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ABSTRACT
Proof of liabilities (PoL) allows a prover to prove his/her liabilities

to a group of verifiers. This is a cryptographic primitive once used

only for proving financial solvency but is also applicable to domains

outside finance, including transparent and private donations, new

algorithms for disapproval voting and publicly verifiable official

reports such as COVID-19 daily cases. These applications share

a common nature in incentives: it’s not in the prover’s interest

to increase his/her total liabilities. We generalize PoL for these

applications by attempting for the first time to standardize the goals

it should achieve from security, privacy and efficiency perspectives.

We also propose DAPOL+, a concrete PoL scheme extending the

state-of-the-art DAPOL protocol but providing provable security

and privacy, with benchmark results demonstrating its practicality.

In addition, we explore techniques to provide additional features

that might be desired in different applications of PoL and measure

the asymptotic probability of failure.
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1 INTRODUCTION
Companies that accept monetary deposits from consumers, such

as banks and blockchain custodial wallets, are periodically being

audited for accounting and oftentimes financial solvency purposes.

A company being solvent means that it has enough assets to pay its

customers. In other words, the amount of total assets owned by the

company is no less than its total liabilities (customers’ deposits).

Insolvency occurs not only when a company makes bad invest-

ments but also due to panic, i.e., lack of trust from its customers that
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it’s running in a healthy and solvent state. Furthermore, the panic

can spread to other companies to which the insolvent company

owes money, and lead to a domino effect, i.e., an insolvency of one

company can lead to a “cascade” of insolvencies [61].

Without proper regulation and protection, customers are not

able to get deposits back in full when the bank becomes insolvent.

Americans lost $140 billion due to bank failures in the Great De-

pression by the time the Federal Deposit Insurance Corporation

(FDIC) [44] was created. Similar tragedies of bankruptcy and money

loss occur in the cryptocurrency world as well, even with newly

emerging technologies. A number of exchanges, a type of custodial

cryptocurrency wallets taking users’ deposits and trading on their

behalf, have lost their deposits and declared bankruptcy. At the

collapse of Mt. Gox, one of the oldest exchanges in Bitcoin’s history,

over $450M in customer assets were lost [52].

Traditionally, to secure customer’s deposits, a third party au-

ditor undertakes the role of verifying solvency by crosschecking

transaction records in the company books. However, this is not suf-

ficient to guarantee that the reported amount of total liabilities of a

company is correct. First of all, the records can be manipulated and

the auditor can hardly find out unless he confirms with the corre-

sponding customer. Even if he does so, a misbehaving company can

omit some accounts and report smaller liabilities. In addition, the

auditor can learn sensitive information during the auditing, includ-

ing the company’s individual liabilities (each user’s balance) and

possibly transaction histories. More importantly, customers can-

not tell whether an auditor is colluding with the company [42, 72].

Therefore, to preserve stability and public confidence in financial

systems, we need a transparent and reliable audit of solvency.

Decentralized solutions [8, 13, 19, 20, 25, 73] that require cus-

tomers to jointly participate on the auditing process have been

recently proposed as an alternative or complementary method to

conventional auditing. Decentralized auditing places less trust on

auditors and is more promising because customers can make sure

their own balances are not omitted, which cannot be achieved by

centralized auditing solely. There is a rising demand in standardiz-

ing proof of solvency in the digital assets industry [20, 56].

Proof of liabilities (PoL) [73] is a cryptographic primitive to solve

one half of solvency auditing, the other half being proof of reserves.

The goal of PoL is to prove the size of funds a bank owes to its

customers. Most of existing schemes follow the same principle: a

prover aggregates all of the user balances using some accumulator

and consumers can verify balance inclusion in the reported total

amount. This process is probabilistic and the more the users that

verify inclusions, the better the guarantee of a non-cheating prover.

We provide a formal analysis of failure probability of PoLs.

While PoL seemed limited to custodial services, DAPOL [20]

made the first attempt to apply it to a wide range of applications

where an entity (prover) needs to transparently publish an absolute

value that represents its total obligations against a set of users and
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allow users to individually verify the inclusion of the prover’s liabil-

ities to them. For example, a charity can use PoL to prove the total

amount of funds raised to donors for transparency. Non-financial

use cases include anything related to obligations or negative re-

views, including reporting COVID cases and complaining about

harmful speech. We revise the applications mentioned in DAPOL

and provide a complete list in appendix A. These applications, in-

cluding PoL for solvency, share a common nature in participants:

there is no incentive for the prover to exaggerate (over-report) the

total liabilities; there is an incentive for individuals to make sure

their values are included in the reported total liabilities. The con-

cepts of “liability” and “incentives” are crucial in the formalization

of PoL constructions because they relax the security requirements,

i.e., there’s no need to prevent the prover from arbitrarily adding

dummy values for “fake” users without being detected.

Existing PoL works [13, 19, 20, 25, 73] target the same security

goal, i.e., the prover cannot cheat without detection, but privacy

against customers to different extents varies between the two ex-

tremes of leaking everything such as individual liabilities and num-

ber of customers and leaking no side information at all. DAPOL

aims to provide the latter extreme for the solvency case but lacks

formal PoL definitions and security proofs for the scheme. We for-

malize PoL and propose DAPOL+, a concrete design of PoL extend-

ing DAPOL. DAPOL+ provides provable security and privacy, and

indicates that a PoL leaking no side information at all is possible.

Apart from the basic security and privacy, different applications

might desire different additional features. E.g., in applications ac-

cepting updates in individual liabilities such as negative reviews

and solvency, a prover may need to preserve privacy for two se-

quential PoLs before and after the updates. Additionally, the prover

knowing which user verified inclusions for the previous PoLs may

be able to predict which are less likely to perform verifications thus

there is a lower risk to omit the liabilities to these users. Therefore,

another desired property is to hide the identities of users that query

for proofs. We study these additional features and explore solutions.

Our major contributions are as follows:

• We formalize PoL as a general cryptographic primitive for

applications not limited to financial uses, and make the first

attempt to standardize the goals for PoL from three aspects:

security, privacy and efficiency;

• We propose DAPOL+, the first PoL scheme with provable

security and strong privacy, and demonstrate its practicality

by benchmarking a proof-of-concept (PoC) implementation;

• We categorized additional features desirable in different ap-

plications and propose solutions and accumulator variants;

• We analyze failure probability, i.e., the probability that a

malicious prover evades detection when a subset of users

verify proofs, aiming to provide insights on the effectiveness

of distributed verification.

Paper Organization. We compare existing schemes from aspects

of security, privacy and efficiency in section 2. We formalize secu-

rity and privacy for PoL in section 3. In section 4, we introduce

DAPOL+, discuss accumulator variants and explore additional fea-

tures optional in various applications. In section 5, we analyze fail-

ure probability. We benchmark a PoC implementation of DAPOL+

to demonstrate practicality in section 6 and conclude in section 7.

2 RELATEDWORK
There have been a few PoL schemes proposed in the literature [13,

19, 20, 25, 73]. They follow the same basic idea: the prover commits

to the total liabilities and each individual user checks if the prover’s

liabilities to him/her is properly included. In this section, we review

these protocols and compare the following aspects of them:

• Security. In a PoL protocol, the prover should not be able to

cheat (claiming a smaller value than the fact) about the total

liabilities without being detected by any verifier.

• Privacy.Different applications require different extents of pri-
vacy for PoL protocols. In the fundraising case, for example,

donors might wish to keep the amounts of their donations be-

tween the charity organization and themselves, and conceal

from a third party. We call this privacy of individual liabil-

ities. In the proof of solvency case, in contrast, this might

not be sufficient. The total liabilities of a bank/company and

the number of its users could be sensitive information about

its business, so a good PoL should preserve the privacy of

them. Privacy guarantees that no adversary can learn any

information they shouldn’t throughout the execution of the

protocol. We give a formal definition of privacy in section 3.5.

For demonstration, we examine the privacy of total liabilities,

the number of users and individual liabilities in this section.

• Efficiency. The efficiency of a PoL protocol include that of the

proof generation time, verification time, individual proof size

and the commitment size on the public bulletin board (PBB).

The first three are straightforward as it is always desired to

minimize the computation and bandwidth complexities for

protocol participants. A PBB is a piece of universally accessi-

ble and append-only memory allowing everyone to have the

same view of the contents [41]. A PBB is necessary in a PoL

protocol to prevent the prover from committing different

total liabilities to users and cheating without being detected.

Although PBB has been a standard assumption in cryptogra-

phy for tens of years, implementing a PBB is not cost free.

Today, blockchains are widely considered to be a practical im-

plementation of a PBB [33], but writing data on a blockchain

could be expensive. E.g., on Ethereum, a blockchain with the

second largest crypto market cap [24], writing 1KiB costed

approximately $140 [26, 74] on May 5, 2021. This is imprac-

tical for an entity with 1M users to prove liabilities. The

expensive cost stems from the strong guarantees we assume

for a PBB, as implicated by the CAP theorem [36, 48] and

the Blockchain Trilemma [67]. Therefore, a practical PoL

scheme should minimize the data written on a PBB.

We summarize the comparisons in table 1. Note that indicates

the property is not guaranteed, indicates it is guaranteed, and

indicates the design only provides a partial solution.

Maxwell-Todd.Maxwell and Todd [73] proposed a summation

Merkle tree construction to prove total liabilities. Merkle trees are

a data structure enabling a set owner to prove element membership

in the set efficiently. In their design, each customer is mapped to a

leaf node in the tree. Each node in the Merkle tree not only has a

field of hash ℎ , but also a value 𝑐 . The 𝑐 field in a leaf node indicates

the prover’s liabilities to the user, denoted by 𝑙 , and that in an

internal node is the sum of the values in its two child nodes 𝑙𝑐ℎ



Table 1: Comparison between existing schemes for PoLiab.

Security Privacy Efficiency

Scheme

vulnerability

Known

liabilities

Total

Population

liabilities

Individual

time

Proving

time

Verification

size

Proof

size on PBB

Commitment

Maxwell-Todd [73] [43] 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (1)
Maxwell+ [43] - 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (1)
Maxwell++ [19] - 𝑂 (𝑛 ·𝑀) 𝑂 (log(𝑛 ·𝑀)) 𝑂 (log(𝑛 ·𝑀)) 𝑂 (1)
Camacho [13] [43] 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (1)
Provisions [25] - 𝑂 (𝑛 + 𝐵) 𝑂 (𝑛 + 𝐵) 𝑂 (1) 𝑂 (𝑛 + 𝐵)
DAPOL [20] - 𝑂 (𝑛 ·𝐻 ) 𝑂 (𝐻 ) 𝑂 (𝐻 ) 𝑂 (1)
DAPOL+ - 𝑂 (𝑛 ·𝐻 ) 𝑂 (𝐻 ) 𝑂 (𝐻 ) 𝑂 (1)

and 𝑟𝑐ℎ , i.e., 𝑐 = 𝑐𝑙𝑐ℎ + 𝑐𝑟𝑐ℎ . For the hash field, unlike hashing

the concatenation of two child nodes in a standard Merkle tree,

i.e., ℎ = H(ℎ𝑙𝑐ℎ | |ℎ𝑟𝑐ℎ ), Maxwell-Todd includes the value field at

hashing, i.e., ℎ = H(𝑐 | |ℎ𝑙𝑐ℎ | |ℎ𝑟𝑐ℎ ). For each leaf node mapped to a

user, ℎ = H(𝑐 | |𝐶𝐼 ), where 𝐶𝐼 is the credential information of the

user. We demonstrate in fig. 1 a summation Merkle tree for 4 users.

P generates the summation tree and commits the Merkle root

(ℎ𝑟𝑜𝑜𝑡 , 𝑐𝑟𝑜𝑜𝑡 ) to a PBB. The value 𝑐𝑟𝑜𝑜𝑡 is the amount of P’s total
liabilities. A user queries the prover for a Merkle proof to make

sure the amount is included in the tree. For instance, in fig. 1, the

prover sends the Merkle path (ℎ2, 𝑐2), (ℎ6, 𝑐6) to User 1. Possessing

(ℎ1, 𝑐1), User 1 computes 𝑐 ′
5
= 𝑐1 + 𝑐2 and 𝑐 ′

7
= 𝑐 ′

5
+ 𝑐6, and checks

if 𝑐 ′
7
= 𝑐𝑟𝑜𝑜𝑡 . And similarly for the hash field.

Assuming there are 𝑛 users, P’s proof generation time is 𝑂 (𝑛)
and the complexities of the individual proof size and verification

time are both𝑂 (log𝑛). The commitment size on the PBB is constant

𝑂 (1). However, there is a security flaw in the design and the prover

is able to claim smaller liabilities [43], i.e., a malicious prover can

set the value field 𝑐 = max(𝑐𝑙𝑐ℎ , 𝑐𝑟𝑐ℎ ) while also being able to

generate inclusion proofs that pass verifications successfully. We

demonstrate the flaw by an example in appendix B.1. Moreover, this

scheme doesn’t provide any privacy of our concern here. The value

of the total liabilities is public, and the population 𝑛 and individual

liabilities can be inferred via inclusion proofs. For example, each

user observes the prover’s liabilities to a user next to him/her in

the Merkle tree via the proof. The right-most user can infer the

population by the position of his/her leaf node in the tree, and

everyone can speculate 𝑛 by the tree height.

Figure 1: Summation Merkle tree constructions in Maxwell-
Todd, Maxwell+ and Camacho.

Maxwell+. We refer by Maxwell+ the Maxwell-Todd’s protocol

adopting the fix in [43]. The fix is demonstrated in fig. 1, modi-

fying the merge function of the hash field to include both values

and hashes of child nodes, i.e., ℎ = H(𝑐𝑙𝑐ℎ | |𝑐𝑟𝑐ℎ | |ℎ𝑙𝑐ℎ | |ℎ𝑟𝑐ℎ ). In-
tuitively, this binds the value of each node in the parent hash to

provide verifiability and prevent the prover from manipulating the

values on the Merkle path. Maxwell+ doesn’t introduce additional

complexity on proving/verification time and proof/commitment

size; it does not offer better privacy than Maxwell either.

Maxwell++. Maxwell++ [19] is a protocol extending Maxwell+

to provide privacy of population and individual liabilities. Maxwell++

splits individual liabilities into small units and shuffles them, then

maps each unit to a leaf node in a summation Merkle tree. Denoted

by 𝑀 , the splitting factor is the average number of entries each

user’s value is split into. The data written on the PBB is still 𝑂 (1),
but the proving time is𝑂 (𝑛 ·𝑀) and the proof size and verification

time are increased to 𝑂 (log(𝑛 · 𝑀)), because the number of leaf

nodes is 𝑛 ·𝑀 . This scheme provides privacy of the number of users

and individual liabilities to some extent highly depending on the

selection of𝑀 . The greater𝑀 is, the better the privacy Maxwell++

provides and the higher the complexity it ends up with. Full privacy

is achieved only when each user’s value is split into the smallest

possible unit, but this would be inefficient. Therefore, we say that

Maxwell++ offers partial privacy. Besides, Maxwell++ still cannot

conceal the total liabilities.

Camacho. Camacho [13] proposed a PoL protocol guarantee-

ing privacy of individual liabilities and total liabilities by using

homomorphic commitments, Pedersen commitments in particular,

and zero-knowledge range proofs (ZKRPs). Cryptographic commit-

ments guarantee hiding (an adversary cannot learn the value from

the commitment) and binding (a prover cannot open the commit-

ment to a different value). Denote by Com(𝑙, 𝑏 ) a commitment to

𝑙 ∈ Z𝑞 , where𝑏 is the blinding factor randomly selected from Z𝑞 . By
homomorphism, Com(𝑙1, 𝑏1) · Com(𝑙2, 𝑏2) = Com(𝑙1 + 𝑙2, 𝑏1 + 𝑏2).
Details about Pedersen commitments are in appendix C.3. As de-

picted in fig. 1, Camacho’s scheme is based on Maxwell-Todd’s

construction, but replaces the value field in each node with its Ped-

ersen commitment to hide the value. When required to reveal the

total liabilities to an eligible auditor, the prover can open the com-

mitment in theMerkle root with the blinding factor. The prover may

also prove the range of the total liabilities with the commitment.

