Beyond Bitcoin — Part II: Blockchain-based
systems without mining

Pasquale Forte!, Diego Romano?, and Giovanni Schmid*?

'PA Advice, Naples, Italy
2Cnr ICAR, Naples, Italy

July 28, 2016

“If the Lottery is an intensification of chance, a periodic infusion of
chaos into the cosmos, then is it not appropriate that chance intervene
in every aspect of the drawing, not just one?”

— Jose Luis Borges, The Lottery in Babylon

Abstract

Nowadays the decentralized transaction ledger functionality imple-
mented through the blockchain technology is at the highest international
interest because of the prospects both on opportunities and risks. There
are a number of advantages inherently embedded in blockchain-based sys-
tems, and a pletora of new applications and services relying on concepts
and technologies inspired by those of Bitcoin are emerging. But at the
same time some weaknesses and limitations are evident, and we argue that
they stem mainly from the fact that the blockchain is managed through
mining. In this work we pointed out the unsustainability of mining in
case of massive large-scale blockchain-based system. Moreover, after iso-
lating the basic concepts behind mining, we sketched possible alternatives
for the maintenance of blockchain-based systems. We considered security
issues, incentives, as well as competitive and collaborative opportunities,
and we proposed a framework of concepts and algorithms to implement
blockchain-based systems for different contexts.

1 Introduction

In a previous work [1] we gave an overview of concepts and technologies ground-
ing what we called blockchain-based systems. These are emerging systems in-
tended to wide by far the scope of cryptocurrencies, and that use the ideas

*Corresponding author: Giovanni Schmid, email: giovanni.schmid@cnr.it

introduced in the seminal work [2] for their core technologies. In particular,
all these systems — although with minor variations in protocols and their im-
plementations — are rooted in the concept of mining. The authority appointed
to control transactions among parties in the network, which is the keystone of
conventional systems, has been superseded in blockchain-based systems by a
subset of nodes equipped with special software, called miners. Their job con-
sists indeed in performing mining, a special kind of computational work which
is mandatory for the recording of new transaction blocks on the blockchain.

At the current state-of-the-art, mining appears to be a strict requirement
for any blockchain-based system. First and foremost, it is designed to protect
the blockchain from tampering and, in the special case of cryptocurrencies, it
allows for the creation of new coins in a controlled manner!.

Another main feature of the consensus mechanism implemented through mining
is the incentive for peers in managing the blockchain. Indeed, the miner (or a
pool thereof) that is accepted by its peers as the winner of the computational
race incorporated in mining is usually rewarded with some assets and (at the
time being) with optional transaction fees.

Lastly, a less evident but important consequence of a mining-based consensus
mechanism is the prevention of the following fraudulent threat: since, at least
in the intentions of Bitcoin designer(s), it is very difficult to predict the winner
of the mining race, then it is likewise difficult to blacklist them (e.g. through
a denial-of-service attack) in order to steal the prize or to degrade the system
performance.

By abstracting from its implementations, mining consists in a special work-
flow in which a miner node can give corroborate evidence to its peers that it
worked on a computational problem - which is difficult to solve in some sense
- and that its effort involved the processing of the last block in the blockchain
alongside with a set of new transactions to be stored in the current block. The
difficulty of the computational problem depends on a suitable pricing function
[3] whose values are constrained by a difficulty threshold. The pricing function
allows to instantiate a problem which can be made more or less difficult to solve
but which cannot be made easier by previous calculations, even those in the
current instance of the problem. Lastly, the difficulty threshold allows to tune
the hardness of the problem so that a solution is moderately hard to find by the
totality of miners [1] in a statistical sense.

Let us now recap the two currently main implementations of mining : proof-
of-work and proof-of-stake systems.

In the context of blockchain-based systems, a proof-of-work [4] is a non-interactive
proof protocol in which a prover demonstrates to a (set of) verifier(s) that she
has solved a difficult computational problem, so that she can mine a new block.
This problem is usually a kind of artificial puzzle of no practical concern —
besides, of course, the existence of the network — which requires an increas-

1Tt could be useful to remark here that, as pointed out in [1], neither the blockchain
architecture nor mining are strictly necessary in case the system provides just for coin (and/or
resource) transfers without the creation of new coins. However, blockchain-based systems seem
to be more efficient and scalable than systems based only on conventional digital signatures.

ing amount of computational resources over time, and where miners fitness is
proportional to their hashing rate.

The proof-of-stake [5] mining approach, as an alternative, enables the stake-
holders of the system to mine new blocks. In a proof-of-stake mechanism the
difficulty of a mining activity is indeed proportional to the number of coins
owned by the miner at current time: the hashing is timed in one digest calcu-
lation per second, and it must be calculated only once for each unspent coin
in the wallet. It is worth to notice that a proof-of-stake cryptocurrency sys-
tem requires a pre-distribution of coins at start-up, for which a proof-of-work
protocol represents an “on-the-shelf solution”. However, “pure” proof-of-stake
systems are subject to the “rich gets richer” issue, and attempts have been made
to combine the two approaches in order to mitigate risks related to one or the
other (see e.g. [6]).

Although the development of recent blockchain-based cryptocurrencies aimed
to mitigate the Bitcoin “Nonce Rush” [1] escalation experienced in these last
few years, all the current blockchain-based systems rely on mining.

The main aim of this work is twofold: by one side we argue on the sustain-
ability of mining in case of massive large-scale blockchain-based system, and on
the other side we intend to show that the functional and inverse requirements for
such systems can be achieved by means of alternative, cheaper workflows than
mining. In such respect, we are going also to sketch a such possible alternative.

