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MathCoin: A Blockchain Proposal that Helps Verify
Mathematical Theorems In Public

Borching Su

Abstract—A public blockchain is proposed in an attempt to
enable the coin holders to participate in verifying mathematical
theorems for public access. Incentives are designed to encourage
any party to contribute their knowledge by buying tokens
of mathematical propositions that they believe are true. The
proposed blockchain is a platform for people to exchange their
belief in mathematical propositions. An implementation of this
blockchain proposal, once established, will provide the general
public with an easy and instant access to reliable knowledge
without having to read difficult proofs or having to blindly trust
a small number of experts. Conversely, experts from various
fields may find it much easier for making their work appreciated
by more people, leading to a better impact. According to the
incentive inherently provided by the blockchain, they can even
earn significantly if they do prove some theorems that were
not previously known by the blockchain. Foundations who are
interested in the validity of a particular proposition not yet
explicitly recorded on the blockchain can donate a fund, which
will distribute to experts who contribute positive efforts toward
solving the specified problems. Only the people who erroneously
create or buy tokens of a proposition that is eventually proven
false will lose money. A reference design of the proposed
blockchain that attempts to achieve the above-mentioned goal
is described and reasoned.

Index Terms—blockchain, cryptocurrencies, MathCoin, math-
ematical theorems, mathematical logic, Bitcoin, Ethereum, smart
contracts, formal verification, Zermelo-Fraenkel set theory, func-
tional programming.

I. INTRODUCTION

M athematical proofs are essential to any research work
and serve as foundations of science. Once proven, any

mathematical proposition can be said to be “known” to the
human kind, since any qualified professional can read the proof
and check the validity of the proposition. However, there are
usually cases that the validity of a given proposition is not so
“known” to human due to lack of qualified professionals and
their time. For example, Andrew Wiles had a proof of Fermat’s
Last Theorem in 1993, but an error was found in the proof.
So, he corrected the error and published the proof again in
1995 [1]. However, as the proof is extraordinarily long, except
for the real experts in the field, a relatively small number of
people actually have the time to go through the whole proof
and check every detail. Therefore, the general public’s belief
that Fermat’s Last Theorem is true is not directly based on
the proof that Wiles published; rather, it is based on the trust
of the experts in the field, or, based on the belief that “some
experts have shown that, according to my math teacher, or
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according to the news reports, etc.” One may argue that this
is no big deal, since usual people do not really care, and the
validity of Fermat’s Last Theorem does not affect their lives
anyway. However, many new theorems with similar difficulties
in proof continue to arise, and some of them will be critical in
determining the outcomes of some applications. For a business
manager who needs to make a timely important decision that
relies on the validity of a theorem, she may choose to hire an
expert she trusts. Then, the quality of the decision will pretty
much rely on whether the expert is able to give a reliable
answer within a time frame given by the manager according to
the requirements of her business. If the manager happens not to
be able to find competent experts within a short time, or if the
experts do not have sufficient time to give a confident answer,
the manager will be forced to make a pre-mature decision
using the partial knowledge she can get, even though the fact
is already said to be “known” by some academic papers.

If the problem of interest can be found as a theorem with
proofs in a given research article, things could be easier
for the manager. If the manager is careful, she may choose
to spend some experts’ efforts in double-checking the result
(with some more cost in time and budget). An even easier
choice may be to trust whatever has been proven in the paper
without reading the proofs. Ideally, mathematical proofs are
reviewed during the peer review process so that after a paper
is published, the proofs written on the paper are supposed
to be correct. However, there is essentially no incentive for
reviewers to find that a proof is wrong, especially when the
proof is complicated. If a “proof outline” or a “proof sketch”
look reasonable, most reviewers could just accept it because
they found nothing wrong in the manuscript. The fact that they
found nothing wrong (before the review deadline) does not
mean that they endorse the proof. They could find something
wrong sometime later (given some incentives in any form).
If not (due to lack of incentive), they may just leave the bug
there for years.

Recent advances in automated theorem proving (ATP) may
provide a way for people to check the validity of theorems
without blindly trusting published research results. Many of
existing tools, such as Coq [2], Isabelle [3], etc., however,
require the users to select heuristics in order to complete the
proof. Therefore, these tools are considered proof assistants
and are not truly automated yet. It still requires experts to
interact with the tools to obtain reliable results. Indeed, many
recent research results of mathematical Theorems [4] have
been published using these tools. Besides human interactions,
machine learning methods are also studied to choose good
heuristic [5]. While ATP tools are handy to researchers to find
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a proof of a theorem, it is still not easy to convince non-
specialists to trust the correctness of a theorem until they are
suffciently familiar with the ATP tool.

Formal verification using ATP gains more and more research
attention recently due to security issues in applications regard-
ing cryptocurrencies and smart contracts [6] as well as time-
critical and life-threatening applications. Instead of using just
a finite set of random test inputs to demonstrate that the code
usually does what it is expected to do, people would like to see
a proof that the code always does what it is expected to do, in
a hope to avoid serious problems, such as the DAO attack [7],
to happen again. However, as mentioned earlier, it is still not
easy to convince non-specialists about the correctness of the
results given by an ATP tool if they are not sufficiently familiar
with the tool. Even worse is that, the general public may have
to first trust the correctness of the automated theorem prover
used in the results, which require another formal verification
of the computer software itself. The demand of making formal
verification (a form of mathematical theorems) acceptable to
general public in a reliable and instant manner, therefore, will
become more and more important.