To prove inclusion of the prover’s liabilities to a user, the prover

sends a Merkle proof as always. However, that’s not sufficient



because there might be an overflow when multiplying two commit-

ments, i.e., Com(𝑙1 + 𝑙2, 𝑏1 +𝑏2) is opened to a smaller value (𝑙1 + 𝑙2)
mod 𝑞 when 𝑙1 + 𝑙2 ≥ 𝑞. Therefore, the prover additionally gener-

ates a ZKRP for each commitment on the Merkle path to prevent

overflows. ZKRPs guarantees that the committed value is within a

certain range without leaking the value, details in appendix C.4.

Camacho guarantees privacy of individual liabilities and total li-

abilities, but not the number of users. It doesn’t address the security

flaw in Maxwell-Todd’s summation Merkle tree either.

Provisions. Provisions [25] also uses homomorphic commit-

ments and zero-knowledge proofs to preserve the privacy of liabili-

ties but without using a Merkle tree. The prover simply publishes a

commitment to his/her liabilities to each user with a range proof

on the PBB. Each user verifies that his/her commitment and all

range proofs are valid. A commitment to the total liabilities can be

extracted by multiplying all commitments on the PBB. Provisions

attempts to obscure the number of users by padding with dummy

users. Denoting by 𝐵 the number of dummy users padded, the prov-

ing and verification time, and the commitment size on the PBB

are 𝑂 (𝑛 + 𝐵). Each verifier only receives a blinding factor of their

commitment for verification so the proof size is constant. Since

the complexity grows with 𝐵 and 𝐵 determines the level of privacy

provided, we say that privacy of population is partially satisfied.

If there is a third party auditor verifying the range proofs for all

commitments, each user only needs to verify that a valid commit-

ment to his/her amount is on the PBB. In this case, the verification

complexity for each client is 𝑂 (1) while 𝑂 (𝑛 + 𝐵) for the auditor.
The most severe practicality issue here is the massive data com-

mitted on a PBB. For example, the commitment size is over 8GiB

when 𝑛 +𝐵 = 1𝑀 [25]. Even if the prover writes only the hash of all

commitments on the PBB, each user will need to download all the

commitments to verify consistency with the hash, which makes the

bandwidth complexity intolerable. Provisions argued against the

use of a Merkle tree by claiming that the proof size for each user will

be several hundred KiB due to the expensive ZKRPs for multiple

commitments. However, this is out-dated. Using Bulletproofs [11],

which hadn’t been proposed at the time of Provisions’ publishing,

the range proofs can be aggregated so the size can be much smaller,

only a few KiB for each user as we show in section 6.2.

DAPOL. DAPOL [20] builds on Camacho adopting the fix in [43]

and using sparseMerkle trees (SMT) to hide the number of users. As-

suming the maximum potential population is 𝑁 , the sparse Merkle

tree is of height 𝐻 ≥ ⌈log𝑁 ⌉. Each user is mapped to a random

bottom-layer node in an empty SMT. The prover then builds this

tree with minimal nodes such that each node either has two child

nodes or none. We call the nodes with no child and not mapped to

a user padding nodes, each with a commitment to 0. The number of

nodes in an SMT is𝑂 (𝑛 ·𝐻 ), thus the proving time is𝑂 (𝑛 ·𝐻 ). Each
inclusion proof consists of 𝐻 tree nodes and range proofs, thus the

proof size and verification time for each user are both 𝑂 (𝐻 ).
DAPOL targets full privacy of the population but its padding

node construction is flawed, probably due a typo. Padding nodes

have a hash field ℎ = H(“𝑝𝑎𝑑”| |𝑖𝑑𝑥), where 𝑖𝑑𝑥 is the unique iden-

tifier of a node, e.g., a natural number, or (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) such as

(3, 001) for Node 2 in fig. 1. The input toH(·) is deterministic, so

is the hash of a padding node, making padding nodes distinguish-

able from nodes of other types. Thus given an inclusion proof with

padding nodes at heights {𝑥1, · · · , 𝑥𝑚} (root at height 0), the popu-
lation can be bounded within range [𝐻 −𝑚 + 1, 2𝐻 −∑𝑚𝑖=1 2𝐻−𝑥𝑖 ].
An example of this privacy leak is presented in appendix B.2. Be-

sides, DAPOL utilizes expensive verifiable random function (VRF)

to construct SMT without clarifying necessity. Additionally, each

user is mapped to a leaf node in a verifiable way in DAPOL, i.e., a

user’s ID determines which leaf node to map. Therefore, there is a

chance that more than one user is mapped to the same leaf. E.g., if

there are 1M users and the tree height is 32, it’s almost certain that

this will happen. To avoid collision, the tree height needs to be suffi-

ciently large, leading to higher complexities of proving/verification

time and proof size. Moreover, DAPOL lacks formal analysis of its

security and privacy.

3 DEFINITIONS
There has not been a satisfactory formal definition of PoL so far.

The authors of Provisions only presented the security definitions

of proof-of-solvency which consists of PoL as a subtask, and infor-

mally the properties their PoL protocol satisfies. As mentioned, in

some applications the prover may want to keep the number of users

secret. In the definitions in Provisions, however, the population is

assumed to be public by default. Because of this, their security defi-

nitions are scheme specific, not applicable for the examination of

other protocols such as DAPOL which aims to provide population

privacy. In contrast, DAPOL generalizes PoL for a wider range of

applications and provides a better privacy definition allowing the

population to be concealed. Nevertheless, it mixes the failure proba-

bility of distributed auditing in the security definition thus makes it

tedious. In this section, we address these issues and formalize PoL

as a generalized cryptographic primitive for various applications

with minimal security requirements.

3.1 Entities
A generalized PoL protocol PoL involves two entities:

• Users: Denoted byU = {𝑢1, · · · , 𝑢𝑛}, this is a set of 𝑛 users.

• Prover : Denoted by P, the prover is the subject liable to the

users for certain obligations. For example, in the proof-of-

solvency case, P is liable to users in U for their deposits.

Note that P has no incentive to increase the total liabilities.

3.2 Functions
A PoL consists of algorithms defined as below:

• Setup: (𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵). Executed by P, the prob-
abilistic polynomial-time (p.p.t.) algorithm takes as input 𝜅,

the security parameter, and 𝐷𝐵 = {(𝑖𝑑𝑢 , 𝑙𝑢 )}𝑢∈U , the data
set of user ID and individual liability pairs, and outputs 𝑃𝐷 ,

the public data committed on the PBB, and 𝑆𝐷 , P’s private
data which is kept secret. Note that for each user 𝑢 ∈ U, 𝑖𝑑𝑢
and 𝑙𝑢 denote 𝑢’s ID and P’s liabilities to 𝑢, respectively.
• ProveTot: (𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷). Executed by P, the
polynomial-time algorithm takes as input the data set 𝐷𝐵

and P’s private data 𝑆𝐷 , and outputs P’s total liabilities 𝐿
and its associated proof Π.



• VerifyTot: {0, 1} ← VerifyTot(𝑃𝐷, 𝐿,Π). Given the total lia-

bilities 𝐿 and its associated proof Π, anyone can audit the

validity of 𝐿 according to the public data 𝑃𝐷 committed by

P on the PBB. The polynomial-time algorithm returns 1 if

the verification succeeds and 0 otherwise.

• Prove: 𝜋 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑). Executed by the prover, the

polynomial-time algorithm takes as input the data set 𝐷𝐵,

P’s private data 𝑆𝐷 and a user ID 𝑖𝑑 , and outputs a proof 𝜋

indicating the inclusion of P’s liabilities to the user in the

total liabilities.

• Verify: {0, 1} ← Verify(𝑃𝐷, 𝑖𝑑, 𝑙, 𝜋). Executed by a user, the

polynomial-time algorithm takes as input the public data

𝑃𝐷 committed by P, the user’s ID 𝑖𝑑 , P’s liabilities to the

user 𝑙 and the associated inclusion proof 𝜋 . It returns 1 if the

verification succeeds and 0 otherwise.

A PoL is a collection of the algorithms as defined above, i.e.,

PoL = (Setup, ProveTot,VerifyTot, Prove,Verify). Note that we de-
fine ProveTot and VerifyTot as above for simplicity and generality.

In some scenarios, it may not be the exact value of P’s total lia-
bilities that is of concern, but the range the total liabilities falls

in or its comparison with another value. Depending on the actual

requirements of a particular application, instead of revealing the

total liabilities for verification, the prover might compute different

verifiable claims about it. For instance, if we are only interested

in solvency but not the exact values of liabilities and assets, the

prover may generate a zero-knowledge proof showing that the total

liabilities are no more than the total assets. We will go into details

of these claims in section 4.4.4.

3.3 Threat Model
Amalicious prover potentially corrupting any number of users may

attempt to reduce his/her total liabilities, e.g., via manipulating or

discarding the liabilities to non-corrupted users. However, there

is no motivation for the adversarial prover to increase the total

liabilities. Note that this assumption on incentives is key to PoL,

and it relaxes the security requirements so simpler solutions are

possible. Without this, a valid PoL scheme might be more compli-

cated because it needs to further prevent a prover from raising the

value by inserting or duplicating positive entries.

Users can establish secure communication channels with P and

authenticate their identities. The authentication process is out of

scope for this paper. Meanwhile, users may be corrupted by an

adversary to break privacy, i.e., the adversary attempts to learn

more information than she should from the corrupted users, such

as the number of users or P’s liabilities to non-corrupted users.

The PBB provides a consistent view of the data on it to everyone.

Anyone can read and write data on the PBB and the content cannot

be tampered with. In PoL, the public data 𝑃𝐷 is written on the PBB.

This is necessary to prevent the malicious prover from showing

inconsistent commitments to different users.

3.4 Security Definitions
Definition 3.1. Valid data set. A dataset 𝐷𝐵 = {(𝑖𝑑𝑢 , 𝑙𝑢 )}𝑢∈U is

(𝑁,𝑀𝑎𝑥𝐿)-valid, 𝑁 and𝑀𝑎𝑥𝐿 being two positive integers, iff the

following conditions are met:

• there are at most 𝑁 users, i.e., 𝑛 = |𝐷𝐵 | ≤ 𝑁 ;

• for any two distinct users 𝑢,𝑢 ′ ∈ U, 𝑖𝑑𝑢 ≠ 𝑖𝑑𝑢′ ;

• for any user 𝑢 ∈ U, 0 ≤ 𝑙𝑢 < 𝑀𝑎𝑥𝐿.

Denote by PoL(𝑁,𝑀𝑎𝑥𝐿) a PoL protocol targeted for all of the

(𝑁,𝑀𝑎𝑥𝐿)-valid data sets. A PoL(𝑁,𝑀𝑎𝑥𝐿) is secure iff both com-

pleteness and soundness as defined below are satisfied:

Definition 3.2. Completeness. A PoL(𝑁,𝑀𝑎𝑥𝐿) is complete if

for any (𝑁,𝑀𝑎𝑥𝐿)-valid data set 𝐷𝐵,

Pr[ (𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵),
(𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷),

∀𝑢 ∈ U, 𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝑢 ) :
VerifyTot(𝑃𝐷, 𝐿,Π) = 1∧

∀𝑢 ∈ U : Verify(𝑃𝐷, 𝑖𝑑𝑢 , 𝑙𝑢 , 𝜋𝑢 ) = 1∧

𝐿 ≥
∑

𝑢∈U
𝑙𝑢 ] = 1

Completeness guarantees that if all parties are honest and follow

the protocol, the verifications should all succeed and the proved to-

tal liabilities should be no less than the sum of the prover’s liabilities

to individual users.

Definition 3.3. Soundness. A PoL(𝑁,𝑀𝑎𝑥𝐿) is sound if for any

(𝑁,𝑀𝑎𝑥𝐿)-valid data set 𝐷𝐵, for any p.p.t. adversarial prover A∗
potentially corrupting any number of users, there exists a negligible

function 𝜖 (·) such that for any subset 𝑉 of non-corrupted users,

Pr[ (𝑃𝐷, 𝐿,Π, {𝜋𝑢 }𝑢∈𝑉 )
$← A∗ (1𝜅 , 𝐷𝐵) :

VerifyTot(𝑃𝐷, 𝐿,Π) = 1∧
∀𝑢 ∈ 𝑉 ,Verify(𝑃𝐷, 𝑖𝑑𝑢 , 𝑙𝑢 , 𝜋𝑢 ) = 1∧

𝐿 <
∑

𝑢∈𝑉 𝑙𝑢 ] ≤ 𝜖 (𝜅)

Soundness guarantees that a computationally bounded adversar-

ial prover is not able to cheat on the total liabilities. In particular,

for any subset of non-corrupted users that successfully verify the

inclusion of the prover’s liabilities to them, if the committed total

liabilities is associated with a valid proof, its value is no less than

the sum of the prover’s liabilities to these users.

Note that we define the probability over any subset of honest

users instead of the entire set of them to capture the nature of dis-

tributed auditing. In other words, the amount of P’s total liabilities
is guaranteed with respect to the users that perform the verification.

If we define it over the entire set of honest users instead, the total

liabilities won’t be bounded when some user is given an invalid

proof (i.e., Verify(·) returns 0). A protocol satisfying so-defined

soundness is not useful in practice because this particular user

might never perform verification. In this scenario, other users will

not detect and report a misconduct of the prover even if the amount

of total liabilities committed is an arbitrary value. In contrast, with

our soundness definition, the committed total liabilities is at least

bounded by the total liabilities to users who verify.

PoL falls under the more general category of transparency solu-

tions where a prover trusted for privacy but not honesty maintains

a dataset. The general notion of soundness in most of these works,

e.g., SEEMless [21], is non-equivocation. Our soundness is an ana-

log of non-equivocation, making the values of users that verify

concretely counted in the total amount, thus lower-bounding the

total to the sum of users that verify. We restrict ourselves to non-

equivocation because this is the only known definition achievable



without generic SNARKs which would lead to a significant degra-

dation in efficiency and mobile-friendliness.

3.5 Privacy Definitions
We define user privacy against 𝑉 ⊆ U, a subset of users corrupted

by an adversary. The adversary has access to the ID and liability

pairs of users in 𝑉 . She can also send queries to the prover for

inclusion proofs of P’s liabilities to the corrupted users, so pos-

sesses 𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝑢 ) for all 𝑢 ∈ 𝑉 . We aim to guarantee

that the view of the adversary throughout an execution of PoL
can be simulated by a simulator given limited information. In par-

ticular, in an execution of PoL upon a valid data set 𝐷𝐵, letting

(𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵) and 𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝑢 ) for all
𝑢 ∈ 𝑉 , the view of the adversary corrupting 𝑉 ⊆ U is viewuser

𝑉
=

(𝑃𝐷, 𝐷𝐵 [𝑉 ], {𝜋𝑢 }𝑢∈𝑉 ). Note that 𝐷𝐵 [𝑉 ] = {(𝑖𝑑𝑢 , 𝑙𝑢 )}𝑢∈𝑉 , which
is the data set of user ID and liability pairs of users in 𝑉 ⊆ U. User

privacy against 𝑉 corrupted by an adversary requires that viewuser
𝑉

can be simulated by a p.p.t. simulator that does not have access to

𝐷𝐵 but only to 1
𝜅
, 𝐷𝐵 [𝑉 ] and the leakage function Φuser (𝐷𝐵,𝑉 ).

More formally:

Definition 3.4. User privacy. A PoL(𝑁,𝑀𝑎𝑥𝐿) is Φuser-private
against 𝑉 ⊆ U, a subset of users corrupted by an adversary, if

there exists a p.p.t. simulator S such that for any (𝑁,𝑀𝑎𝑥𝐿)-valid
data set 𝐷𝐵, the following two distributions are computationally

indistinguishable:

• {(𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵),∀𝑢 ∈ 𝑉 , 𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷,
𝑖𝑑𝑢 ) : 𝑃𝐷, 𝐷𝐵 [𝑉 ], {𝜋𝑢 }𝑢∈𝑉 }
• {S(1𝜅 , 𝐷𝐵 [𝑉 ],Φuser (𝐷𝐵,𝑉 ))}

We also define auditor privacy against an adversary that has ac-

cess to the output of ProveTot and corrupts a subset of users𝑉 ⊆ U.