2 The economics of Bitcoin

Bitcoin introduced the blockchain concept and its related technology. It repre-
sents the archetype of the blockchain-based system and it is the most widely
used one. Even if it arises in the cryptocurrency context, it can highlight some
more general trends and for this reason we will shortly discuss it. At the present
time, after several years of its existence, we have enough information and mea-
sures to start doing some evaluation of the impact of this system on the global
economy, as well as sketching some future perspectives.

In [7] an extensive analysis of the sustainability of the Bitcoin network pro-
duced interesting results that we accepted in their magnitude, but in this context
we propose some normalization to better understand some key points. Firstly let
us consider the energetic impact of the Bitcoin network when compared to that
of the common fiat currencies. In the following table we show a comparison be-
tween global Bitcoin and fiat money supply in terms of energy consumption (in
G.J) and estimated value 2. Looking at those figures, we can notice that Bitcoin

2In order to obtain these figures, we have performed the following simplified estimate. Let
#BTC be the number of bitcoins in circulation and ValBTC the price in US$ of one bitcoin.
We estimate the current money supply value of Bitcoin with the product of the two previous
figures: suppBTC = #BTC %« ValBTC. At the moment of writing:

suppBTC = 15133150 * 393.43% = 59538352049.

Let suppFiat be the estimated value of the global fiat money supply considering the current
exchange rates. Then: suppFiat = MO + M1, where MO is the most liquid form of money

Total Value ($) | Syst. Mgm. Cost (GJ) | Cash Mgm. Cost (GJ) | Total Cost (GJ)
Fiat 28.6 x 107 2318900000 39600000 2358500000
Bitcoin 6 x 10° 3970000 0 3970000

| % BTC/Fiat | 0.00021 | 0.171201863 | 0] 0.168327327 |

energy consumption measures only the 0.168327327% of the global fiat money
consumption. But, on the other hand, Bitcoin represents only the 0.00021% of
the global fiat money supply value.

This imposes us to make some projection and to imagine how could Bitcoin
expand its energy consumption, in the fortunate case it would ever become
the main global currency. Therefore, if we outline a scenario in which Bitcoin
reaches the same value of the current global fiat money supply, supposing that
the energy consumption of global Bitcoin would grow linearly with its value,
the energetic impact of Bitcoin network at that point could be:

3970000 x 236x1072 ~ 19 % 10°G.J,

that is the 802.4% of the energy consumption of the current global fiat money
system. If this should ever happen, it would be absurdly inefficient.

Fortunately, to be fair, things will not move linearly in the next future,
as we just grossly supposed. For example we should consider some progress
in the design of computing hardware. Following Moore’s Law, the number of
transistors on a circuit-board will double every 18 months, but soon this will
come to an end due to size constraints of silicon atoms. This implies a possible
paradigm-shifting in computing architectures, with no reliable clues of its impact
on Bitcoin mining.

At the same time, the Koomey’s law [8] states that the energy needed for
a fixed computing load halves every 18 months. This could be an encouraging
signal that transactions validations in Bitcoin, which should happen every 10
minutes for the entire global community, could require less energy than today.
But, to further complicate the possible scenario, in the last months the global
Bitcoin hash-rate has experienced an exponential growth [9], that means that
more and more computing power has been devoted to mining and transaction
validation for speculative reasons.

Several economics professionals have a vision of what could happen to Bit-
coin in the next future. According to the work of J.A. Kroll et al. [10], col-
laborative teams of Bitcoin miners, also known as pools, will give space to the
expansion of powerful players. This could happen also because the increasing
specialization in the hardware, with powerful application-specific integrated cir-
cuits (Asics), represents a barrier to enter the mining competition. Indeed, as

(coins and banknotes) and M1 represents Demand Deposits. On the other hand, at the
moment of writing

MO =5 x 10'2$ (5 trillion$)
M1 = 23.6 x 1012$ (23.6 trillion$),

thus suppFiat = 28.6 x 1012$ (28.6 trillion$).

reported in CoinDesk State of Bitcoin and Blockchain 2016 [11], small pools
tend to disappear over time, giving space to big players.

Even if the Henderson Rule of Three and Four [12] seems to not apply to
IT and electronics, the current hashrate distribution [9] shows that two or three
entities have more than 50% of the entire Bitcoin hashing power. Considering
that Bitcoin is a system based on majority consensus, a cartel of miners could
change any rules to uphold their mining strategy, or can even censor certain
transactions. We believe that, at its current state, Bitcoin has serious risks that
undermine its peculiar decentralization with possible scenarios which include a
progressive desertion of the system.

We can conclude that the current mining vision is based on uncertain and
risky forecast of energy management. Therefore the consequent trend in the ag-
gregation of mining resources could lead to the success of individual speculative
entities which control the entire blockchain.

3 Features and drawbacks of mining

Since our interest falls on generic blockchain-based system, before entirely turn-
ing away from the Bitcoin implementation and elaborating possible alternatives,
we need to look over the mining in its role of tool for managing the blockchain.
In particular, it is important to characterize the type of mechanism that is best
suited to protect a blockchain, highlighting mandatory or desirable properties.

