already drawn much attention from cryptocurrency and block chain community. Despite its nice decentralization prop- erty, it has significant limitation in terms of efficiency since transactions can not be confirmed within seconds. In 2016, hybrid consensus was proposed to partially deal with this issue by introducing committee responsible for validating transactions. However, there still exists some issues with respect to this...
Man-in-the-middle attacks in TLS due to compromised CAs have been mitigated by log-based PKI enhancements such as Certificate Transparency. However, these log-based schemes do not offer sufficient incentives to logs and monitors, and do not offer any actions that domains can take in response to CA misbehavior. We propose IKP, a blockchain-based PKI enhancement that offers automatic responses to CA misbehavior and incentives for those who help detect misbehavior. IKP’s decentralized nature...
The "blockchain" distributed ledger pioneered by Bitcoin is effective at preventing double-spending, but inherently attracts (1) "user cartels" and (2) incompressible delays, as a result of linear verification and a winner-takes-all incentive lottery. We propose to forgo the blocks and chain entirely, and build a truly distributed ledger system based on a lean graph of cross-verifying transactions, which now become the main and only objects in the system. A fully distributed consensus...
Nowadays the decentralized transaction ledger functionality implemented through the blockchain technology is at the highest international interest because of the prospects both on opportunities and risks. There are a number of advantages inherently embedded in blockchain-based systems, and a pletora of new applications and services relying on concepts and technologies inspired by those of Bitcoin are emerging. But at the same time some weaknesses and limitations are evident, and we argue...
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants’...
Cryptocurrencies like Bitcoin and the more recent Ethereum system allow users to specify scripts in transactions and contracts to support applications beyond simple cash transactions. In this work, we analyze the extent to which these systems can enforce the correct semantics of scripts. We show that when a script execution requires nontrivial computation effort, practical attacks exist which either waste miners' computational resources or lead miners to accept incorrect script results....
We propose Mixcoin, a protocol to facilitate anonymous payments in Bitcoin and similar cryptocurrencies. We build on the emergent phenomenon of currency mixes, adding an accountability mechanism to expose theft. We demonstrate that incentives of mixes and clients can be aligned to ensure that rational mixes will not steal. Our scheme is efficient and fully compatible with Bitcoin. Against a passive attacker, our scheme provides an anonymity set of all other users mixing coins...
Abstract—A recent result in Bitcoin is the selfish mining strategy in which a selfish cartel withholds blocks they mine to gain an advantage. This strategy is both incentive-compatible and harmful to Bitcoin. In this paper we introduce a new defense against selfish mining that improves on the previous best result, we raise the threshold of mining power necessary to profitably selfishly mine from 25% to 32% under all propagation advantages. While the security of our system uses unforgeable...
Existing work on “rational cryptographic protocols” treats each party (or coalition of parties) running the protocol as a selfish agent trying to maximize its utility. In this work we propose a fundamentally different approach that is better suited to modeling a protocol under attack from an external entity. Specifically, we consider a two-party game between an protocol designer and an external attacker. The goal of the attacker is to break security properties such as correctness or privacy,...
We report on a Tolerant Algebraic Side-Channel Analysis (TASCA) attack on an AES implementation, using an optimizing pseudo- Boolean solver to recover the secret key from a vector of Hamming weights corresponding to a single encryption. We first develop a boundary on the maximum error rate that can be tolerated as a function of the set size output by the decoder and the number of measurements. Then, we show that the TASCA approach is capable of recovering the secret key from errored traces...
In the area of privacy-preserving data mining, a differentially private mechanism intuitively encourages people to share their data because they are at little risk of revealing their own information. However, we argue that this interpretation is incomplete because external incentives are necessary for people to participate in databases, and so data release mechanisms should not only be differentially private but also compatible with incentives, otherwise the data collected may be false. We...
Double-blind peer review is a powerful method to achieve high quality and thus trustworthiness of user-contributed content. Facilitating such reviews requires incentives as well as privacy protection for the reviewers. In this paper, we present the concept of privacy-friendly incentives and discuss the properties required from it. We then propose a concrete cryptographic realization based on ideas from anonymous e-cash and credential systems. Finally, we report on our software's integration...
We raise and propose solutions to the problem of guaranteeing that a user of incentive remailing services for anonymization cannot lose money if he does not get full service, i.e., if his message does not reach its destination. Applications such as voting over the Internet or reviewing of articles require anonymous delivery of messages. An anonymizing technique was proposed several decades ago by Chaum and is based on a group of volunteer agents called {\em mixnet}. However, mixnets are not...