Similarly, in an execution of PoL upon a valid data set 𝐷𝐵, let-

ting (𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵), (𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷) and
𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝑢 ) for all 𝑢 ∈ 𝑉 , the view of the adversary

corrupting 𝑉 ⊆ U is viewauditor
𝑉

= (𝑃𝐷, 𝐿,Π, 𝐷𝐵 [𝑉 ], {𝜋𝑢 }𝑢∈𝑉 ).
Auditor privacy requires that viewauditor

𝑉
can be simulated by a

p.p.t. simulator that does not have access to 𝐷𝐵 but only to 1
𝜅
, 𝐿,

𝐷𝐵 [𝑉 ] and the leakage function Φauditor (𝐷𝐵,𝑉 ).

Definition 3.5. Auditor privacy. A PoL(𝑁,𝑀𝑎𝑥𝐿) is Φauditor-
private against any malicious auditor corrupting any subset of

users 𝑉 ⊆ U, if there exists a p.p.t. simulator S such that for any

(𝑁,𝑀𝑎𝑥𝐿)-valid data set 𝐷𝐵, the following two distributions are

computationally indistinguishable:

• {(𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵), (𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷),
∀𝑢 ∈ 𝑉 , 𝜋𝑢 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝑢 ) :
𝑃𝐷, 𝐿,Π, 𝐷𝐵 [𝑉 ], {𝜋𝑢 }𝑢∈𝑉 }
• {S(1𝜅 , 𝐿, 𝐷𝐵 [𝑉 ],Φauditor (𝐷𝐵,𝑉 ))}

Note that the privacy definitions above cover the case where

everything can be public, i.e., 𝐷𝐵 ⊆ Φuser/auditor (𝐷𝐵,𝑉 ). For ex-
ample, in charity applications, the donations of each donor might

be public. There are also special voting systems, e.g., parliaments,

where for transparency reasons, all votes should be revealed.

4 DESIGN SPECIFICATIONS
In this section, we present concrete PoL schemes. First, we propose

DAPOL+, a PoL protocol extending DAPOL but fixing its privacy

issue, getting rid of VRF and deterministic mapping as mentioned

in section 2. We then formally prove that DAPOL+ protocol satisfies

the security and privacy properties as defined earlier. Second, we

discuss how to resolve disputes in DAPOL+. Third, we discuss dif-

ferent accumulator variants that can be used in DAPOL+ and their

trade-offs. Fourth, we consider other additional features potentially

desired by different applications and propose solutions.

4.1 DAPOL+

Figure 2: Padded height-3 DAPOL+ tree.

Recall that among existing schemes of PoL [13, 19, 20, 25, 73],

DAPOL aims to provide the strongest security and privacy guaran-

tees. However, there is a privacy issue in their construction of the

SMT, i.e., the padding nodes are distinguishable from tree nodes

of other types in their design, which could leak the number of

users. Moreover, they mentioned utilizing VRFs in the construction

of SMT nodes, although as an alternative, without analyzing the

necessity of such expensive cryptographic primitives. In addition,

each user is deterministically mapped to a leaf node in the SMT in

DAPOL, which requires the height of the SMT to be sufficiently

large to avoid collision.

We propose DAPOL+, by extending DAPOL with the basic idea

of using SMT for privacy and efficiency benefits, and further making

the following improvements:

• fixing the privacy leak in DAPOL;

• getting rid of VRF for efficiency, mobile and post-quantum

friendliness;

• utilizing random mapping instead of deterministic shuffling,

thus allowing smaller SMT heights and proof size (SMT

variants discussed in section 4.3).

DAPOL+ provides provable security and privacy.

Briefly speaking, in DAPOL+, the prover first makes a commit-

ment to the total liabilities on the PBB so that all users have the

same view of the commitment and the prover cannot open to differ-

ent values afterwards. Each user then may check if the amount of

P’s liabilities to him/her is included in the total liabilities to make

sure the prover is not cheating and the amount of total liabilities

is properly bounded. To generate a proof of inclusion, DAPOL+



leverages homomorphic Pedersen commitments to hide the exact

values of the prover’s liabilities, and an SMT as an accumulator to

conceal the number of users and minimize usage of the PBB. In

particular, the inclusion proof is a Merkle proof in a summation

Merkle tree together with range proofs for all nodes on the Merkle

path to guarantee no overflow in the sum of the committed values

when multiplying the Pedersen commitments.

Denote by ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) the main protocol of DAPOL+

targeted for all (𝑁,𝑀𝑎𝑥𝐿)-valid data sets. We now present the

details of ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) in the following flow, with pseu-

docode in appendix D:

(1) Select public protocol parameters.

(2) Set up, i.e., generate the SMT and commitments.

(3) Prove the total liabilities.

(4) Verify the total liabilities.

(5) Prove individual liabilities.

(6) Verify individual liabilities.

Public protocol parameters. All of the protocol parameters of

ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) are fixed in the protocol, and we don’t need

a trusted setup. First of all, 𝑁 and 𝑀𝑎𝑥𝐿 are public protocol pa-

rameters. And we need to publicly fix the height 𝐻 of the SMT

in ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿). Note that we only require 𝐻 ≥ ⌈log𝑁 ⌉.
Although security and privacy of a PoL can be guaranteed as long

as this condition is met, different selections of 𝐻 reflect different

tradeoffs. We discuss this in section 4.3.

In addition, we have a public group 𝐺 of prime order 𝑞 ≥ (𝐻 ·
𝑁 + 1) ·𝑀𝑎𝑥𝐿. Let 𝑔

1
and 𝑔

2
be fixed public generators of𝐺 , whose

relative discrete logarithm is unknown to anyone, i.e., no entity

has the knowledge of 𝑥 such that 𝑔𝑥
1
= 𝑔

2
. Note that 𝑔

1
and 𝑔

2
can

be selected deterministically. In our implementation in section 6.2,

for instance, 𝐺 is the Ristretto group for Curve25519, 𝑔
1
is the base

point in𝐺 , and𝑔
2
is a point converted from the hash of𝑔

1
. Note that

although Curve25519 is an elliptic curve, we use the conventional

multiplicative notation throughout this paper for uniformity, i.e.,

𝑥𝑔
1
is written as 𝑔𝑥

1
.

Apart from 𝑁 , 𝑀𝑎𝑥𝐿, the SMT height 𝐻 , the group 𝐺 , its two

generators 𝑔
1
and 𝑔

2
, we also need to fix two strings as public

identifiers 𝑠𝑎𝑙𝑡_𝑏 and 𝑠𝑎𝑙𝑡_𝑠 for deterministically constructing SMT

nodes, which we’ll explain in detail later.

Setup. The prover first picks a random secret 𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 .

Next, P randomly maps each user to a bottom-layer leaf node

in an SMT of a fixed height 𝐻 and then generates the whole SMT.

An example of a summation SMT of height 3 containing 2 users is

depicted in fig. 2. There are three types of nodes:

• Leaf nodes, denoted by green dashed blocks in fig. 2, are

bottom-layer tree nodes mapped to users. Note that this is

different from the conventional definition of leaf nodes that

have no child nodes and can be in any layer of a tree. Each

leaf node contains a Pedersen commitment to P’s liabilities
to the corresponding user, i.e., 𝑐𝑢 = 𝐶𝑜𝑚(𝑙𝑢 , 𝑏𝑢 ) = 𝑔𝑙𝑢

1
· 𝑔𝑏𝑢

2

where𝑏𝑢 is the blinding factor, and a hash of the user’s ID 𝑖𝑑𝑢
concatenated with a mask 𝑠𝑢 , i.e., ℎ𝑢 = H(“𝑙𝑒𝑎𝑓 ”| |𝑖𝑑𝑢 | |𝑠𝑢 ).
Note that the uniqueness of ℎ𝑢 is guaranteed by the unique-

ness of users’ IDs (in practice we can use users’ credential

information such as phone number or email address), which

is also key to a valid data set. Therefore, a malicious prover

cannot map two users with the same 𝑙𝑢 to the same leaf node

to claim smaller liabilities without being detected.

Both 𝑏𝑢 and 𝑠𝑢 should be hard to guess for privacy concerns.

If a non-corrupted user𝑢 happens to bemapped to the sibling

node of a corrupted user, A might receive (𝑐𝑢 , ℎ𝑢 ) as a part
of the inclusion proof of the corrupted user. In this case, if

𝑏𝑢 can be easily guessed, A can infer 𝑙𝑢 from 𝑐𝑢 by looking

up the table of 𝑔𝑥
1
for all 𝑥 ∈ [0, 𝑀𝑎𝑥𝐿). Similarly, if 𝑠𝑢 can

be guessed, A can infer whether the bottom-layer node in

a Merkle proof is a leaf node corresponding to a user or a

padding node by brute forcing all possible IDs due to their

low entropy. This gives the adversary additional information

about the number of users.

We want to extract 𝑏𝑢 and 𝑠𝑢 deterministically from 𝑤𝑢 =

𝐾𝐷𝐹 (𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡, 𝑖𝑑𝑢 ), which is the seed deterministi-

cally extracted by a key derivation function (KDF) taking P’s
secret𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 and 𝑖𝑑𝑢 as inputs. This is to allow P to

reproduce the contents in leaf nodes with minimized stor-

age, i.e., 𝐷𝐵 together with P’s𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 . The property
of having a minimized data base can be beneficial in terms

of the data transferred when an external auditor initiates

a full investigation requiring P to send everything to the

auditor. We also want to extract 𝑏𝑢 and 𝑠𝑢 independently, i.e.,

knowledge of either doesn’t help learn the other, for selective

information disclosure, which we explain in section 4.4.5.

Therefore, we extract them via 𝑏𝑢 = 𝐾𝐷𝐹 (𝑤𝑢 , 𝑠𝑎𝑙𝑡_𝑏) and
𝑠𝑢 = 𝐾𝐷𝐹 (𝑤𝑢 , 𝑠𝑎𝑙𝑡_𝑠) respectively, where 𝑠𝑎𝑙𝑡_𝑏 and 𝑠𝑎𝑙𝑡_𝑠

are two public identifiers in the protocol.

• Padding nodes, denoted by gray dotted blocks, are nodes

that have no child nodes in the tree apart from leaf nodes

mapped to users. Padding nodes do not contribute to the

total liabilities but are dummy nodes guaranteeing that each

node in the tree has either two child nodes or none, al-

lowing generation of Merkle proofs for leaf nodes. Each

padding node contains a Pedersen commitment to 0, i.e.,

𝑐𝑖 = 𝐶𝑜𝑚(0, 𝑏𝑖 ) = 𝑔
𝑏𝑖
2
, and a hash of the node index con-

catenated with a mask 𝑠𝑖 , i.e., ℎ𝑖 = H(“𝑝𝑎𝑑”| |𝑖𝑑𝑥𝑖 | |𝑠𝑖 ). The
extraction of 𝑏𝑖 and 𝑠𝑖 is the same as that for leaf nodes, i.e.,

𝑏𝑖 = 𝐾𝐷𝐹 (𝑤𝑖 , 𝑠𝑎𝑙𝑡_𝑏) and 𝑠𝑖 = 𝐾𝐷𝐹 (𝑤𝑖 , 𝑠𝑎𝑙𝑡_𝑠), where𝑤𝑖 is
extracted from P’s𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 and the node index 𝑖𝑑𝑥𝑖
by𝑤𝑖 = 𝐾𝐷𝐹 (𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡, 𝑖𝑑𝑥𝑖 ). The prefix “𝑝𝑎𝑑” of the
preimage of𝑤𝑖 can be used to prove padding nodes for ran-

dom sampling, which we discuss in section 4.4.5. Note that

the seed𝑤𝑖 for each padding node should be kept secret to P,
otherwise an adversary can distinguish between a padding

node and a node of another type via the hash, which leaks

information about the number of users.

• Internal nodes, denoted by yellow solid blocks, are the tree

nodes that have two child nodes. Each internal node contains

the multiplication of the commitments in its child nodes, i.e.,

𝑐𝑖 = 𝑐𝑙𝑐ℎ𝑖 · 𝑐𝑟𝑐ℎ𝑖 , and a hash of commitments and hashes in

its child nodes, i.e., ℎ𝑖 = H(𝑐𝑙𝑐ℎ𝑖 | |𝑐𝑟𝑐ℎ𝑖 | |ℎ𝑙𝑐ℎ𝑖 | |ℎ𝑟𝑐ℎ𝑖 ), where
𝑙𝑐ℎ𝑖 and 𝑟𝑐ℎ𝑖 denote the left and right child nodes of 𝑖 re-

spectively. The Merkle root is an internal node.



The SMT can be generated layer by layer starting from the bot-

tom (at height 𝐻 ). Initially the SMT only contains leaf nodes in its

bottom layer. We insert a padding node whenever the sibling of a

leaf node, i.e., having the same parent as the leaf node, doesn’t exist

in the SMT. Then we insert an internal node as a parent for each

pair of existing sibling nodes in the bottom layer. Next we move

to the layer above, inserting padding nodes as siblings to existing

nodes in this layer and internal nodes as parents in the upper layer.

We repeat the step above until we reach to the root (at height 0).

The complexity of this procedure is linear in the number of nodes

in the SMT, depending on the number of users and the tree height.

In the function (𝑃𝐷, 𝑆𝐷) $← Setup(1𝜅 , 𝐷𝐵), 𝑃𝐷 is the commit-

ment and hash pair of the Merkle root, i.e., 𝑃𝐷 = (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 ).
In fig. 2, e.g., 𝑃𝐷 = (𝑐11, ℎ11). On the other hand, 𝑆𝐷 includes

𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 and the mapping from users to bottom-layer leaf

nodes in the SMT. Apart from that, the SMT could also be part of

𝑆𝐷 but this is not necessary. Although storing the whole SMT al-

lows faster generation of inclusion proofs later in response to users’

queries, the prover can reproduce the same SMT deterministically

from𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 , 𝐷𝐵 and the mapping only. We discuss the pos-

sibility of having 𝑆𝐷 = 𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 via deterministic mapping

in section 4.3.

Prove total liabilities. To prove the total liabilities, P simply re-

veals the blinding factor in the Merkle root. By the homomor-

phism of Pedersen commitments, for any 𝑐1 = 𝐶𝑜𝑚(𝑙1, 𝑏1) and
𝑐2 = 𝐶𝑜𝑚(𝑙2, 𝑏2), we know 𝑐 = 𝑐1 · 𝑐2 = 𝐶𝑜𝑚(𝑙1 + 𝑙2, 𝑏1 + 𝑏2).
Therefore, 𝑐𝑟𝑜𝑜𝑡 = 𝐶𝑜𝑚(

∑
𝑢∈U 𝑙𝑢 ,

∑
𝑢∈U 𝑏𝑢 +

∑
padding node 𝑖 𝑏𝑖 ).

In the function (𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷), 𝐿 is P’s total liabili-
ties to users, i.e., 𝐿 =

∑
𝑢∈U 𝑙𝑢 , and Π is the sum of blinding factors

in all leaf and padding nodes, i.e., Π =
∑
𝑢∈U 𝑏𝑢 +

∑
padding node 𝑖 𝑏𝑖 .

Verify total liabilities. To verify the total liabilities, anyone re-

ceiving the proof can act as a verifier and check if 𝑐𝑟𝑜𝑜𝑡 committed

on the PBB is a Pedersen commitment to the total liabilities.

In the function {0, 1} ← VerifyTot(𝑃𝐷, 𝐿,Π), if 𝑐𝑟𝑜𝑜𝑡 = 𝑔𝐿
1
· 𝑔Π

2

(note that 𝑃𝐷 = (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 )), the function returns 1. Otherwise it

returns 0.

Prove individual liabilities. To query for the inclusion proof of 𝑙 ,

a user can establish a secure communication channel with P and

prove his/her identity with respect to 𝑖𝑑 . The implementation of the

authentication is out of the scope of this paper so we don’t go into

details. P ignores the query when the authentication fails. Thus, a

bounded adversary has no access to proofs of non-corrupted users

but only to corrupted users.