As we previously introduced, the mechanisms implemented so far consist in
posing a challenge that comes in the form of a computational searching problem.
It has the following features [13, 14, 2]:

e Hard to solve — The problem has to be hard to solve, otherwise too
many peers could be eligible for creating new blocks. That in turn would
result in too many branches during the updating process, and in a loss of
consensus on a unique blockchain.

e Easy to verify (system performance) — A candidate solution has
to be verified rapidly and in a cheap way to maintain a good system
performance. However, the time required to verify the trustiness of a
transaction - which in mining-based systems is proportional to the number
of confirmations [15] received - seems to be important at the same extent
or more.

e Tunable difficulty — The hardness of the problem must be dynamically
adjusted by the system so that the overall set of miners can solve each
instance in about the same time. This way miners are implicitly in sync
in their competitive effort for the construction of the blockchain.

e Unpredictability of the solver — The more mining power a miner ap-
plies, the better are its chances to mine the new current block. However,
at least in the absence of a majority of colluding parties, it has to be diffi-
cult to predict which would be the next solver of the problem. This means

that no party (or pool thereof) can easily get control of the system, and
that also miners with small hashpower fractions are incentivized in man-
aging the blockchain. Moreover, in this way the miners that are eligible
for updating the blockchain cannot easily blacklisted.

However, as it can now be desumed after the massive volume of research done
on this topic in the last five years, systems based on the mining approach are
prone to risks that are very difficult to mitigate in a truly satisfactory way.
This is because some of the requirements listed above are somewhat conflicting
(e.g. hardness of the challenge vs. system performance or vs. unpredictability
of the solver), and they are unlikely to be achieved and maintained in an open
environment where governance is realized through consensus, and where peers
can behave selfishly also by colluding in a variety of ways.

For example, in [16] it is shown that, for a mining pool using the current
implementation of Bitcoin and having a good control on information flow, the
revenues earned using a special mining strategy called selfish-mine grow super-
linearly with the pool size when compared to the revenues using an honest
strategy, no matter what is the initial size of the pool. This way, a selfish
pool could eventually grow to become a majority and control the system, even
if the initial fraction of its hashing power is arbitrarily small. To prevent the
success of such strategy, the authors of [16] propose a modification of the Bitcoin
protocol setting up a threshold of 25%, that is a value by far under the well
known theoretical threshold of 50%, showing that the Bitcoin protocol - despite
such modification - cannot be safe against the infringement of the so called
“Unpredictability of the solver”.

Let us also remark that the “Tunable difficulty” requirement entails a prob-
lematic trade-off between challenge hardness and system effectiveness. As the
challenges become harder, the peers are less incentivized in mining, and the
mean time required to verify a transaction through an adequate number of con-
firmations® becomes longer, affecting system performance. Conversely, if the
challenges become easier, the system performs better, but the consensus during
the blockchain construction becomes more difficult to maintain when branching
happens.

We can therefore state that the set of requirements for an effective mining is
difficult (if not impossible) to implement and maintain in practice. Thus, two
main questions are:

e what is the correct set of core requirements for blockchain-based systems?

e what are the most appropriate cryptographic mechanisms to implement
the above requirements?

3This last number depends indeed only on the relative hashpowers of miners, not on the
time required to find a nonce, as shown in [2].

4 An alternative to mining

In our opinion, an ideal blockchain-based system should reward its peers in
proportion to their engagement in guaranteeing the integrity of the service (due
care), not for their piles of resources (e.g. coins) owned within the system
and/or any computational effort in solving a nonsense problem. Since checking
for invalid transactions and assembling a valid transaction block (of appropriate
size) are easy computational tasks that can be performed by any peer in the
system, those cannot be used directly to assign a reward in the Bitcoin mining
style. However, they can be used as a mandatory requisite for a peer in order
to get a chance in having its block added to the blockchain (and eventually a
reward for that). And the idea of “getting a chance in winning something” is
tied to that of “raffle”, not to “mining”.

In this respect, we believe that the best principle is that of equity, which also
results the most appropriate to meet the requirement of “Unpredictability of
the solver”. Indeed, it sounds correct to assign the same success probability
to all the peers that are able to give corroborate evidence of their due care
in building the new current block; on the other hand, the uniform probability
distribution maximizes the uncertainty about the peer that will actually be in
charge of adding the new current block.

This way the function of protecting the integrity of the blockchain is not tied
to mining anymore, and proof-of-work or other computational tasks can be
decoupled by the management of the blockchain, or even eliminated.

However, an ideal setting would have blockchain-based systems that rewards

their peers for their effort in solving some useful and challenging problems.
Actually, we have different systems of this kind to date [1], but no one seems
to smartly conjugate the problem solving framework with a cryptocurrency. A
smooth, effective integration would give rise a new impetus to collaborative
computing, with great improvements in hardware/software resource utilization
and power efficiency.
In the context of the “raffle approach” sketched above for blockchain protection,
the incentives for peers to solve a given computational problem translate in a
natural way into a number of raffle tickets granted to a peer in proportion to its
effort in working at the problem. This way a new “proof-of-work” comes into
play, but with a different meaning and purpose than in [4] and Bitcoin: indeed
it proves that a peer actually worked on the right problem spending a precise
amount of effort.

With this ideas in mind we believe that a better design for a blockchain-based
protocol is a modular one consisting in what follows:

1. a multiparty raffle protocol, used to establish which is the peer A; (from
now preferably referred as agent instead of miner) in charge of adding the
new block to the blockchain among the agents A; selected by the following
module (2), or module (3), or both;

2. a proof-of-transcription scheme used to give a publicly verifiable, corrobo-
rate evidence that a specified agent A; assembled a new valid transaction

Figure 1: Overview of blockchain-based systems without mining.

block;

3. a proof-of-commitment scheme used to give a publicly verifiable, corrobo-
rate evidence that that a specified agent A; worked on a problem that the
system (through a coordinator/employer) wishes to support, spending on
it a given amount of computational effort;

4. a granting mechanism which allows to express the amount of effort ascer-
tained by modules (2) and (3) in terms of tickets for the raffle implemented
by module (1).

This way the design can encompass a large variety of blockchain-based systems
belonging to the following three main categories:

e systems that allow for a cooperative management of transactions related
to one or more resources, and that can optionally provide for the creation
of such resources. These systems require publicly verifiable corroborate
evidence that the transactions put in each block are valid and that they
are assembled according to prescribed rules. These systems are based on
a proof-of-transcription scheme and therefore we will refer to them in the
sequel as Verifiable Transcription blockchain-based systems, or VT systems
for short;

e systems that allow for a cooperative resolution of one or more computa-
tional problems.The requirement for these system is to get publicly veri-
fiable corroborate evidence about the amount of computational work per-
formed by agents in relation to such problems. Since these systems require
a proof-of-commitment scheme, we will call them Verifiable Commitment
blockchain-based systems or VC systems for short .

e systems that allow for both a cooperative solution of one or more computa-
tional problems and the management of transactions related to one or more

4In this context the utility of blockchain technology stems from the following circumstances.
There are usage scenarios, particularly when the solution of a problem is managed in a peer-
to-peer way without any support by a trusted third party, where the resolution transcripts
produced by peers must be validated by the network. In these cases, blocks can be used to
encode publicly verifiable resolution transcripts, and the chaining of blocks is useful to keep
track and to protect those transcripts from tampering.

resources. These systems require the coupling of a proof-of-commitment
scheme with a proof-of-transcription scheme and they will be denoted
as Verifiable Transcription and Commitment blockchain-based systems, or
VTC systems for short.

Figure 1 sketches a possible high-level design for a system that would be able
to cope with both the management of resources and the resolution of a given
computational problem through a network of peers, but in a way that either
cases can be optionally left out.

At this point, of course, it remains to establish which cryptographic primitives
are the most appropriate to realize the previous modules, and how these prim-
itives must be composed in order to get a secure protocol. The aim of the next
section is to sketch a possible solution.

5 A possible realization

In the following we shall use both terms and notations specifically introduced for
our proposal, and a bunch of symbols and terms inherited by the Bitcoin system,
although for the last mentioned we could consider slightly different notions or
implementations. Special symbols and terms that are specific of our design are
summarized in Table 1, whilst for the remaining items and their meaning the
reader will refer to [1], and in particular to the table of special symbols therein.

An agent A is a peer which can take part in building the blockchain and
which can play the roles of transactor or recipient as well. Moreover, there can
be special kinds of agents, depending on the specific implementation of the sys-
tem (see Sections 5.2 and 5.3).

Some of the special terms and notions already present in Bitcoin — used here
with a somewhat different meaning — are those of transaction, transaction block,
block header, digest and threshold.

A transaction has the same structure than in Bitcoin, although it has now a
mandatory field issue, whose value v is set according to a local counter or
timer of the transactor, and is protected through the transactor’s signature.

A transaction block or simply block B has the same structure and function than
in Bitcoin, but it lacks the generation transaction.

A block header H has a similar function than in Bitcoin, in that it serves both for
realizing the chaining among the different blocks and for storing data which give
corroborate evidence of the work performed by agents. However, in our design
block headers encompass also the function of the generation transaction. Thus,
by issuing Hj, agent A; can redeem per se the transaction fees collected for its
current block Bj, besides a predetermined grant in case the system provides
for the generation of new assets. More generally, H; allows A; to indicate an
amount of resources, benefits or coins as its potential reward, by means of:

o the transaction fees and a special H; field accounting for a certain amount
of new assets in a VT system;

e a special H; field which accounts for a predetermined reward by the co-
ordinator /employer in a VC system;

e the sum of the two previous incomes in a VT'C system.

It could be useful to remark in this respect that block headers are data records
whose fields are valued depending on the kind of blockchain-based system they
have to support. In particular, block headers have a field for storing specific
digests for proof-of-transcript tasks in the case of VT systems, and for proof-of-
commitment tasks in the case of VC systems. On the other hand, VT C systems
use two fields in order to keep track of both types of digests. We are going to
detail the specific structure of block headers in the next sections, with respect
to the kind of proof they are intended to.

A digest in our design is meant to be a fixed-length string obtained in a bunch
of ways depending on the usage context, whereas in Bitcoin digests are solely
obtained through cryptographic hash functions, i.e. functions having both the
properties of collision resistance and one-wayness [17, 18]. Indeed, as we are
going to detail later, digests DT for proof-of-transcription schemes require only
the collision resistance property, whilst collision resistance could be coupled
or not with the one-wayness property for digests D¢ in proof-of-commitment
schemes, depending on the usage scenario (see Sections 5.1 and 5.2).

Finally, the threshold T is a system-wide positive parameter as the difficulty
threshold in proof-of-work related systems. However, it will be used in a different
context and with a different purpose as explained in Section 5.3.

Two central notions in our approach are those of witness and ticket.

In the jargon of cryptographic protocols, a witness is a string sent by a party
to another party in order to: (a) give corroborate evidence to a receiver that a
given, univocally identifiable sender has done some private computation and/or
has got some secret and (b) allow the sender to keep such private computation
and/or secret undisclosed to the receiver until it has been verified [17, 19]. In our
design, according to the above goals, witnesses W are (preferably fixed-length)
strings returned by a function with the properties of one-wayness and existential
unforgeability [20]. Such kind of cryptographic data can be efficiently computed
from a wide range of inputs thanks to modern signature schemes [17].
Witnesses are computed by agents using a system-wide available signature
scheme (sgn, vrf). Each agent is supposed to have a secret signing key uniquely
bound to its public address A;> on the system. Moreover, A; is supposed to be
able to privately compute the witness W; by signing with algorithm sgn and
its secret key (a message consisting of some of the fields of) its current block
header H;. Each other agent A; is supposed to have got the public key uniquely
bounded to A; which allows to verify A; signatures thanks to algorithm vrf.
This way, when H; will be disclosed by A;, A; can check if there is a mismatch
between (the signed fields of) H; and W,. Witnesses allow for the chaining
of block headers (and related blocks) through the inclusion in H; of the field

5We use A; to indicate both an agent and its address, when there is no risk of confusion.