Upon receiving an authenticated query, P locates the leaf node

mapped to the user, and retrieves the Merkle path {(𝑐𝑖 , ℎ𝑖 )}𝑖∈[1,𝐻 ] ,
where (𝑐𝑖 , ℎ𝑖 ) is the commitment and hash pair in the sibling of

the node at height 𝑖 on the path from the user’s leaf node to the

root. The Merkle path proves the inclusion of the leaf node in

the SMT, but when multiplying the commitments along the path,

there might be an overflow, i.e.,the sum of two values exceeds the

group order 𝑞 ≥ (𝐻 · 𝑁 + 1) · 𝑀𝑎𝑥𝐿 , so 𝑐𝑟𝑜𝑜𝑡 might commit to

a smaller value. Therefore, we need to prove each 𝑐𝑖 commits to

a value within the range [0, 𝑁 · 𝑀𝑎𝑥𝐿). In particular, we adopt

Bulletproofs [11] which enables aggregation of zero-knowledge

range proofs for multiple values efficiently and succinctly. Addi-

tionally, non-interactive Bulletproofs via the Fiat-Shamir transform

is proved to be secure [17, 35]. Overall, the inclusion proof of in-

dividual liabilities consists of the user’s blinding factor 𝑏 , his/her

mask 𝑠 , a Merkle path in the summation tree and aggregated range

proofs for commitments on the path.

In the function 𝜋 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑), the prover generates

𝜋 = (𝑏, 𝑠, {(𝑐𝑖 , ℎ𝑖 )}𝑖∈[1,𝐻 ] , 𝜋𝑟𝑎𝑛𝑔𝑒 ), where (𝑐𝑖 , ℎ𝑖 ) is the commit-

ment and hash pair in the node at height 𝑖 on the Merkle path, and

𝜋𝑟𝑎𝑛𝑔𝑒 is a zero-knowledge proof that each 𝑐𝑖 on the Merkle path

commits to a value within range [0, 𝑁 ·𝑀𝑎𝑥𝐿).

Verify individual liabilities. To verify P’s individual liabilities
to a user, he/she first verifies the Merkle path, i.e., computing the

internal nodes on the path from the leaf node to the root and

checking if the root matches with 𝑃𝐷 committed on the PBB. The

user also verifies the range proofs to make sure each commitment

on the Merkle path commits to a value within the proper range.

In the function {0, 1} ← Verify(𝑃𝐷, 𝑖𝑑, 𝑙, 𝜋), the verifier com-

putes (𝑐 ′
𝐻

= Com(𝑙, 𝑏 ), ℎ′
𝐻

= H(“𝑙𝑒𝑎𝑓 ”| |𝑖𝑑 | |𝑠)) which is the con-

tent in the leaf node. Then the verifier computes 𝑐 ′
𝑖
= 𝑐 ′

𝑖+1 · 𝑐𝑖+1
with 𝑖 iterating from 𝐻 − 1 to 0, where 𝑐𝑖 is contained in 𝜋 . And

similarly for ℎ′
𝑖
in the internal nodes. If (𝑐 ′

0
, ℎ′

0
) = 𝑃𝐷 and the range

proofs in 𝜋 are valid, the function returns 1. Otherwise it returns 0.

We claim that the following security and privacy properties hold

for ProtDAPOL+ under the discrete logarithm (DL) assumption in

the random oracle model and the algebraic group model [30]. We

provide detailed proofs in appendix E.

Theorem 4.1. ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) is secure.

Theorem 4.2. ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) is Φuser-private, where
Φuser = ∅.

Theorem 4.3. ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) is Φauditor-private, where
Φauditor = ∅.

Note that Φuser/auditor = ∅ indicates that DAPOL+ provides the

strongest privacy not leaking any additional information.

4.2 Dispute Resolution
When P misbehaves, e.g., fails to respond to a user with a valid

inclusion proof, the user should be able to raise a dispute with

evidence. We divide this into two subtasks: 1. dispute resolution

for PoL assuming agreement on individual liabilities; 2. dispute

resolution for disagreement on individual liabilities. Note that the

former task makes a prerequisite assumption that P agrees with

each user on 𝑙𝑢 in 𝐷𝐵. To achieve this, users may obtain a proof

of the value of 𝑙𝑢 from P. The form of the proof varies across

applications, e.g., a receipt for each transaction in the solvency case,

or a donation certificate in the charity fund raising case. The proof

could also be P’s digital signature on 𝑙𝑢 .
For the former task, an invalid proof issued by P can be a con-

crete evidence in a dispute. The only exception is when the proof

is not available. Data availability is a hard task [12] because the

case of P not sending the proof is indistinguishable with the case

when a user raises a false alarm. This is inevitable in any centralized

system. A probabilistic workaround is to have a third party auditor



to query proofs on users’ behalf when there is suspicion, which

however, enables the auditor to lower bound the number of users.

The latter task depends on the specific application where PoL

is used. It remains as an open problem for many applications [22].

We take the solvency case as an example and empirically analyze

all possible scenarios of dispute resolution in appendix F.

4.3 Accumulator Variants
In the main protocol of DAPOL+, we utilize an SMT as an accumu-

lator and randomly map users to a bottom-layer node in the tree.

In this section, we explore four accumulator variants that can be

plugged into DAPOL+. Without sacrificing the security and privacy

of DAPOL+, each variant may provide additional features desired

in some applications, as summarized in table 2.

Table 2: Comparison between accumulator variants.

Variant Cost Features Applications

NDM-SMT Low Simple and efficient Fundraising

DM-SMT Medium Hide proof access patterns combined with PIR Negative reviews

ORAM-based High Allow updates and hide patterns Solvency

Hierarchical Low Distribute work to hierarchical institutions COVID reports

4.3.1 Non-deterministicallymapping SMT (NDM-SMT). NDM-SMTs

is a simplest type of SMT posing no constraints on the SMT other

than that 𝐻 ≥ ⌈log𝑁 ⌉. For a population of 10B, e.g., an NDM-SMT

of height 33 is sufficient. Therefore, the proof size and the complex-

ity of proof generation and verification which take 𝐻 as a factor

could be rather small. This efficiency benefit makes NDM-SMT

suitable for applications where the prover entity varies from com-

panies to individuals with different business sizes and computation

resources, e.g., fundraising and syndicated loans.

To implement this variant, however, we cannot simply select

a random bottom-layer node for each user due to non-negligible

probability of collisions. A rudimentary method is to retry when

collision occurs, of which the expected number of random number

generation (RNG) operations is 2
𝐻 ·∑2

𝐻

𝑖=2𝐻−𝑛+1
1

𝑖 which approaches

to 𝐻 · 2𝐻 when 𝑛 is close to 2
𝐻
. Thus this method is practical only

when 𝑛 << 2
𝐻
, which does not apply to the use case of NDM-SMTs.

We need a scheme to map users to leaf nodes more efficiently. It

turns out Durstenfeld’s shuffle algorithm optimized by a HashMap

can achieve the goal. The HashMap originally is empty. We start

from the first user and repeat the following steps for 𝑛 times to

generate a random mapping. For the 𝑖-th user, randomly select a

number 𝑘 ∈ [𝑖, 2𝐻 ]. If 𝑘 exists as a key in the HashMap, the 𝑖-th user

is mapped to HashMap(𝑘). Otherwise the user is mapped to 𝑘 . At

the end of each iteration, update the HashMap by HashMap(𝑘) = 𝑖 .
In this algorithm, only 𝑛 RNG operations are performed, and both

computation and memory complexities are 𝑂 (𝑛 log𝑛) in the worst

case if the HashMap is optimized by some balanced search tree.

4.3.2 Deterministically mapping SMT (DM-SMT). In contrast to

NDM-SMTs, a DM-SMT maps users to leaf nodes deterministically,

e.g., the node indexmapped to𝑢 is determined by𝐾𝐷𝐹 (𝑤𝑢 , 𝑠𝑎𝑙𝑡_𝑚),
where 𝑠𝑎𝑙𝑡_𝑚 is a public identifier. Note that since 𝑢 and P need to

agree on 𝑙𝑢 for PoL, P can in the meanwhile send each user𝑤𝑢 in a

similar application-specific registration process before P generates

the SMT, which won’t affect the security or privacy guarantees of

DAPOL+. In this case, 𝑢 keeps 𝑤𝑢 secret, and P doesn’t need to

include 𝑏𝑢 or 𝑠𝑢 in the inclusion proof for 𝑢 because they can be de-

terministically extracted. At the same time, users can figure out the

positions of their leaf nodes on their own and P cannot change the

mapping at his/her will. The determinism feature doesn’t provide

extra security, but minimizes the data base for P to reproduce the

SMT, unlike NDM-SMTs which require P to store the mapping. In

addition, when combined with private information retrieval, DM-

SMT may allow users to query inclusion proofs without leaking

their identities. This is a desired feature for periodical auditing of

PoL such as negative reviews. P proves the amount of negative

reviews he receives every month, e.g., and if it identifies which

users seldom query for proofs, there is a good chance to evade

detection when discarding the reviews from them. We discuss this

in detail in section 4.4.3.
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Figure 3: Probability of collision

To allow each user to have a deterministic position in the bottom

layer of the SMT, the tree height must be large enough to avoid

collisions, i.e., two users mapped to the same leaf node. The proba-

bility of collision with 𝑛 users in a 𝐻 -height tree equals to that of

the birthday paradox and is plotted in fig. 3. Each two consecutive

curves differ by 13 bits. Assuming there are at most 10B clients, for

128-bit collision resistance we need at most a 193-height SMT. If

we tolerate collision probability of 2
−64

, we need a 130-height SMT.

4.3.3 ORAM-based SMT. Some applications such as proving sol-

vency allowP’s liabilities to users to be updated. If we allow updates

to an NDM-SMT directly, privacy leakage might occur because a

user observes the update history of his sibling node. Taking the

solvency case as an example, a user can link two transactions both

changing his sibling node to the same user. Although the values

are hidden, it is possible to link transactions and identities in prac-

tice. To guarantee complete privacy, P can run an independent

execution of PoL periodically, i.e., generate a new SMT with a new

pair of identifiers 𝑠𝑎𝑙𝑡_𝑠 and 𝑠𝑎𝑙𝑡_𝑏. Although this doesn’t leak any

information, the generation complexity might be high. We propose

ORAM-based SMT which combines NDM-SMTs with Oblivious

RAM (ORAM) to provide efficient privacy-preserving updates.

ORAM allows users to read and write data on a database without

leaking access patterns [37, 38]. A tree-based ORAM [63] is a full

binary tree and each block of data is uniformly randomly mapped

to a leaf node but may reside in any node along the path from the

root to the leaf. Each tree node is a bucket containing 𝐵 blocks of

data, and we call 𝐵 the bucket size. To read/write a block of data,



the data owner remaps the block to a new random leaf node, reads

and rewrites (re-encrypts and shuffles) the whole path the block

previously resides on following certain rules. From the server’s

point of view, each access by a user is just rewriting a few random

paths, thus two access sequences are indistinguishable.

In our setting, colluding users trying to infer information from

their inclusion proofs can be viewed as the server in ORAM, and P
performing updates acts as a user aiming to conceal access patterns.

We adopt tree-based ORAM and modify it to support the functional-

ities of summation Merkle trees. Basically, we add a hash field ℎ and

a commitment field 𝑐 to each ORAM tree node. The merging func-

tion is ℎ = H(𝑐𝑙𝑐ℎ | |𝑐𝑟𝑐ℎ | |𝑐𝛽1 | | · · · | |𝑐𝛽𝐵 | |ℎ𝑙𝑐ℎ | |ℎ𝑟𝑐ℎ | |ℎ𝛽1 | | · · · | |ℎ𝛽𝐵 ),
𝑐 = 𝑐𝑙𝑐ℎ · 𝑐𝑟𝑐ℎ ·

∏𝐵
𝑖=1 𝑐𝛽𝑖 , where 𝛽𝑖 is the 𝑖-th block in the tree node.

P updates the tree following ORAM rules and proves inclusion of

liabilities by a Merkle proof of size𝑂 (𝐵 ·𝐻 ). In the worst case, even

if all users are colluding and sharing all their proofs to reconstruct

the tree, they won’t be able to distinguish between two sequences

of updates. The only privacy leakage in this scheme is the number

of updates but P can always add dummy updates to make constant

number of updates periodically. Note that it is P that accesses the

database and performs ORAM operations, just like the institutional

prover in Solidus [16]. The complexity overhead on users’ side is

constant compared with other SMT variants. Tuning the bucket

size and the stash size (number of blocks in the root) to optimize

PoL proof size remains future work.

Another direction is to make updates privacy preserving and

publicly verifiable. Users only need to verify inclusions at the initi-

ation stage. PVORM [16] combines Circuit ORAM [69] with zero-

knowledge proofs to achieve this. We can modify it similarly to

support summation for PoL. With update proofs, a single audi-

tor/verifier can guarantee the validity of updates and liabilities.

However, the proofs need to be committed on a PBB, which is more

expensive compared with the distributed auditing manner.

4.3.4 Hierarchical SMTs. For some applications such as official

liability reports like COVID-19 cases, the amount of liabilities is

tracked by different institutions. We can construct hierarchical

SMTs, i.e., an SMT of the 𝑖-th level is an accumulator of tree roots of

(𝑖 − 1)-th level SMTs. In the COVID-19 tracking case, for example,

each hospital may generate a first-level SMT to prove the number

of confirmed cases in the hospital. Then a second-level SMT can be

generated for the total number in a city/state, and a federal insti-

tution may generate a third-level SMT for COVID-19 cases nation

wide. The prover’s work is therefore distributed and parallelized.

4.4 Additional Features
Although the fundamental security and privacy for PoL have been

formally defined in section 3, there remain other interesting prop-

erties desirable in certain applications. Since these features are

optional and application-specific, we informally discuss them in

this section, aiming to inspire future work for particular use cases.

4.4.1 Privacy of distinct PoLs. Privacy of distinct PoLs means for

two different PoL1, PoL2 involving provers P1,P2 and user sets

U1,U2 respectively, where P1 and P2 may or may not be the

same entity, and U1 may intersect with U2, for an adversary A
corrupting a set of users 𝑉 ⊆ U1

⋃U2, throughout the executions

of PoL1 and PoL2, A should not learn anything more than she

should, depending on the requirements of particular applications.

This indicates independence between two PoLs. In the solvency

case, e.g., this property prevents linking two accounts from two

banks to the same user. The way DAPOL+ generates leaf nodes and

padding nodes as indicated in fig. 2 prevents A from linking users

across PoLs. If PoLs are executed by the same prover, because 𝑏𝑢
and 𝑠𝑢 are extracted from𝑤𝑢 and public unique PoL identifiers, 𝑢

only needs to register once and get𝑤𝑢 . Then𝑢 can deterministically

compute 𝑏𝑢 and 𝑠𝑢 for all future PoLs and inclusion proofs don’t

need to contain 𝑏𝑢 and 𝑠𝑢 . In addition, for rebuilding the SMTs,

P also only needs to store 𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡 , 𝐷𝐵 and possibly the

mapping for each PoL depending on the SMT variants being used.

4.4.2 Privacy of sequential PoLs. Privacy of sequential PoLs means

for two sequential PoL1, PoL2 involving P andU, where PoL2 is
subsequent to PoL1 with updates of P’s liabilities to some users in

U, for any adversary A corrupting users 𝑉 ⊆ U, throughout the

executions of PoL1 and PoL2, A should not learn anything more

than they should, depending on the requirements of particular ap-

plications. For example, in the solvency case, banks need to process

transactions and prove solvency periodically while preserving pri-

vacy of trading patterns. This is exactly what ORAM-based SMTs

in section 4.3.3 are designed for. However, an inclusion proof needs

to contain 𝑏𝑢 and 𝑠𝑢 due to the re-encryption operations in ORAM,

which disallows users from determining these factors on their own.

4.4.3 Privacy of verifier identity. A desirable property for PoL to

enhance security is to hide from P the identities of users that query

and verify inclusion proofs. Knowing which users seldom verify,

P can simply discard the accounts to decrease the total liabilities

without being detected. Provisions can achieve this property with

the trick in DAPOL+ allowing users to deterministically extract

blinding factors thus no need to obtain any personal proof from

the prover. However, the commitment size on a PBB is large.

Our goal is similar to that of private information retrieval (PIR).

PIRs allow users storing their data on a database to retrieve data

without revealing which piece of data is accessed [23]. Viewing the

inclusion proof for each user as a block of data with a unique index,

users try to obtain inclusion proofs with block indexes, and the

prover acts as the untrusted server in PIR aiming to learn which

block of data is retrieved. This matches with the setting of PIR. Note

that the size of the database here should be at least 𝑁 instead of 𝑛

because we want to hide 𝑛 to users. So the interaction between the

user and the prover when 𝑛 = 1 should be indistinguishable with

that when 𝑛 = 𝑁 . Additionally, unless a user receives the index of

the leaf node he should be mapped to in the SMT at registration, to

allow users to deterministically know the correct indexes of leaf

nodes for their queries while avoiding collision, we need a DM-SMT

of which the tree is tall and the size of the database is 2
𝐻
. Although

most blocks are dummy blocks and can be produced at accessing

so not costing much storage for the prover, the computation com-

plexity for both the prover and users is usually high [50, 59, 62]. A

potential direction to solving the practicality problem is to allow

each user to be mapped to one of a deterministic set of leaf nodes,

and this remains future work. A practical workaround, however, is

to use PIR protocols utilizing a trusted hardware [68].



We can also place some trust on a third party auditor. P can

outsource proofs to a semi-honest auditor that doesn’t leak verifier

identities to P. Users obtain proofs from the auditor directly and

individual verifiability is still guaranteed. Note that now the auditor

learns nothing except the number of users and verification patterns.

To preserve privacy of population against users, we can either

have P encrypt proofs so that each can only be decrypted by its

corresponding user, or require users to authenticate their identities

to the auditor in a zero-knowledge manner.

4.4.4 Selective privacy preserving claims. Sometimes the prover

may need to make zero-knowledge claims that are publicly verifi-

able, such as the range of the total liabilities without leaking the

exact value. For example, in the solvency case, the prover commits

to the total liabilities and assets, thus can generate a zero-knowledge

proof of solvency, i.e., the amount of total liabilities is no more than

the total assets. Multiple entities can also make claims using multi-

party computation without leaking sensitive information to anyone.

In the case of disapproval voting, for instance, multiple candidates

can run the distributed Bulletproofs [11] MPC approach to jointly

generate a range proof and determine the best/worst candidate

without leaking the final tallies or tally differences.

4.4.5 Random Sampling. In some applications there might be third

parties auditing liabilities and PoL can be complementary to that.

For example, in the solvency case, auditors may actively sample

some users and ask them if their balances are correctly included. In

practice, an auditor doesn’t have access to the set of users, which

makes it hard to sample users for auditing. A rudimentary scheme

for the auditor is to randomly sample a node index and ask the

prover to return the inclusion proof of that node and the credential

information of the corresponding user. With a response, the auditor

contacts the user and asks whether the leaf contains correct balance.

However, in an SMT, especially in an DM-SMT of large height, a

randomly sampled leaf node does not always exist, and the auditor

has an overwhelming probability of querying a non-existing node.

Moreover, the prover can always pretend that the queried node

doesn’t exist, since the existence of a leaf node is not verifiable.

To solve this, we propose a concrete scheme of random sam-

pling, the idea of which stems from DAPOL. The auditor randomly

samples a leaf index and sends it to P. P responds with the inclu-

sion proof and user credential data if the queried node exists. To

provide user credential data, P opens the hash of the leaf node and

returns the preimage, i.e., 𝑖𝑑 and 𝑠 , so the auditor can verify the

validity of the credential. In addition, we offer selective disclosure
by generating 𝑠 and 𝑏 independently, i.e., disclosing 𝑖𝑑 and 𝑠 to the

auditor doesn’t leak 𝑏 , so the user’s balance remains private.

If the queried node doesn’t exist, however, the prover returns

Merkle paths of the leaf neighbor(s) closest to the queried index, to-

gether with a neighboring proof indicating that the returned node(s)

are the closest real leaf nodes, which allows the non-existence of

a sampled leaf index to be verifiable. The neighboring proof con-

sists of a set of padding nodes at certain positions and the proofs

indicating that they are padding nodes. For example, in fig. 2, if the

auditor samples Node 2 (a padding node), the two closest leaf nodes

are Node 1 and Node 4. The prover should respond with inclusion

proofs of Node 1 and Node 4, user IDs (credential information) and

the mask of the two nodes, and a neighboring proof indicating that

Node 2, 3 and 6 are padding nodes thus no leaf node exists between

Nodes 1 and 4. To prove padding nodes, the prover provides the

preimage of the node hash so the verifier can check. The number

of padding nodes in a neighboring proof is no more than 2𝐻 , so

the sizes of a random sampling proof is linear in the tree height.

There could be privacy leakage to the auditor other than the

identities of sampled users, i.e., the population. This is because the

auditor sees the positions of neighboring leaf nodes and thus can

estimate a tighter upper bound on the population.

5 FAILURE PROBABILITY
A PoL protocol can only bound the total liabilities to the sum of P’s
individual liabilities to users that perform verifications. A prover

manipulating or discarding the individual liabilities to users that

never check cannot be detected. When a prover misbehaves while

undetected, which is undesired, we say PoL fails, and we denote

the probability for this to happen the failure probability. Failure
probability is independent of PoL security and fundamental to

distributed verification. It sheds light on how many verifiers are

sufficient to jointly prevent the prover from cheating, thus further

helps evaluate the effort needed to encourage verifiers in practice.

In this section, we analyze the failure probability of PoL, i.e.,

the probability that a malicious prover misbehaves and evades

detection when a subset of users verify the inclusion proofs. Note

that although Provisions also attempted to analyze this concept, it

only reached to the result of a special case as our eq. (3). We analyze

failure probability more generally for applications not limited to

the solvency case. In addition, Provisions claimed that the failure

probability is independent of the balances zeroed out in the solvency

case, which we show is not true by eq. (6).

Denote by 𝜌 : N∗ × N∗ × ℘(U) → [0, 1] the failure probability
function, where ℘(U) is the power set ofU. The function 𝜌 (𝑣, 𝜏,𝐶)
takes as input the number of users that verify 𝑣 , the tolerance

parameter 𝜏 and the cheating set 𝐶 ∈ U of size 𝑐 , i.e., the set of

users to whom P cannot provide a valid proof. In short, 𝐶 can

be viewed as the set of users whose amounts are manipulated by

the prover. The function 𝜌 (𝑣, 𝜏,𝐶) outputs the probability for the

prover, when queried by 𝑣 users, to successfully prove inclusions

to at least 𝑣 − 𝜏 users while manipulating liabilities to users in𝐶 . In

short, the failure probability depicts how likely a malicious prover

can avoid detection of more than 𝜏 invalid proofs when cheating on

the liabilities to users in𝐶 . The tolerance factor 𝜏 ≤ min(𝑣, 𝑐) might

vary in different applications. In the strictest case, 𝜏 = 0, indicating

that a single invalid inclusion proof triggers an investigation. In

other cases such as tax reporting, the IRS might tolerate 𝜏 > 0

incidents before they start an investigation. Note that to cheat on

liabilities to 𝑐 users in DAPOL+, the prover doesn’t necessarily

need to manipulate the leaf nodes but internal nodes instead, which

makes the number of tree nodes manipulated smaller than 𝑐 . In this

case, we still count it as 𝑐 because we only care how many users

are affected, i.e., who would receive an invalid inclusion proof.

Assume each user 𝑢 ∈ U has a probability 𝑝𝑢 = 𝐹𝑢 (𝑙𝑢 ) to check

her inclusion proof depending on the prover’s liabilities to her. In

real-world applications such as the solvency case, users with higher
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Figure 4: Failure probabilities with varying 𝑐, 𝜏 and 𝑛, respectively.

balances are more likely to verify inclusion proofs. We have

𝜌 (𝑣, 𝜏,𝐶) = Pr[ |𝑉 ∩𝐶 | ≤ 𝜏
��� |𝑉 | = 𝑣 ] =

|𝑉 |=𝑣∧
|𝑉∩𝐶 |≤𝜏∑ ∏𝑢∈𝑉 𝑝𝑢∑
|𝑉 |=𝑣

∏
𝑢∈𝑉 𝑝𝑢

(1)

If all users follow the same uniform distribution 𝐹𝑢 (𝑙𝑢 ) = 𝑝 to verify

inclusion proofs, which is the simplest case, we have

𝜌 (𝑣, 𝜏,𝐶) =

|𝑉 |=𝑣∧
|𝑉∩𝐶 |≤𝜏∑ ∏𝑢∈𝑉 𝑝∑
|𝑉 |=𝑣

∏
𝑢∈𝑉 𝑝

=

0≤𝑖≤𝜏∑ (𝑐
𝑖

)
·
(𝑛−𝑐
𝑣−𝑖

)(𝑛
𝑣

) (2)

When 𝜏 = 0, we can further simplify the formula:

𝜌 (𝑣, 0,𝐶) =

|𝑉 |=𝑣∧
|𝑉∩𝐶 |≤𝜏∑ ∏𝑢∈𝑉 𝑝∑
|𝑉 |=𝑣

∏
𝑢∈𝑉 𝑝

=

(𝑛−𝑐
𝑣

)(𝑛
𝑣

) (3)

Consider a slightlymore complicated setting inwhich users don’t

have the same distribution but can be categorized into multiple

non-intersecting sets and users in each set follow the same uniform

distribution to verify inclusion proofs. More formally, suppose all

users can be categorized into𝑚 non-intersecting sets 𝑉1, · · · ,𝑉𝑚
such that ∀𝑖 ≠ 𝑗,𝑉𝑖 ∩𝑉𝑗 = ∅ and ∪1≤𝑖≤𝑚𝑉𝑖 = U. For any 𝑢 ∈ 𝑉𝑖 ,
the user has uniform probability 𝑝𝑢 = 𝐹𝑢 (𝑙𝑢 ) = �̂�𝑖 to check the

inclusion proof. If the prover manipulates 𝑐𝑖 accounts in 𝐶𝑖 ⊆
𝑉𝑖 , then the probability for 𝑣𝑖 users in 𝑉𝑖 to encounter at most

𝜏𝑖 verification failures equals to 𝜌 (𝑣𝑖 , 𝜏𝑖 ,𝐶𝑖 ) in the simplest same

uniform distribution case as in eq. (2). Define 𝜌 ′(®𝑣, ®𝜏, ®𝐶) as the
probability of all subsets of users encounter no more verification

failures than tolerable, i.o.w., the prover’s misbehavior in all 𝑚

sets evades detection, where ®𝑣 = (𝑣1, · · · , 𝑣𝑚), ®𝜏 = (𝜏1, · · · , 𝜏𝑚),
®𝐶 = (𝐶1, · · · ,𝐶𝑚). We have

𝜌′ (®𝑣, ®𝜏, ®𝐶) =
∏

1≤𝑖≤𝑚
𝜌 (𝑣𝑖 , 𝜏𝑖 ,𝐶𝑖 ) ≤ min

1≤𝑖≤𝑚
(𝜌 (𝑣𝑖 , 𝜏𝑖 ,𝐶𝑖 ))

(4)

By definition, the failure probability in the multi-set case is bounded

by the subset of users with the lowest risk.

We plot the failure probability for users following the same

uniform distribution to verify under various choice of 𝑛, 𝑐, 𝜏 in fig. 4.

The smaller the failure probability of PoL is, the lower the risk users

take. The risk is much lower as the population grows, thus allowing

users to individually verify their contributions to the total liabilities

works in a large scale. Given the fact that 150.6 million mobile

users accessed the Amazon App in September 2019 [54], assuming

𝑛 = 150𝑀 and 𝜏 = 0, only 0.05% users verifying inclusion proofs

can guarantee an overwhelming chance of detecting an adversarial

prover manipulating 0.01% accounts.

Without the condition that exactly 𝑣 users verify, denote by

𝜚 (𝜏,𝐶) the failure probability when the prover manipulates ac-

counts in 𝐶 without being detected by more than 𝜏 users. We have

𝜚 (𝜏,𝐶) =
𝑛∑
𝑣=0

𝜌 (𝑣, 𝜏,𝐶) · (
∑
|𝑉 |=𝑣
(
∏
𝑢∈𝑉

𝑝𝑢 ·
∏

𝑢∈𝑈 −𝑉
(1 − 𝑝𝑢 ))) (5)

When 𝜏 = 0, we have

𝜚 (0,𝐶) =
∏
𝑢∈𝐶
(1 − 𝑝𝑢 )

(6)

Making the same assumption as in Provisions that users with more

deposits are more likely to verify in the solvency case, eq. (6) im-

plies a negative correlation between the failure probability and P’s
liabilities to users in𝐶 . In other words, the malicious prover is more

likely to be caught when zeroing out the largest accounts than the

smallest, which contradicts the claim in Provisions.

6 EVALUATION
We implemented [18] in Rust, a PoC DAPOL+ with NDM-SMT, the

simplest accumulator, and benchmark the performance. The the-

oretical complexities of existing schemes are compared in table 1.

Note that DAPOL+ is the first PoL protocol that satisfies security

and privacy as defined. With this functionality advantage, our pur-

pose of evaluation is not to compare DAPOL+ with other schemes

but to provide concrete numbers to demonstrate its practicality.

DAPOL+ can be viewed as working in two phases: 1. generating

the SMT; 2. responding to users’ queries. We evaluate the perfor-

mance of them separately. All experiments are run with a single

thread on a recent model Apple M1 with memory size 16GiB.

6.1 SMT Generation (Setup)
Wefirst evaluate the generation time of NDM-SMTused for DAPOL+.

For Pedersen commitments, we adopt the Ristretto255 group on

top of Curve25519 [51] as it is the curve used in the Bulletproofs

library [65]. We use Blake3 [9], which is fast, secure and highly

parallelizable, as the hash function.

We plot in fig. 5 the generation time vs. the number of nodes in

the tree with different settings of 𝑛 and 𝐻 ≥ 32 assuming 𝑁 = 4𝐵

which is approximately half of the world population [75] and should



suffice in most applications. The label to each point indicates (𝑛, 𝐻 ).
We can see that the complexity of tree generation is linear in the

number of nodes in the SMT which varies by the distribution of

leaf nodes. In the best case, when users take up a consecutive range

of leaves and are positioned next to each other, the total number

of nodes is roughly 2𝑛 + 2𝐻 . In the worst case, when users take up

the whole range of leaves and each consecutive pair has the same

largest distance, there are approximately 2𝑛 · (1 +𝐻 − log𝑛) nodes.
When𝑛 = 1𝑀 and𝐻 = 50, it takes about half an hour to generate

the whole tree. Considering the frequency of generating SMTs,

which is per day for COVID cases, and per year for solvency and

tax reporting, this is efficient enough. Meanwhile, the generation

process is highly parallelizable by generating subtrees concurrently.

6.2 Inclusion proofs

Table 3: Aggregated range proofs performance.

#Ranges aggregated 1 32 64 128 256

Proving time (s) 0.008 0.277 0.506 1.009 2.005

Verification time (s) 0.002 0.048 0.096 0.191 0.381

Proof size (B) 672 992 1056 1120 1184

We integrated Bulletproofs [11] to the NDM-SMT so the basic

DAPOL+ functionality is complete. Regarding range proofs, we

prove all values are within range [0, 264 − 1], which is sufficient for

most real-world applications. The Bulletproofs library [65] doesn’t

support aggregated proofs when the number of ranges is not a

power of two. To address this, we can apply padding or splitting.

By padding, we deterministically add 2
⌈log𝐻 ⌉ −𝐻 dummy ranges

to generate a proof aggregating 2
⌈log𝐻 ⌉

ranges. By splitting, we

split 𝐻 =
∑𝑘
𝑖=0 𝑐𝑖 × 2𝑖 ranges to at most 𝑘 = log𝐻 sets of ranges,

the size of each is of a power of two.

We show DAPOL+ is practical via an example of generating a

32-height SMT for 1M users. The two mechanisms for generating

aggregated range proofs, i.e., padding and splitting, are equivalent

in this case. We present the range proof size, generation and verifi-

cation time in table 3. The time for retrieving the Merkle path and

verifying Merkle path is negligible compared to that of range proofs,

not up to 1ms. The time for generating one inclusion proof (aggre-

gating 32 range proofs) is 0.277s and the verification time is 0.048s.