10

‘ Symbol | Meaning || Symbol | Meaning ‘
A Agent and its address v Number of transactions in a block
A* Super agent vy Current time
C Commitment (amount of work) || § Delay time
D¢ Commitment digest p Number of tickets
DT Transcription digest T Granting function
w Witness Q Raffle function
P Problem to be solved (sgn,vrf) | Signature scheme
(0] Oracle or prover prg Pseudo-random number generator
(X)2 Representation base 2 of X hsh Hash algorithm

Table 1: Special symbols and terms specifically introduced for the blockchain-
based system proposed in the present work.

WP which references to the previous block header, i.e. to the last block header
registered on the blockchain. Moreover, the witness mechanism coupled with
the digest fields allow an agent to attest the work done in relation to the current
block B7.

The notion of ticket is tied to the raffle protocol and it is a way to measure the
effort spent by an agent in doing a proof-of-transcript, or a proof-of-commitment
or both in terms of chances (or grants) to be rewarded for such work. Tickets
are first and foremost a way to establish which agents can take part to the next
“raffle extraction”, but they can also represent an implicit mechanism through
which agents get synchronized in the blockchain construction, as explained be-
low. The number of tickets p will be calculated from the measured computational
effort via a suitable efficiently computable granting function I.

We are going to give further details about the above notions and the other
ones listed in Table 1 in the following sections.

One crucial point in the design of a blockchain-based system is to define the
way in which the peers involved in the blockchain construction can synchronize
each other so to interleave their efforts and give rise to a unique blockchain. It
should be clear that such synchronization can be achieved through an explicit
“shared clock” mechanism or — alternatively — through an implicit “average-time
in doing work” mechanism analogous to that introduced in Bitcoin, which is tied
to the difficulty threshold of a proof-of-work [1]. Getting a trusted, network-
wide shared clock was presumably rejected in Bitcoin to avoid the use of a
trusted third party with its related scalability and single-point-of-failure issues.
However, we have nowadays direct experience of massively scalable distributed
systems whose nodes keep their local clocks in sync effortless. Our smartphones
and PCs do that thanks to loosely-coupling protocols like NTP [21]. On the
other hand, managing raffle extractions in a peer-to-peer network seems a little
bit more problematic than interlacing proof-of-work instances. Thus — at least in
the context of some usage scenarios for VC and VT C systems — we prefer to rely
on the stronger assumption of a trusted global time (see Section 5.3). When the
above requirement is difficult to achieve in practice, as when it is troublesome

11

to rely on a trusted third party, we can appeal to the implicit synchronization
mechanisms offered through the notion of ticket. Indeed, an agent has to satisfy
the condition “Minimum number of owned tickets to take part to the next
raffle” before proceeding. Therefore agents can get synchronized with respect
to such trigger points or, in case of VIT'C systems, the boolean AND between the
previous condition and the one asking an agent to correctly complete its proof-
of-transcription task. This way we have a synchronization mechanism similar to
that implemented in Bitcoin; however, it drives agents to work faster in doing
transactions management and/or in solving a problem assigned to them by a
coordinator/employer, rather than resulting in the so much “eco-unfriendly”
Nonce Rush.

In any case, on the basis of the above arguments, we will suppose throughout
the sequel that agents can keep effortless their local clocks in sync within a
reasonable tolerance® and without any detrimental effect on the scalability of
the system and its fault-tolerance.

5.1 Proof of Transcription

Transactions can be used to keep track of transfers of many kind of resources,
as exemplified by the many blockchain-based system introduced so far [1]. Each
new transaction must be verified by agents in order to ascertain three facts:
the identity of its transactor, whether the assets to be transferred are actually
owned by the transactor, and whether only the recipients satisfying the condi-
tions required by the transactor are accounted for such resources. Transcription
consists in work performed by an agent in order to assure that the transactions
managed through the system are valid and they are recorded in the blockchain
as prescribed. We will assume that the number v of transactions in a block
is a system-wide publicly available parameter which the system can adjust dy-
namically in order to adapt its workload to the amount of global transaction
traffic. Therefore, v can be fixed over time similarly to the difficulty threshold
of a proof-of-work in Bitcoin.

In the following we will suppose that the transactions announced on the
system’s network over time constitute a tamper-proof totally ordered set, i.e.
a set {Tl, e Th} for which neither its elements nor the order in which they
appear in the set can be changed by a unauthorized party. Such property can
be easily obtained in an efficient way on the basis of the following criterion: (a)
the lexicographic order of the system identifiers (addresses) of the agents that
issued such transactions and (b) the value of the issue field for any two or more
transactions having the same agent as transactor. The tamper-proof property
follows indeed from the fact that each transaction is cryptographically signed
by its issuer, so that its fields (included the issue and the issuer fields) cannot
be changed by the other parties.

This way each agent will be able to group the transactions heard on the sys-
tem network in blocks, each block being composed of exactly v ordered trans-

6The NTP protocol allows for an accuracy of 10 ms over the Internet and a much better
accuracy over smaller-scale networks.

12

YES -

Are they valid 1| T2 v
ered ? TJ | TJ

NO

Figure 2: The proof of transcription workflow for agent A;.

actions and no more data.