In the proof, each node has a hash of 32 bytes and a commitment of

32 bytes, and the size of the aggregated range proof is 992 bytes, so

the size of an inclusion proof is 992𝐵+32∗ (32+32) = 3040𝐵 = 3𝐾𝑖𝐵.
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Figure 5: Generation time vs. number of nodes.

There is a tradeoff between proving time and proof size because

the size of the aggregated range proof grows logarithmically with

the number of ranges but the proof generation time grows linearly.

The generation time for an inclusion proof in a 32-height SMT is

0.277s when using aggregated Bulletproofs. Given 1M clients, the

total time for generating all inclusion proofs is 0.277𝑠 × 106 ≈ 77ℎ

without parallelization. Note that the nodes in upper layers of the

SMT are involved in multiple aggregated range proofs for different

clients. One optimization option is to sacrifice proof size for faster

proof generation. We can generate a range proof for every node in

the SMT without aggregation and provide all non-aggregated range

proofs on the proof path to clients. Then there is no duplication of

computing range proofs for the same tree node. In this way, the

proof size is 23.6𝐾𝐵 which is still tolerable for a user receiving

proofs via a mobile device. The total inclusion proof generation

time varies by the number of nodes thus from 4.5h to 57h without

any parallelization. Clients can verify the range proofs in batch

though. Another optimization option is to aggregate range proofs

for nodes in upper layers of the SMT and generate non-aggregated

range proofs for lower-layer nodes. The previous two mechanisms

are like two extremes, one optimized in proof size while the other

optimized in proof generation time. We can tune the number of tree

nodes aggregated to achieve a satisfactory balance between proof

size and computation complexity. Anyway, the prover can deploy

multiple servers to generate range proofs and respond to users

simultaneously and the response latency is absolutely tolerable.

7 CONCLUSION
Applications of PoL share a common nature: the prover has no

incentive to exaggerate the total liabilities; individuals, in contrast,

have an incentive to make sure their values are included in the

reported total liabilities. We have formalized PoL as a general cryp-

tographic primitive utilizing the incentive feature, and standardized

PoL from three aspects: security, privacy and efficiency. We pre-

sented DAPOL+, a PoL protocol based on DAPOL but providing

provable security and privacy, and demonstrated its practicality

by evaluation results. We informally discussed other interesting

properties optional in different real-world applications and their

potential solutions. Formal treatment of the additional features for

a particular application remains future work. Although PoL crypto-

graphically bounds the reported total liabilities to some extent, it

doesn’t prevent a malicious prover from discarding the liabilities

to users that never verify proofs while remaining undetected. We

analyzed failure probability to understand the effectiveness of dis-

tributed verification. Note that failure probability is independent

of particular PoL schemes but fundamental to the distributed na-

ture of PoL and other interesting problems as well, such as voting

where voters need to verify their own individual ballots are cor-

rectly tallied. It’s important to carefully evaluate the effort needed

to incentivize sufficient verifiers for jointly preventing the prover

from cheating when applying PoL in practice.
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A APPLICATIONS

Table 4: Potential applications requiring PoL.

DOMAIN APPLICATIONS

finance

solvency, fundraising, credit-score,

sales tax reports, syndicated loans

voting disapproval voting, negative reviews/ratings

official reports

unemployment rate, work accidents,

virus outbreak reports (COVID-19 daily cases)

misc lottery pots, referral schemes

We summarize applications of PoL from [20] with a few revisions

and classify them by domains in table 4.

Proof of Solvency. Proof of solvency [7, 13, 19, 25, 32, 73] is

used to prove that a custodial service possesses sufficient assets to

settle all clients’ accounts. Although Bitcoin is gaining population in

using decentralized digital currencies, a large proportion of applica-

tions and tradings still happen in centralized exchanges. As clients

deposit their assets in exchanges, there is a risk of losing money

due to bankruptcy, theft or technical mistakes of exchanges. Clients

have lost billions of dollars worth of bitcoins in exchanges [55].

It is important for clients to be aware of the well functioning of

exchanges and that their deposits are not lost.

In particular, proof of solvency aims to demonstrate 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ≤
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 . It consists of two components, i.e., proof of liabilities and

proof of assets. Proof of liabilities prevents an exchange from cheat-

ing about the total balances of its clients, thus further lower bound-

ing the reported amount of assets when proving solvency. PoL can

be implemented independently from the underlying blockchain pro-

tocol which the corresponding proof-of-assets mechanism depends

on, thus it applies to any blockchain or even traditional banking

systems.

As noted in Provisions [25], proof of solvency doesn’t prevent

bankruptcy or money theft, but is important for clients to estimate

the status of a financial institution and their own risks. It also has

a potential in mitigating insolvency caused by panic.

Fundraising. Fundraising is the process of aggregating financial
contributions from voluntary individuals or entities for a common

project or goal. Charitable donation is an example of fundraising.

It is critical for the charity to prove that all donations are included

in their total reported amount [66] but there is no easy way. Cur-

rently charities select auditors by themselves for auditing. A study

shows that the willingness of donors are affected by both a charity’s

reputation and the quality of auditor the charity chooses [45].

PoL enables decentralized auditing without trusting an audi-

tor, which in many donation campaigns doesn’t exist anyway. It

helps increase transparency while preserving privacy in fundrais-

ing activities, thus further enhance trust and participation. The

main difference between solvency and donations is that some of

the privacy features might be optional in fundraising. For instance,

disclosing the total amount raised or how many donors contributed

might be considered a feature rather than a privacy leakage.

Credit score and financial obligations. Credit score [64] is a
measurement of a person’s credit risk, i.e., having a higher credit

score indicates that you are more creditworthy, and thus it is easier

for you to get a loan or a lower insurance rate, etc. To compute

an individual’s credit score, we need all relavent credit reports

covering financial history records including loans and debts.

Usually centralized credit bureaus collect credit reports and use

them to compute credit scores and report to creditors. A hacker

successfully accessing the database of a credit bureau can lead to se-

vere consequences. For instance, data breach [39] of a major bureau

in 2017 resulted in leakage of hundreds of millions of customers’

personal data.

PoL can be used to allow people to maintain credit scores on

their own and report to creditors directly without third party in-

termediaries. This provides better privacy protection of personal

data. In addition, the PoL commitment of a credit score can also

be combined with other cryptographic primitives, such as MPC,

for comparison (i.e., if it meets a threshold) without revealing the

actual value.

Sales tax reporting. Enterprises have to report revenues at

regular intervals for taxing. PoL can be complementary to the

current auditing system and may mitigate tax evasion by allowing

customers to automatically or voluntarily contribute on verifying

tax liabilities proof for every purchase.

For that to work, each PoL inclusion proof should be considered

a decentralized invoice. Briefly, each signed receipt is an entry in

merchant’s liabilities data set. Then buyers could have an app to

automatically and privately check the inclusion of their receipts at

the end of the tax year for every purchase they had; and report it

to the tax authorities in case of a mismatch.

Among the others, a high participation from citizens would

eventually lead to less resources required by the tax authorities to

audit companies and as a result IRS for example would no longer

need to issue centralized invoices for taxation.

Obviously, motivations to encourage decentralized participation

from citizens is an interesting topic of research; some ideas include

tax discounts or impacting credit scores for those who contribute.

Moreover, there are cases where dual incentives for applying

PoL aligning with each other. One example is charity fundraising

where apart from the charity’s PoL, tax payers can automatically

claim charitable tax deduction on donations they make by using

their inclusion proof as proof of expense.
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Syndicated loans. Syndicated loans are a form of loan offered

by a group of lenders to a large borrower, i.e., a corporation, a

project, or a government. The large loan is jointly contributed

by lenders in the syndicate and the lending risk is shared among

them. Usually there is a lead lender arranging all other lenders

and administering the loan. However, this doesn’t provide any

privacy for lenders. The total loan amount and the amount lent

by each lender is at least visible to the arranger. In addition, a

malicious arranger might fake the total loan or report inconsistent

contribution of each individual lender.

PoL can be applied to this case and solves the problems above.

The borrower acts as the prover and has no incentive to exaggerate

his total liabilities to lenders. And each lender can check his contri-

bution independently by requesting the corresponding inclusion

proof. The contribution amounts can be concealed, and no arranger

is needed for managing this.

Disapproval voting. Verifiability, i.e., the ability of voters to

check all the cast ballots are correctly tallied in the voting result,

is a critical property in e-voting systems. Yet there is no easy way

to achieve it and there are known attacks against existing e-voting

systems on verifiability, i.e., trash attacks [6] and clash attacks [47].

A disapproval vote is a vote against one or multiple candidates.

If the voting system manager is a stakeholder in some of the candi-

dates, e.g., being or owning the candidates, thus has no incentive to

increase the amount of negative votes, PoL can be applied for veri-

fiability. In particular, PoL allows the manager to prove inclusion

of disapproval votes in the voting result in a distributed manner as

all other applications mentioned above. A voter can find out if the

manager maliciously discards his disapproval vote. In some cases,

the candidates can run the poll for themselves instead of requiring

a third party to run the voting system. And each candidate just

needs to provide PoL proofs to voters to prove that no disapproval

vote is discarded in the final count. The candidates may run an

MPC protocol to output an ordering of the amounts of dispproval

they receive without revealing the exact values.

Note that voting systems are complex and there are many crucial

issues that need to be resolved other than verifiability, e.g., coer-

cion, bribery and sybil attacks. PoL guarantees verifiability under

certain incentive assumptions but need to be combined with other

cryptographic tools, such as anonymous credentials, for building

up a complete solution satisfying other requirements of a voting

system.

Negative reviews/ratings. Similarly to disapproval voting, it

is critical to guarantee verifiability in negative reviews including

reporting illegal behaviors e.g., hate speech, violence promotion,

fake news, or negative reviews and complaints on rating platforms

for commodities, restaurants, services, etc. PoL can be applied to

allow reviewers to check if their negative reviews are properly

included in the rating systems without a centralized auditor.

Again, PoL relies on the assumption that there is no incentive

for the prover to increase the amount of negative reviews, so it is

required that the prover shares similar interests as the reviewed

identity. The reviewee or the owner of the reviewee can generate

PoL proofs on his own without involving a third party, since there

is no incentive for him to maliciously increase the negative rating.

PoL doesn’t prevent malicious reviewers from rating maliciously

negatively and repetitively against some item either, so there is need

in preventing this and sybil attacks with additional mechanisms.

Moreover, PoL cannot be applied to rating systems that report

average scores because a malicious prover can insert high ratings

to increase the average as much as desired.

Official liability reports. During pandemics there is always

an urgent need to monitor and track the numbers of infections

and deaths because they help epidemiologists learn more about the

disease, stop the spread and find a cure. For instance, authorities

globally collect COVID-19 data and publish daily reports [28].

Similar examples of official liability reports include the number

of work accidents in companies [58] and unemployment cases [57].

The common characteristic of the applications above is that the

count represents liabilities and obligations, thus there is no incen-

tive for the counter to overstate the number.

Data accuracy and timeliness are particularly important for pub-

lic good in these applications. PoL can be applied to provide trans-

parent verifiability while preserving confidentiality of people’s

personal information. Interestingly, authorities of different districts

can also compare the count without leaking their actual values via

MPC. In addition, the hierarchical DAPOL+ could be applied here

particularly to enable hierarchical proofs, where institutions report

to local authorities and in turn local authorities report to the state.

Lottery prizes. Lotteries are a form of gambling and are strictly

regulated even in districts where they are not outlawed by the

government. Usually there is an auditor making sure fairness and

preventing frauds in a lottery. However, there have been reports

on lottery frauds all the time [29, 70, 71].

PoL can be applied to lottery audit for ensuring the consistency

between the reported total pot and participants’ contributions with-

out involving a third party auditor. The lottery organizer is the

prover and since the pot depends on the total bet, he has not in-

centive to increase the amount. Players can check whether their

contributions are included individually while actual values can be

concealed from the public.

Referral schemes. Referral websites (referrers) are interme-

diate domains that contain links directing visitors to other sites

(referees). Referrals increase the traffic to the referred websites, and

can be beneficial because they may invoke business activities by

visitors, e.g., purchasing products or depositing money.

Referred websites may need to pay referral websites for referrals

based on visitors’ activities. Many websites though pay referrals

by sign ups (not visits) or amount deposited by the final client (i.e.,

gambling websites). Thus, it is hard to verify whether the referee

intentionally reports a smaller amount of liabilities.

PoL could be a complementary tool for solving the above issue in

a distributed way. Briefly, the referee generates a PoL proof for all

visiting activities. If visitors are incentivized to verify the inclusion

or if there is an automatic scheme, e.g., by the browser to request

PoL proofs, the referee won’t be able to claim lower traffic/action

numbers. Note that PoL on itself doesn’t solve the whole problem,

however. The issue of how to distinguish between human behaviors

and automatic bots when measuring traffic is also concerning and

challenging [76].



B VULNERABILITIES IN EXISTING SCHEMES
B.1 Maxwell-Todd

(a) The prover is honest.

(b) The prover is malicious.

Figure 6: An example of the vulnerability in the Maxwell-
Todd scheme with 4 users.

Maxwell-Todd breaks non-equivocation [43]. Because there’s no

binding between the hash in a node and the values in its child nodes,

provers can cheat even when every user verifies their inclusion

proofs.

An example of the vulnerability is shown in fig. 6. When the

prover is honest, the sum in the root node should be 10, as demon-

strated in fig. 6a. When the prover is adversarial, however, the sum

in the root node could be maliciously committed to 4, as shown

in fig. 6b. Note that when a user asks for the inclusion proof, the

malicious prover is able to serve a proof that passes the verification

successfully. For example, for user𝑢3, the prover generates a Merkle

path containing two nodes, 𝑁𝑜𝑑𝑒4 = (1, ℎ4) and 𝑁𝑜𝑑𝑒5 = (0, ℎ′
5
).

Then 𝑢3 computes 𝑁𝑜𝑑𝑒6 = (3 + 1 = 4, ℎ′
6
= H(4| |ℎ3 | |ℎ4)) and

𝑁𝑜𝑑𝑒7 = (0 + 4 = 4, ℎ′
7
= H(4| |ℎ′

5
| |ℎ′

6
)), which matches the pub-

lished root node.

B.2 DAPOL
DAPOL may leak information about the number of users because

padding nodes are distinguishable from nodes of other types. A

semi-honest user can infer which nodes in the Merkle proof are

padding nodes by checking if the node hash equals toH(“𝑝𝑎𝑑”| |𝑖𝑑𝑥).
As discussed in section 2, assuming an inclusion proof consists of

padding nodes at heights {𝑥1, · · · , 𝑥𝑚} (root at height 0), the user
can bound the number of users within the range [𝐻 −𝑚 + 1, 2𝐻 −∑𝑚
𝑖=1 2

𝐻−𝑥𝑖 ].

Figure 7: An example of the DAPOL SMT with 1 single user.

We demonstrate the leakage by an example. Suppose there is

only 1 user as depicted in fig. 7. User 𝑢1 receives an inclusion proof

consisting of two padding node at heights {1, 2}. Thus 𝑢1 can infer

that he/she is the single user the prover is liable to.

C TOOLS FOR PROOF OF LIABILITIES
We briefly introduce tools that are potential building blocks when

implementing PoL schemes in this section.

C.1 Public Bulletin Board
A bulletin board is a public append-only memory to which anyone

has access. People interacting with a PBB are guaranteed to have

consistent views of the contents on it. A secure PoL protocol needs

a PBB to enable users to have the same view of the prover’s claims

about the total liabilities and to make sure if their own individual

amounts are included. Without a PBB, a malicious prover can al-

ways show different total liabilities to different users, excluding

some other users’ amounts without being detected. To implement

a PBB, we either have to place all trust on a single entity for being

honest and available all the time, e.g., a trusted hardware which

doesn’t need to be trusted for confidentiality but only integrity, or

use a decentralized scheme [33, 41], such as a blockchain which is

believed to be the most practical and promising implementation of

a PBB. Note that a forkless blockchain is preferable, otherwise the

blockchain need to be resistant to long range attacks [34] to func-

tion as a PBB. Due to its low throughput of transactions, committing

data on a blockchain is expensive. Therefore a minimized size of

commitments on the PBB is desired in a practical PoL protocol.