Let {le, . 7T;’} be the set of standard transactions collected by agent A; by
listening on the system’s network and ordered on the basis of the above crite-
rion. In order to proof its due care in building the current block B to be inserted
in the blockchain, A; proceeds as follows (see Figure 2).

1. A; controls the validity of each element by checking its fields and signa-
tures, and orders them correctly;

2. if the above verification step is passed then A; computes a suitable digest
for the set {le, ..., T}, called transcription digest (denoted as DjT), which
uniquely represents the above ordered set with overwhelming probability;

3. A; composes its own current block header H; which contains, among other
fields, the witness WP for the block header of the last valid block in the
blockchain, its public address A;, the current transcription digest DjT and
the tickets and issue fields in the header instantiated with the values p;
and +;, respectively. Then A; computes its current witness W; by signing
.

7
4. A; is now ready to take part to the raffle protocol.

Both fields tickets and issue have function and meaning that depend on the
specific system. The p; value is instantiated through the granting function I',
whilst ~; is the output returned by a local counter or clock.

As a consequence of the principle of equity described in Section 4, p; will be 0
or a fixed value in the case of VT systems, since in this context it indeed rep-
resents a boolean flag indicating if agent A; completed or not its transcription
task with due care. A common and natural choice is p; = 1 but, if the system
has to provide for the creation of a certain amount p > 0 of new assets, that
can be accounted through the assignment p; = p.

13

The field issue is usually used to keep track of the instant of time ~y; in which
header Hj is issued by agent A;; however, this value is actually used for man-
aging synchronization among agents just in some application scenarios where
it is possible to rely on a source of trusted global time (see Section 5.3 for an
example of this kind of usage).

__ Transcription digests DT in this context play a role similar to the root digests
D in Bitcoin. Likewise, they can be obtained through Merkle trees [22] or
some other kind of hashing algorithm hsh. However it can be useful to stress
here that, according to the use of these digests in our design, DT could be as
well obtained by giving the ordered set {le, ..., Ty} in input to a collision-
free, order-preserving compression function (e.g. a lossless data compression
algorithm).

5.2 Proof of Commitment

Commitment C consists in work performed by an agent in order to contribute
to the solution of a computational problem performed by the system on behalf
of a coordinator/employer (aka super-agent) A*. Let P be a computational
or decisional problem which A* must solve and for which A* knows an oracle
[23] or proof system [24] O so that each (partial) solution of P — or otherwise
computational effort C' in solving P — can be efficiently verified by evaluating
O(C). Then A* can ask the system (i.e. some or all the agents taking part in
the network) a support in solving P, giving to the involved agents a chance to be
rewarded proportionally to their effort. The commitment C' is a suitable data
which serves to measure the amount of job performed by each agent for solving
P; e.g. it consists of the number of bit/bytes of a solution for P, a subset of its
solutions, the set of values tested without success in a searching problem, and
SO on.

In any case we will assume that the super-agent A* can set-up an efficiently
computable granting function I' such that, for any possible value assumed by
C, I'(C) = p is a non negative integer. We will say that p is the number of
raffle tickets since this integer establishes how many chances has an agent which
performed the commitment C' on P in being the winner of the raffle protocol
(alternatively, p could indicate the grant given by A* to the winner). In order to
fix ideas and without loss of generality, we will suppose in the following that O is
a verification system owned by A* and which A* can decide to release as public
or to keep it private depending on its business, whilst the granting function
I' can be made available to all the agents without disclosing O. This way A*
can establish if it has to validate the commitments by itself (e.g. to keep them
secret), or if they can be validated by agents A;. Depending on these two cases,
as detailed in what follows, A* takes part or not in agent proofs-of-commitment
and in the construction of the current block header.

In order to proof its current commitment C; to the solution of P, A; proceeds
as follows (see Figure 3).

1. A; performs a certain amount of work C; in order to solve problem P, C;

14

NO

YES

Is commitment D C
T — D
all)

Figure 3: The proof of commitment workflow for agent A;.

being temporally related to the issuing of the current block B;

2. this step forks in two cases depending if commitment verification is per-
formed by A; or it is performed by the super-agent A*:

(a) A; verifies the validity of C; by evaluating O(C;) and, if the above
check is passed, then it computes the so called commitment digest,
denoted as D]-C, which uniquely represents with overwhelming prob-
ability Cj;

(b) alternatively, A; sends C; via a secure channel to the super-agent
A*, which verifies the validity of C; and in case of a positive response
returns to A; the commitment digest ch*;

3. A; composes its own current block header H; which contains, among other
fields, the witness WP for the block header of the last valid block in the
blockchain, its public identity A;, the current commitment digest (given
by DJC or DJC*, depending on step 2), and the header’s fields tickets
and issue instantiated with the values p; and +;, respectively. Then A;
computes its current witness W; by signing H;;

4. Aj; is now ready to take part to the raffle protocol.

Each problem in the Nondeterministic Polinomial time or in the Number P
complexity classes [25] is a possible problem P candidate. Indeed, problems
in both these classes admit some efficient algorithm that, given any candidate
solution for P, can verify if such candidate actually solves or not P.
Commitment digests DY can play in this context two main roles, depending
on the way the super-agent A* intends to ascertain the work performed by

15

agents on problem P. In case the commitment verification is left to agents A;,
commitment digests have no other scope than representing with a short encoding
the commitment C;, and it could be the case that D]C = C;. Conversely, D]C
must be an authentic token issued by A* from which any other party different
from A* (and A,;) cannot disclose C;. In this case, commitment digests can be
obtained as suitable signatures computed by A* on commitments.

Here witnesses W have the same function and processing than in the proof-
of-transcription scheme. They can give evidence to receivers that a given agent
performed a task without disclosing it, and they are the result of a signature
algorithm sgn on a message obtained by collating various fields (possibly all)
of a block header. If commitment verification is left to standard agents, it
could be the case that A; takes part to the current raffle by sending the couple
(pj, Wj) rather than (Hj;,W;). This way, at the cost of one more communi-
cation round for the raffle protocol, agents can keep secret their computations
(or their candidate solution) until a check for the candidate winner is required.
Other implementations are of course possible. For example, in the context of
verifications performed without a super-agent, agents could protect their (even-
tually large) computations or solution sets through the digesting mechanism,
by choosing as commitment digest the output of an hashing algorithm hsh.

5.3 The Raffle protocol

Our approach keeps the network operational through the work of a set of com-
peting agents, and the raffle protocol is its core. Likewise miners in Bitcoin,
in our approach agents are motivated to spend their effort to have a chance
and win a reward. Unlike miners, however, winners are selected among a set
of eligible agents in a way similar to what happens for the winner of a raffle.
Moreover — as we have discussed in the preamble — whilst miners synchronize
with each other on the basis of the average time they spend as a whole in doing
their proof-of-work, agents can get in sync with respect to the various raffle
extractions either with an implicit timing mechanism based on the tickets they
own, or by relying on a trusted “global clock” service.

A key point in designing a peer-to-peer protocol for eliciting a winner among
competing agents is scalability, and scalability turns out in a low number of ex-
plicit comparisons among the involved parties. In other words, each agent should
be able to establish with adequate confidence if it could be or not the winner by
performing only local computations. Since our approach would give rise ideally
to systems that allow for verification of both transactions and commitments in
real-time, our design aims to reduce communications among peers thanks to a
filtering mechanism which scales down in a tunable fashion the number of agents
that are eligible for the prize. The filtering mechanism is implemented through
a raffle function Q) and a threshold 7. The raffle function is an efficiently
computable function with the following properties:

e (2 takes in input binary strings and returns positive numbers;

16

e A) evaluation can be computed privately by each agent A; and it is
uniquely tied to agent A; through its current witness Wj;

e When agent A; publishes its current couple (H;, W;), then any other
agent can recompute the value obtained at the previous step by A; for
verification.

Two possible simple choices for Q) satisfying the above properties are:
N (X) = (prg(X))2, Q2(X,Y) = |(hsh(X)2 — (hsh(Y))2],

where prg and hsh respectively denote a suitable pseudo-random generator and
a suitable hash algorithm, and X,Y are two input for those algorithms.

The threshold 7 is a positive integer which sets a limit (above or below) for useful
values obtained through the raffle execution:only agents that on the basis of
their private computations of 2 satisfy the constraint imposed by 7 are eligible
for participating to the final comparison to select a unique winner. Filtering
mechanisms related to the above choices for 2 are given for example by:

max{Q,(W;),..., Q% "(W,)} > 7
min{Q (W;),..., Q0 " (W,)} <
min{Qg(Wp,Wj),...,QQ(Wp,hshpjfl(Wj))} < T,

where p; is the number of tickets owned by A; for the raffle execution, Q7 is
the nth functional power of 7 and alg™(X) denotes the iterative application
of n runs of algorithm alg to input X.

In the following we sketch a possible raffle protocol under the assumption
of the existence of a trusted global clock, e.g. in case of VC and VTC systems
when the verification of commitments is performed by the super-agent, and by
using o and 7 as described above. In this context, the delay time ¢ defines the
minimum elapsed time any agent has to wait in order to proceed in processing
information collected through the system network. It can be preset within the
system on the basis of its network performance, and it can be publicly verified
against the issue field recorded and signed in the messages exchanged among
system nodes during a raffle’s winner verification.

Raffle Execution To take part to the current raffle, A; proceeds as follows.

E1 A; uses the last witness WP stored in the blockchain and its own
current witness W; in order to compute the p; non negative inte-
gers Qo(WP, W;) ... Qo(WP hsh?i—1(W;)), where p; is the number
of tickets it has earned for the current raffle;

E2 A; computes its own draw value
7j = min{Qa (WP, W;) ... Qo(WP hsh? ~1(W;))};

E3 iff 7; < 7 then A; broadcasts the couple (H;, W;) over the network
for verification;

17

RAFFLE EXECUTION RAFFLE VERIFICATION

T

= min{Qa(WP W) . .

A

- QWP i (W)}

EI R

™ = min{T;, T}
[E]

Tl'l'llﬂ

leadsto a
valid couple

MRP Aj's copy of blockchain

Figure 4: The raffle protocol workflow.

Raffle Verification To verify raffle executions by other agents, A; proceeds
as follows.

V1 For each current block B; from A; satisfying the time constraint im-
posed through the system delay time 0:

’Yp<%'§’yp+57

where ? is the issue time of the last block stored in the blockchain,
A; does the computations at steps E1 and E2 using as input W; and
p; and obtaining as output 7;;
V2 A; finds the minimum draw value 7™ among the draw values 7;
computed at the previous step and its value 7;;

V3 if 7™ corresponds to a valid couple (H;, W;) from A;, then A; reg-
isters H; as the new current block in its copy of the blockchain,
otherwise A; broadcasts over the network an exception towards A;
to blacklist it for the next raffle extraction, and performs the previous
step again until a valid couple (H;, W;) is found;

Raffle Exit A; is now ready to take part to the next raffle.
A winner agent is an agent satisfying the following requisites:

e it has issued a valid current block (in terms of its fields and their match
with the witness);

e it has actually got the minimum riffle value;

18

e it did not receive any valid exception for the previous raffle;
e it signaled each cheating agent in the previous raffle, if any.