C.2 Accumulators
Cryptographic accumulators [5] are one-way functions allowing

space/time efficient membership and/or non-membership proofs,

i.e., whether an element is a member of a set can be proved effi-

ciently. To enable users to check if their amounts are included in

the prover’s total liabilities while minimizing the public commit-

ment size on a PBB, we can use accumulators for PoL protocols.

RSA accumulators [2, 15] are a class of accumulators but don’t

support summation, thus cannot be used for PoL to prove each

user’s contribution to the total liabilities. Besides, RSA accumu-

lators are index-free, i.e., the members of a set are not ordered.



In section 4.4.5, we discuss an additional property of PoL protocols

- random sampling, which requires indexes of set elements, and

RSA accumulators cannot provide this property. In contrast, Merkle

trees [14, 53] are a class of tree-based accumulators that can support

summation and membership proofs in an ordered set. Therefore,

Merkle tree is an ideal accumulator for PoL.

SummationMerkle Trees. Summation Merkle trees are a type

of Merkle trees supporting summation of elements in a set, i.e., not

only proving the inclusion of an element as a leaf node in the tree,

but also that the value of the leaf node is summed in the root node.

It was first proposed in [73] followed with a security patch [43],

by adding a value field 𝑐 to each tree node along with the original

hash field ℎ . The merging function of each node from its two child

nodes 𝑙𝑐ℎ and 𝑟𝑐ℎ is 𝑐 = 𝑐𝑙𝑐ℎ + 𝑐𝑟𝑐ℎ, ℎ = H(𝑐𝑙𝑐ℎ | |𝑐𝑟𝑐ℎ | |ℎ𝑙𝑐ℎ | |ℎ𝑟𝑐ℎ ),
whereH(·) is a collision-free hash function. The value field of the

root node should equal to the sum of that of all leaf nodes.

SparseMerkle Trees. SparseMerkle trees (SMT) can be used to

conceal the population while neither a Patricia Merkle tree used in

SEEMless [21] nor a full Merkle tree is suitable. In a Patricia Merkle

tree of height 𝐻 with the root at height 0, each user is mapped to

a node indexed at height 𝐻 , but might not reside in that mapped

node. Instead, each user moves up along its path to the root as long

as the subtree rooted at the current node contains no other users’

mapped nodes. Eventually users stop moving and reside in the

highest nodes that satisfy the condition above. Although the tree

is compact, a PoL based on Patricia Merkle trees leaks the number

of users. For example, a user residing in a leaf node at height 𝑖 can

derive partial knowledge 𝑛 ≤ 2
𝐻 − 2

𝐻−𝑖 + 1. In the worst case,

all users colluding together can have a good estimate of 𝑛. A full

Merkle tree having all users reside in leaf nodes can conceal 𝑛 as

long as the tree height is large enough, i.e., 𝐻 ≥ ⌈log𝑁 ⌉, 𝑁 being

the maximum potential population. However, this is inefficient

because there are 2
𝐻+1 − 1 nodes in total thus the tree generation

complexity is𝑂 (2𝐻 ), independent of𝑛. Sparse Merkle trees, instead,

provide an efficient and practical solution to privacy of population.

In an SMT, users are mapped to and reside in nodes at height 𝐻 .

Instead of constructing a full binary tree, only tree nodes that are

necessary for Merkle proofs exist, thus the generation complexity

is 𝑂 (𝑛 · 𝐻 ). We present this construction in detail in section 4.

C.3 Pedersen Commitments
Pedersen commitments [60] can be used to conceal the prover’s

liabilities to individual users in PoL. Given a cyclic group 𝐺 of

order 𝑞, two public random generators of the group 𝑔
1
, 𝑔

2
whose

relative discrete logarithm is unknown to everyone, a Pedersen

commitment to a value 𝑙 ∈ Z𝑞 is Com(𝑙, 𝑏 ) = 𝑔
𝑙
1
· 𝑔𝑏

2
, where 𝑏 ,

the blinding factor, is a randomly selected element in Z𝑞 . Pedersen
commitments are perfectly hiding (i.e., an unbounded adversary

cannot learn anything about a value from its commitment) and

computationally binding (i.e., a bounded adversary cannot open

a commitment for two different values). Additionally, Pedersen

commitments are addition-homomorphic, i.e., a commitment to the

sum of two values 𝑙1, 𝑙2 can be derived from the commitments to

them directly:Com(𝑙1, 𝑏1) ·Com(𝑙2, 𝑏2) = 𝑔𝑙1+𝑙2
1
·𝑔𝑏1+𝑏2
2

= Com(𝑙1+
𝑙2, 𝑏1+𝑏2). Therefore, users can audit the total liabilities in Pedersen
commitments instead of the plain values.

C.4 Zero-Knowledge Range Proofs
Zero-knowledge range proofs (ZKRFs) allow a prover to prove to

a verifier that a number 𝑥 is within a certain range [𝑎, 𝑏] and the

verifier is not able to learn 𝑥 from the proof. ZKRFs are utilized for

two purposes in DAPOL+. First, for the security of PoL, the prover

proves that each value committed is within a certain range to pre-

vent overflow when summing them up, e.g., if there are at most 𝑁

users, and in the worst case all users can have the same maximum

amount, the prover needs to prove that for each user’s committed

value 𝑣 , it holds that 𝑣 ∈ [0, 𝑝/𝑁 ], where 𝑝 is the group order. Sec-

ond, depending on the particular application, a prover may prove

zero-knowledge claims regarding the total liabilities with its com-

mitment. For example, in the solvency case, the prover can prove

solvency by showing the total liabilities is no more than the total

assets he/she owns with a zero-knowledge range proof. Generic

zero-knowledge proofs constructions (e.g., Gro16 [40], Halo [10],

Ligero [1], Plonk [31]) offer ZKRFs but we choose Bulletproofs [11]

for DAPOL+ due to its aggregation property and no need of a

trusted setup.

C.5 Key Derivation Functions
Key derivation functions (KDF) are used to derive one ormore secret

keys from a low-entropy secret value such as a password or stretch

keys to a desired length [46]. In PoL, this allows the prover and the

users to generate blinding factors in Pedersen commitments, user

masks and mapped tree node indexes in an SMT deterministically

from users’ unique IDs. Thus, in response to users’ verification

queries, the prover can send inclusion proofs without including any

sensitive information such as the blinding factors. With this feature,

the sparse Merkle tree of commitments can be outsourced to a third

party without leaking liabilities and users can interact with the third

party directly. In this way, the prover has no knowledge of which

users verify or not, and prevents the prover from manipulating

liabilities to users who seldom check based on the verification

patterns he/she learns.

C.6 Private Information Retrieval
Private information retrieval (PIR) protocols allow users storing

their data on a database to retrieve data without revealing which

piece of data is accessed [23]. It is proven that with a single server to

achieve information theoretic privacy, the communication complex-

ity is at least 𝑂 (𝑛), i.e., the server returns the whole dataset to the

user. To get around this lower bound, we can distribute the database

to multiple entities assuming they don’t collude [3], or use a single

server assuming the adversary is computationally bounded [49], or

use trusted hardware [68]. To hide verifiers’ identities, PIR seems

to be a candidate solution.

C.7 Oblivious RAM
An oblivious RAM (ORAM) protocol enables users storing their data

on a database to safely read and write data without leaking their

access patterns [37, 38]. This can be used in PoL to support updates

of the prover’s liabilities to users while preserving privacy of update

patterns. Viewing the aggregated inclusion proofs from colluding

users as the dataset, the users play the role of the adversarial server

in ORAM attempting to infer information, while the prover acts as



the data owner in ORAM aiming to conceal update patterns. Circuit

ORAM [69] is the first tree-based ORAM protocol that achieves

asymptotically optimal circuit size and bandwidth cost. Combining

it with zero-knowledge proofs, a new primitive called Publicly-

Verifiable Oblivious RAM Machine (PVORM) is proposed [16] to

achieve a similar goal as in PoL, i.e., allowing an database manager

to verifiably update the publicly visible but encrypted dataset for

users without leaking users’ update patterns. Adopting PVORM

in PoL, users don’t even need to verify inclusion proofs after each

update but only the update proofs of PVORM, which we discuss

further in section 4.3.3.

D DAPOL+ PSEUDOCODE
We present the pseudocode of the DAPOL+ protocol in fig. 8 to

help demonstrate how it works.

E ProtDAPOL+ SECURITY
We prove theorem 4.1 that ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) satisfies correct-
ness and soundness.

Proof. It is straightforward that ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) satisfies
correctness.

Now we prove ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) satisfies soundness. Assume

for contradiction that soundness is broken, which means there

exists a (𝑁,𝑀𝑎𝑥𝐿)-valid data set 𝐷𝐵, a p.p.t. adversarial prover

A∗ corrupting some users inU, and a subset 𝑉 of non-corrupted

users such that with non-negligible probability, the adversary can

cheat users in 𝑉 without being detected. First, because users’ IDs

are distinct in a valid 𝐷𝐵, by collision resistance of H(·), each
user must be mapped to a unique leaf node. Combining Merkle

proofs for all users in 𝑉 , again by collision resistance of H(·),
the intersection nodes of different Merkle paths together with the

leaf nodes of 𝑉 are consistent. Hence a unique sparse Merkle tree

𝑆𝑀𝑇 can be derived from the Merkle paths and the leaf nodes for

users in 𝑉 . By the computationally binding property of Pedersen

commitments, each leaf node mapped to 𝑢 ∈ 𝑉 commits to the

prover’s liabilities to 𝑢. By the additively homomorphic property of

Pedersen commitments, the root node should commit to the sum

of values in all leaf nodes and padding nodes in 𝑆𝑀𝑇 if there is no

overflow. For each 𝑢 ∈ 𝑉 , by the soundness of Bulletproofs, each

sibling node in 𝑢’s Merkle path commits to a value within range

[0, 𝑁 · 𝑀𝑎𝑥𝐿). Since 𝑙𝑢 ∈ [0, 𝑀𝑎𝑥𝐿) as 𝐷𝐵 is valid, the internal

node at height 𝑖 on the path from 𝑢’s leaf node to the root commits

to a value within [0, ((𝐻 − 𝑖) · 𝑁 + 1) ·𝑀𝑎𝑥𝐿), so the root within

[0, (𝐻 ·𝑁 +1) ·𝑀𝑎𝑥𝐿). Given that 𝑞 ≥ (𝐻 ·𝑁 +1) ·𝑀𝑎𝑥𝐿, there isn’t
an overflow in the additions. Therefore, 𝐿 =

∑
𝑢∈𝑉 𝑙𝑢 +

∑
𝑖∈𝑊 𝑣𝑖 ,

where𝑊 is the set of padding nodes in 𝑆𝑀𝑇 not mapped to any

user in 𝑉 and 𝑣𝑖 is the value each node in𝑊 is committed to. Thus

𝐿 <
∑
𝑢∈𝑉 𝑙𝑢 indicates that there exists some node 𝑖 ∈ 𝑊 such

that 𝑣𝑖 < 0. This violates the security of Bulletproofs proving the

range of 𝑣𝑖 . Therefore, ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) satisfies soundness
and thus is secure. □

We now show that ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) isΦuser
-private where

Φuser = ∅ as defined in theorem 4.2.

Proof. The real game returns 𝑃𝐷 , 𝐷𝐵 [𝑉 ] and {𝜋𝑢 }𝑢∈𝑉 . We

construct as follows the simulatorS taking 1
𝜅
and𝐷𝐵 [𝑉 ] as inputs:

ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿)Public parameters :
𝑁 ,𝑀𝑎𝑥𝐿, 𝐻 ,𝐺 , 𝑔

1
, 𝑔

2
, 𝑠𝑎𝑙𝑡_𝑏, 𝑠𝑎𝑙𝑡_𝑠

On init, P executes Setup(1𝜅 , 𝐷𝐵) :

Let𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡
$← {0, 1}𝜅 ;

Randomly map 𝑢 ∈ U to a bottom-layer leaf node in an empty SMT;

For 𝑖 in 𝐻..1 :

Add padding nodes for non-existing siblings of existing nodes at height 𝑖 ;

Add parent nodes at height 𝑖 − 1 for existing nodes at height 𝑖 ;
For 𝑗 in 𝐻..0 :

For 𝑖 is an existing node at height 𝑗 in SMT :

If 𝑖 is a leaf node of user 𝑢 :

Let 𝑤𝑢 = 𝐾𝐷𝐹 (𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡, 𝑖𝑑𝑢 ) ;
Let 𝑏𝑢 = 𝐾𝐷𝐹 (𝑤𝑢 , 𝑠𝑎𝑙𝑡_𝑏) , 𝑠𝑢 = 𝐾𝐷𝐹 (𝑤𝑢 , 𝑠𝑎𝑙𝑡_𝑠) ;
Let 𝑐𝑢 = 𝐶𝑜𝑚 (𝑙𝑢 , 𝑏𝑢 ) = 𝑔𝑙𝑢

1
· 𝑔𝑏𝑢

2
, ℎ𝑢 = H(“𝑙𝑒𝑎𝑓 ” | |𝑖𝑑𝑢 | |𝑠𝑢 ) ;

If 𝑖 is a padding node :

Let 𝑤𝑖 = 𝐾𝐷𝐹 (𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡, 𝑖𝑑𝑥𝑖 ) ;
Let 𝑏𝑖 = 𝐾𝐷𝐹 (𝑤𝑖 , 𝑠𝑎𝑙𝑡_𝑏) , 𝑠𝑖 = 𝐾𝐷𝐹 (𝑤𝑖 , 𝑠𝑎𝑙𝑡_𝑠) ;
Let 𝑐𝑖 = 𝐶𝑜𝑚 (0, 𝑏𝑖 ) = 𝑔0

1
· 𝑔𝑏𝑖

2
, ℎ𝑖 = H(“𝑝𝑎𝑑” | |𝑖𝑑𝑥𝑖 | |𝑠𝑖 ) ;

If 𝑖 is an internal node :

Let 𝑐𝑖 = 𝑐𝑙𝑐ℎ𝑖 · 𝑐𝑟𝑐ℎ𝑖 , ℎ𝑖 = H(𝑐𝑙𝑐ℎ𝑖 | |𝑐𝑟𝑐ℎ𝑖 | |ℎ𝑙𝑐ℎ𝑖 | |ℎ𝑟𝑐ℎ𝑖 ) ;
Let 𝑆𝐷 = (𝑚𝑎𝑠𝑡𝑒𝑟_𝑠𝑒𝑐𝑟𝑒𝑡, the mapping) ;
Publish 𝑃𝐷 = (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 ) ;

On receive “ProveTot” from a requester, P executes ProveTot(𝐷𝐵, 𝑆𝐷) :
Let 𝐿 =

∑
𝑢∈U 𝑙𝑢 , Π =

∑
𝑢∈U 𝑏𝑢 +

∑
padding node 𝑖 𝑏𝑖 ;

Send the requester (“VerifyTot”, 𝐿, Π);

On receive (“VerifyTot”, 𝐿, Π) from P, execute VerifyTot(𝑃𝐷, 𝐿,Π) :
If 𝑃𝐷 = (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 ) and 𝑐𝑟𝑜𝑜𝑡 = 𝑔𝐿

1
· 𝑔Π

2
:

return 1;

Else :

return 0;

On receive (“Prove”, 𝑖𝑑 ) from a request, P executes Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑 ) :
If the requester fails to authenticate identity with respect to 𝑖𝑑 :

exit;

Retrieve 𝑏 and 𝑠 of the user with 𝑖𝑑 ;

Retrieve the Merkle path {(𝑐𝑖 , ℎ𝑖 ) }𝑖∈[1,𝐻 ] authenticating the user’s leaf node;
Generate 𝜋𝑟𝑎𝑛𝑔𝑒 proving {𝑐𝑖 }𝑖∈[1,𝐻 ] commits to values within [0, 𝑁 ·𝑀𝑎𝑥𝐿) ;
Send the requester (“Verify”, 𝜋 = (𝑏, 𝑠, {(𝑐𝑖 , ℎ𝑖 ) }𝑖∈[1,𝐻 ] , 𝜋𝑟𝑎𝑛𝑔𝑒 ));

On receive (“Verify”, 𝜋 ) from P, execute Verify(𝑃𝐷, 𝑖𝑑, 𝑙, 𝜋) :
Let 𝑐′

𝐻
= Com(𝑙, 𝑏 ) , ℎ′

𝐻
= H(“𝑙𝑒𝑎𝑓 ” | |𝑖𝑑 | |𝑠 ) ;

For 𝑖 in 𝐻 − 1..0 :
Let 𝑐′𝑖 = 𝑐

′
𝑖+1 · 𝑐𝑖+1 and similarly compute ℎ′𝑖 ;

If (𝑐′
0
, ℎ′

0
) = 𝑃𝐷 and 𝜋𝑟𝑎𝑛𝑔𝑒 is valid :

return 1;

Else :

return 0;

Figure 8: The DAPOL+ protocol.