In general there could be multiple agents which have got the same minimum
draw value 77" (which could possibly be zero), and in this case a unique winner
can be selected on the basis of one or more additional criteria that are objectively
verifiable, such as the highest number of owned tickets, the minimum value
registered in the issue field of the block header, the highest witness (if viewed
as a base 2 representation), and so on.

Our approach encompasses instances of the raffle protocol for which the
selection of the winner does not require a majority consensus. That has the
advantage of reducing drastically communications (step V1) and avoiding com-
parison at all (step V2) among agents, but at the cost of riffles without winners.
For example, with reference to the raffle protocol sketched above, the threshold
7 = 1 would correspond to find a collision in the hashing algorithm hsh, an
extremely rare event if hsh is a cryptographically strong hashing algorithm and
the overall number of tickets owned by the competing agents is much less than
Q‘hSh‘/Q, where |hsh| denotes the length of the hash digests returned by hsh. In
such cases, an approach to counter the occurrence of “null” raffles and the re-
lated decay in system performance could be implemented through a super-agent
which is used to store the prize for the next winner” and to add a block of its
choice among a suitable set of valid couples (H, W).

6 Conclusions

In this work we pointed out the unsustainability of mining in case of massive
large-scale blockchain-based system. We found that cryptocurrency systems like
Bitcoin are potentially energy inefficient when projected to a global scale, and
are prone to several risks of malicious control. Moreover the Nonce Race coupled
with the consensus mechanism, as we also largely discussed in [1], entails serious
drawbacks, and results ultimately in systems that are very far from achieving
transaction validation in real-time.

Starting from such weakness, and after isolating the basic concepts behind
mining, we sketched possible alternatives for the maintenance of blockchain-
based systems. We considered security issues, incentives, as well as competitive
and collaborative opportunities, and we proposed a framework of concepts and
algorithms to implement blockchain-based systems for different contexts.

We expect to develop a prototype of a blockchain-based system with the
raffle protocol in the near future.

"This results in a kind of raffle similar to the Italian game “Gratta e vinci”.

19

References

1]

Pasquale Forte, Diego Romano, and Giovanni Schmid. Beyond bitcoin -
part it A critical look at blockchain-based systems. Cryptology ePrint
Archive, Report 2015/1164, 2015. http://eprint.iacr.org/.

Satoshi Nakamoto. Bitcoin: A peer to peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Advances in Cryptology - CRYPTO092, pages 139-147. Springer,
1993.

Markus Jakobsson and Ari Juels. Proofs of work and bread pudding proto-
cols. In Proceedings of the IFIP TC6/TC11 Joint Working Conference on
Secure Information Networks: Communications and Multimedia Security,
CMS 99, pages 258-272. Kluwer, B.V., 1999.

Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake. https://wallet.peercoin.net/assets/paper/
peercoin-paper.pdf, 2012.

Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of
activity: Extending bitcoins proof of work via proof of stake. In SIG-
METRICS 2014 Workshop on Economics of Networked Systems, NetEcon.
ACM, 2014.

Hass McCook. An order-of-magnitude estimate of the relative sustainabil-
ity of the bitcoin network. https://www.academia.edu/7666373, 2015.
Accessed: 2016-01-29.

Jonathan G Koomey, Stephen Berard, Marla Sanchez, and Henry Wong.
Implications of historical trends in the electrical efficiency of computing.
Annals of the History of Computing, IEEE, 33(3):46-54, 2011.

Blockhain.info charts. https://blockchain.info/charts/. Accessed:
2016-02-11.

Joshua A Kroll, Tan C Davey, and Edward W Felten. The economics of
bitcoin mining, or bitcoin in the presence of adversaries. In Proceedings of

WEIS, volume 2013. Citeseer, 2013.

CoinDesk. State of bitcoin and blockchain 2016. http://www.
coindesk.com/research/state-bitcoin-blockchain-2016/, 2015. Ac-
cessed: 2016-02-11.

Bceg classics revisited: The rule of three and four. https:
//www.bcgperspectives.com/content/articles/business_unit_

strategy_the_rule_of_three_and_four_bcg_classics_revisited/.
Accessed: 2016-02-11.

20

[13]

[14]

[15]

[21]

22]

Adam Back. Hashcash — a denial of service counter-measure.
http://www.hashcash.org/papers/hashcash.pdf, 2002. Accessed: 2016-05-
15.

Nick Szabo. Bit gold. http://unenumerated.blogspot.it/2005/12/
bit-gold.html, 2008. Accessed: 2016-05-15.

Joshua Kolden. Bitcoin@stack exchange: What are bitcoin “con-
firmations”? http://bitcoin.stackexchange.com/questions/146/
what-are-bitcoin-confirmations/160#160. Accessed: 2015-11-29.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Financial Cryptography and Data Security, pages 436-454.
Springer, 2014.

Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 2010.

Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function
basics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In Fast Software En-
cryption, pages 371-388. Springer, 2004.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of cryptology, 1(2):77-94, 1988.

Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281-308, 1988.

David Mills, Jim Martin, Jack Burbank, and William Kasch. Network time
protocol version 4: Protocol and algorithms specification. IETF RFC5905,
June, 2010.

Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Advances in CryptologyCRYPTOS87, pages 369-378. Springer,
1988.

Eric Bach and Jeffrey Outlaw Shallit. Algorithmic Number Theory: Effi-
cient Algorithms, volume 1. MIT press, 1996.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186—-208, 1989.

Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in com-
munication complexity theory. In Foundations of Computer Science, 1986.,
27th Annual Symposium on, pages 337-347. IEEE, 1986.

21