If 𝑉 = ∅, randomly sample 𝑠
$← {0, 1}𝜅 and 𝑏

$← Z𝑞 , and return

(𝑐 = Com(0, 𝑏 ), ℎ = H(𝑠)), ∅ and ∅.
Otherwise, when 𝑉 ≠ ∅,

(1) Randomly map each user in 𝑉 to a bottom layer node in an

empty SMT of height 𝐻 . For each node mapped to a user

𝑢 ∈ 𝑉 , let 𝑐𝑢 = Com(𝑙𝑢 , 𝑏𝑢 ) and ℎ𝑢 = H(“leaf”| |𝑖𝑑𝑢 | |𝑠𝑢 ),
where 𝑠𝑢

$← {0, 1}𝜅 and 𝑏𝑢
$← Z𝑞 . Note that H(·) and

𝐾𝐷𝐹 (·) are calls to a random oracle.

(2) Construct a sparse Merkle tree 𝑆𝑀𝑇 initiated with the bot-

tom layer nodes mapped to users in 𝑉 . For each padding



node 𝑖 , randomly sample 𝑠𝑖
$← {0, 1}𝜅 and 𝑏𝑖

$← Z𝑞 . Let 𝑐𝑖 =
Com(0, 𝑏𝑖 ) and ℎ𝑖 = H(“𝑝𝑎𝑑”| |𝑖𝑑𝑥𝑖 | |𝑠𝑖 ). Then for each inter-

nal node 𝑖 with child nodes 𝑙𝑐ℎ𝑖 and 𝑟𝑐ℎ𝑖 , let 𝑐𝑖 = 𝑐𝑙𝑐ℎ𝑖 ·𝑐𝑟𝑐ℎ𝑖
and ℎ𝑖 = H(𝑐𝑙𝑐ℎ𝑖 | |𝑐𝑟𝑐ℎ𝑖 | |ℎ𝑙𝑐ℎ𝑖 | |ℎ𝑟𝑐ℎ𝑖 ).

(3) Return (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 ), 𝐷𝐵 [𝑉 ] and inclusion proofs for each

user in 𝑉 generated from 𝑆𝑀𝑇 .

Nowwe have defined the simulator, and the proof is straightforward.

We introduce a hybrid game in which each user in 𝑉 is mapped to

a bottom layer node in an empty SMT of height 𝐻 , and the SMT

for 𝑉 only is generated as in the real game. This hybrid game is

indistinguishable from the real game. Then by perfect hiding of

Pedersen commitments and zero-knowledge of Bulletproofs, the

hybrid game is indistinguishable from the simulated game. □

We now show that ProtDAPOL+ (𝑁,𝑀𝑎𝑥𝐿) is Φauditor
-private

where Φauditor = ∅ as defined in theorem 4.3.

Proof. The real game returns 𝑃𝐷 , 𝐿, Π, 𝐷𝐵 [𝑉 ] and {𝜋𝑢 }𝑢∈𝑉 .
We construct as follows the simulator S taking 1

𝜅
, 𝐿 and 𝐷𝐵 [𝑉 ]

as inputs:

If 𝑉 = ∅, randomly sample 𝑠
$← {0, 1}𝜅 and 𝑏

$← Z𝑞 , and return

(𝑐 = Com(𝐿,𝑏), ℎ = H(𝑠)), 𝐿, 𝑏 , ∅ and ∅.
Otherwise, when 𝑉 ≠ ∅,

(1) Randomly map each user in 𝑉 to a bottom layer node in

an empty SMT of height 𝐻 , and compute the commitment

and hash for each user by 𝑐𝑢 = Com(𝑙𝑢 , 𝑏𝑢 ) and ℎ𝑢 =

H(“leaf”| |𝑖𝑑𝑢 | |𝑠𝑢 ), where 𝑠𝑢
$← {0, 1}𝜅 and 𝑏𝑢

$← Z𝑞 .
(2) Construct a sparse Merkle tree 𝑆𝑀𝑇 initiated with the bot-

tom layer nodes mapped to users in 𝑉 . For each padding

node 𝑖 , randomly sample 𝑠𝑖
$← {0, 1}𝜅 and 𝑏𝑖

$← Z𝑞 . Let
𝑐𝑖 = Com(0, 𝑏𝑖 ) and ℎ𝑖 = H(“𝑝𝑎𝑑”| |𝑖𝑑𝑥𝑖 | |𝑠𝑖 ) except that for
one padding node 𝑗 , let 𝑐 𝑗 = Com(𝐿−∑𝑢∈𝑉 𝑙𝑢 , 𝑏 𝑗 ) if 𝑗 exists.
Note that when there isn’t a padding node in 𝑆𝑀𝑇 , the tree is

full and the adversary corrupts all users. Next for each inter-

nal node 𝑖 with child nodes 𝑙𝑐ℎ𝑖 and 𝑟𝑐ℎ𝑖 , let 𝑐𝑖 = 𝑐𝑙𝑐ℎ𝑖 ·𝑐𝑟𝑐ℎ𝑖
and ℎ𝑖 = H(𝑐𝑙𝑐ℎ𝑖 | |𝑐𝑟𝑐ℎ𝑖 | |ℎ𝑙𝑐ℎ𝑖 | |ℎ𝑟𝑐ℎ𝑖 ).

(3) Return (𝑐𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 ), 𝐿,𝑏𝑟𝑜𝑜𝑡 =
∑
𝑢∈𝑉 𝑏𝑢 +

∑
padding node 𝑖 𝑏𝑖 ,

𝐷𝐵 [𝑉 ] and inclusion proofs for each user in 𝑉 generated

from 𝑆𝑀𝑇 .

Now we have defined the simulator, and the proof is similar to that

of theorem 4.2. Consider a hybrid game in which each user in 𝑉 is

mapped to a bottom layer node in an empty SMT of height 𝐻 first,

and users inU −𝑉 are mapped next, and then the game proceeds

as in the real game. This hybrid game is indistinguishable from the

real game. By perfect hiding of Pedersen commitments and zero-

knowledge of Bulletproofs, the hybrid game is indistinguishable

from the simulated game. □

F DISPUTE RESOLUTION
In this section, we take the solvency case as an example and dis-

cuss dispute resolution in PoL. Each virtual asset service provider

(VASP) [27] plays the role of a prover and clients depositing virtual

assets to it need to verify the inclusion of their balances in the

VASP’s total liabilities. A user may send money to another a trans-

action via the VASP he/she belongs to. Assuming every transaction

consists of one sender and one receiver for simplicity, each transac-

tion involves users either within a single VASP, i.e., the sender and

the receiver belong to the same VASP, or across two VASPs. Here

we empirically analyze all possible scenarios of dispute resolution

for the single-VASP case and the cross-VASP case separately.

F.1 Transaction within a single VASP

Sender ReceiverVASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Txn intent signed by Sender

VASP_2

Receipt signed by VASP_1 
& Transfer assets

Sender ReceiverVASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Txn intent signed by Sender

VASP_2

Receipt signed by VASP_1 
& Transfer assets

Sender ReceiverVASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Receipt signed by VASP_1

Txn intent signed by Sender

VASP_2

Receipt signed by VASP_1 
& Transfer assets

Transaction intent signed by Sender

Receipt signed by VASP

Receipt signed by VASP

Receipt signed by VASP

Figure 9: Transaction within a single VASP.

We depict in fig. 9 the protocol for a user to send a transaction

with only necessary interactions. Note that the green and red dotted

arrows are for the same purpose of guaranteeing that the receiver

has the receipt of the transaction, and are complementary to each

other, which we soon explain in detail. We classify all possible

scenarios of disputes by the set of maliciously colluding entities

and summarize them in table 5. We denote by S the sender, R the

receiver, V the VASP, and H an entity being honest and M being

malicious.

Table 5: Transaction within a single VASP.

S V R Potential attack Solution

M H H deny a tx V keeps the rcpt

H M H

deny a tx S and R keep the rcpt

replay a tx use nonce

not notify R S has incentive to send rcpt

not notify S 3 disputes/fair rcpt signing

DoS inevitable, hurts V’s reput

H H M forge a rcpt rcpt must be signed by V

M M H

deny a tx R keeps the rcpt

not notify R S has incentive to send rcpt

M H M forge a rcpt rcpt must be signed by V

H M M

replay a tx use nonce

not notify S 3 disputes/fair rcpt signing

S being malicious. S can only try to deny an approved transac-

tion (tx) to claim a higher balance. However, this won’t succeed as

long as V keeps the receipt (rcpt) signed by both itself and S.

V being malicious. There are five possible scenarios. First, V
may attempt to deny a transaction. But again, S has the receipt

signed by V as an evidence. Second, V may replay the same transac-

tion even if S doesn’t have the intention. To prevent this, we can add

a nonce to each transaction like in Ethereum [74], and transactions

with the same nonce shall only be executed once. Third, usually V
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Figure 10: Transaction across two VASPs.

Table 6: Transaction across two VASPs.

S V1 V2 R Potential attack Solution

H M H H

not notify S 3 disputes/fair rcpt signing

replay a tx use nonce

not transfer assets PoT needs to match rcpt

DoS inevitable, hurts V1 ’s reput

H H M H

deny asset transfer V1 provides PoT

not notify R S has incentive to send rcpt

M M H H not transfer assets PoT needs to match rcpt

M H M H

deny a tx V1 keeps the rcpt

not notify R S has incentive to send rcpt

deny asset transfer V1 provides PoT

H M H M

not notify S 3 disputes/fair rcpt signing

replay a tx use nonce

not transfer assets PoT needs to match rcpt

H H M M deny asset transfer V1 provides PoT

M M H M not transfer assets PoT needs to match rcpt

M H M M

deny a tx V1 keeps the rcpt

deny asset transfer V1 provides PoT

automatically sends receipts to R for usability and efficiency in a

trading system, but Vmay withhold a receipt so that R cannot verify

the balance accordingly. In this case, S can forward the receipt to

R directly to proceed with the trading, thus this is not an issue. In

practice S has the incentive to do so because he/she is either paying

for a product or service, or transferring money to R who he/she

knows. In either case, S needs to get confirmation of receipt from

R. Fourth, V may not notify S of the approval of a transaction but

secretly decreases S’s balance. S only finds out when verifying the

balance. When S raises a dispute, however, V is able to provide the

receipt. S may use the receipt to raise another dispute with R as R

should have received the funds. This is in a different layer of trading

protocols between S and R, so we don’t go into detail. R disagreeing

with the balance can use the receipt for another dispute. There are

three potential disputes. To avoid all the complexities, S and V can

also run a fair contract signing protocol [4] for receipts on each

transaction to eliminate V’s advantage here. Fifth, V may mount

a denial-of-service (DoS) attack, not approving valid transactions,

which is inevitable in most centralized applications. However, V

cannot claim a lower balance for S, thus the issue is out of the scope

of PoL. Meanwhile, DoS hurts V’s reputation (reput), so V has no

incentive to do so.

R being malicious. The capability of R is limited. Without a

receipt signed by V, R cannot claim a higher balance than he should

possess.

V colludes with S. There are two possible disputes. First, V
and S may execute a transaction but later deny it so R’s balance

is not properly increased. This won’t succeed as long as R keeps

the receipt. Second, V and S may withhold the receipt from R. As

mentioned, S has no incentive to do so in practice.

S colludes with R. A valid receipt requires the signature from

V. So if only S and R are colluding, there is nothing harmful they

can do.

V colludes with R. There are two possible disputes in this case.

First, V may collude with R and replay a transaction from S. Sim-

ilarly as before, adding a nonce to each transaction prevents this.

Second, V may secretly process a transaction but doesn’t send the

receipt to S. As mentioned, this can be resolved via potentially three

separate disputes or mitigated if S and V run a fair contract signing

protocol.

Note that there is no incentive for S, R and V to collude together,

because it is in S’s and R’s interests that their balances are no less

than they actually own while V wants its total liabilities to be as

low as possible.

Overall, all the scenarios except the DoS case which is inevitable

in most centralized applications and hurts V’s reputation, can be

resolved. However, for an individual user, the cost (including time

and effort) for dispute resolution may be higher than the balance

in dispute, so the user might not have incentive to raise a dispute.

In practice, V may slightly manipulate balances so that users have

little motive to dispute. There is a game between these entities

when taking such incentives into consideration, which is open for

future research.

F.2 2-VASP Dispute Resolution
We depict in fig. 10 the execution of a transaction across two VASPs

and analyze all possible dispute scenarios. The difference between

transaction execution within a single VASP and that across two

VASPs is that in the latter case, V1 needs to transfer assets to V2

and V2 forwards the receipt to R. We can have a bijective mapping

from scenarios in the single-VASP case to the two-VASP case by

viewing V as the union of V1 and V2, i.e., V1 and V2 collude as a

single entity, and all solutions still work. Therefore, we only analyze

additional scenarios when either of V1 and V2 is malicious. Still,

we classify them by the set of malicious entities and summarize the

analysis in table 6.

V1 being malicious. There are four possible disputes. First, V1

may secretly decrease S’s balance without sending the signed re-

ceipt to him. Similarly to the single-VASP case, this can be resolved

by possibly three separate disputes or mitigated by S and V1 run-

ning a fair contract signing protocol on the receipt. Second, V1 may

replay a transaction and this can be prevented by using nonce as dis-

cussed previously. Third, V1 may approve a cross-VASP transaction

but not transfer the corresponding asset to V2. This can be resolved

by requiring proof of transfer (PoT) from V1. Fourth, V1 may DoS

S. As mentioned, this is inevitable but hurts V1’s reputation.

V2 being malicious. There are two possible disputes. First, V2

may deny receiving the asset from V1. This can be resolved by V1

providing a PoT. Second, V2 may withhold the receipt from R and



not increase his balance properly. However, S has the incentive to

notify R, so R can dispute with the receipt.

V1 colludes with S. V1 may approve a transaction but not send

the assets to V2. However, this won’t succeed because S has incen-

tive to send R the receipt, e.g., for service in return, which allows R

to dispute. In the dispute, V2 can require V1 to provide a PoT that

matches with the receipt.

V2 colludes with S. There are three possible scenarios. First, S
may deny an issued transaction, but V1 keeps the receipt signed S.

Second, S and V2 may not notify R about the transaction. However,

there is no incentive for S to do so in practice as discussed before.

Third, V2 may deny receiving assets from V1 for the transaction,

but V1 can provide a PoT.

V1 colludes with R. There are three possible scenarios. First,
V1 may secretly process the transaction but withhold the receipt

from S. This can either be resolved via potentially three disputes

or mitigated by S and V1 running a fair signing protocol on the

receipt. Second, V1 may replay transactions, which can be prevented

by using the nonce. Third, V1 may not transfer the assets to V2.

V2 can require V1 to provide a PoT that matches the receipt with

which R claims a higher balance.

V2 colludes with R. V2 may deny asset transfer from V2. This

can be resolved by V1 providing a PoT.

V1 colludes with S and R. V1 may not send the assets to V2

properly. However, once R claims a higher balance with a valid

receipt, V2 can dispute and require from V1 a PoT that matches the

receipt.

V2 colludes with S and R. There are two possible disputes. First,
S may deny a transaction he/she issued and approved by V1. V1

can use the receipt as a defense in the dispute. Second, V2 may deny

receiving assets from V1 for the approved transaction, but V1 can

provide the corresponding PoT.

Overall, all the scenarios except the DoS case can be resolved.

The discussions regarding the cost and game of dispute resolution

in the single-VASP case also hold in the cross-VASP case.
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