In this article, we propose to use the blockchain technology
to solve the problem of gaining the trust from the general
public about the correctness of mathematical theorems proven
by experts, advanced ATP software, artificial intelligence that
controls the software, and even a combination thereof. The
public blockchain establishes a game that is accessible to
everyone that is connected to the Internet. The game’s rules are
designed to reward those who contribute correct knowledge
to the public and penalize only those who make erroneous
claims on-chain. More specifically, all unproven propositions
recorded on the blockchain are given a price between 0 and 1,
with which all participants buy tokens to show their confidence
on the truthfulness of the target proposition and expect to earn
if the proposition is eventually proven true. This idea has been
used in many applications in the prediction market [8] recently
(e.g., [9] etc.) A major difference is that events to be predicted
in a prediction market application usually have a definite date
on which the outcome will be clear to everyone, whereas an
unproven proposition on a MathCoin blockchain usually does
not expect a finalized day (especially for difficult open ques-
tions). In addition, token prices of an unproven proposition
are governed by a deterministic predictably determined by
the amount of purchased tokens. Further, the outcome of a
prediction market application may require witnesses to report
when a dispute occurs. A proven proposition on the proposed
blockchain is shown by mathematical logic and does not need
further human intervention.

Since the blockchain is public information and essentially
immutable by any party, as time grows, the entire human
society will gradually obtain an encyclopedia of reliable math-
ematical theorems that are important in diverse fields selected
through accumulation of wisdom and efforts from experts in
various fields.

In this article, we will describe a reference design of
a blockchain that attempts to achieve the aforementioned
goal. Before the actual launch of any MathCoin blockchain,
implementation details shall be carefully chosen, and the soft-

ware should go through rigorous formal verification. We also
elaborate several issues that should be carefully considered in
a real implementation for the reference of any team who is
interested in realizing the idea proposed here.

The rest of the article is organized as follows. Section II de-
scribes basic elements of the proposed MathCoin blockchain,
including the block structure and basic functions. Section III
describes the pricing rules for unproven propositions that are
central to the proposal, followed by some illustrative examples.
Section IV gives a list of practical implementation issues
that have not been fully analyzed in this article but shall
be seriously considered in a real implementataion. Section V
gives the conclusion and future aspects.

II. ELEMENTS OF A MATHCOIN BLOCKCHAIN

A. Overview

A MathCoin network is designed to serve as a state-of-the-
art knowledge base capable of verifying, upon request, any
mathematical propositions that have been proven by human
instantly. Anyone who believe she knows something more
than what the network is covering can contribute that piece
of knowledge to the network and get rewarded appropriately.

In the following, we describe the basic components and
structures of a MathCoin blockchain. Figure 1 depicts an

Fig. 1. Illustration of two blocks in a typical MathCoin blockchain.

overview of the proposed blockchain. Each block starts with
the hash of the previous block, followed by a number of
transactions, and a nonce which makes the hash of the current
block to satisfy a difficulty constraint, just like what Bitcoin
[10] and many proof-of-work (POW) based blockchains do.
The main difference of a MathCoin blockchain is that besides
normal transactions, there are three other different types of
transactions in each block, namely, the token transactions, the
new definition transactions, and the new proposition transac-
tions. Furthermore, similar to Bitcoin, in each block there is
one special transaction, called the coinbase transaction, which
generates new MathCoins to reward the miner who finds the
block. The main difference in a MathCoin blockchain is that
only a portion of the newly generated MathCoins goes to the
miner; the remaining part will flow to the publicly-held reser-
voir. The ratio of the part flowing to the public fund to the total
amount of newly generated MathCoins in creation of a block
is called the miner’s tax rate. The main purpose of establishing
such a public fund is to reward MathCoin users who would
contribute knowledge to the chain later. It is important to note
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that, unlike a human-based government which may be subject
to corruption, a public fund held by the blockchain obeys a
deterministic rule upon which all participating nodes agree
when it is using the public MathCoins to reward knowledge
contributors. The rewarding process, along with any other
usages of the public fund, is therefore completely predictable
and transparent.

Just like many other cryptocurrencies, there are multiple
user-held addresses that can store MathCoins, and users can
transfer their MathCoins to another user address by signing
normal transactions using their private keys. Any of the
three other types of MathCoin introduced above, however, is
designed to be a transaction between a user and the network.

Fig. 2. Address domains and sub-domains of a MathCoin blockchain

Figure 2 illustrates the major types of addresses in a
MathCoin blockchain. All MathCoin addresses are categorized
into the user domain and the math domain. A user-domain
address is held by a user with a private key. A math-domain
address is conceptually similar to a contract address in a
blockchain that supports smart contracts (e.g., Ethereum [11],
Cardano, etc.). It can be either a definition address or a
proposition address. So, the math domain is further divided
into the definition sub-domain and the proposition sub-domain.
In the math domain, there are native addresses that are present
in the very beginning of a MathCoin blockchain, namely, the
basic definition addresses and the axiom addresses, residing
in the definition sub-domain and the proposition sub-domain,
respectively. The rest of the math-domain addresses are created
later by MathCoin users, using the earlier introduced new
definition transactions and the new proposition transactions,
respectively. Some of the user-created math-domain addresses
issue tokens that can be held by users, in return for the
MathCoins transferred to the math domain during the address
creation. Finally, users can purchase additional tokens of math-
domain addresses by signing a token transaction introduced
earlier. A token transaction can also be used to sell some
tokens back to the network and get MathCoins back to the
user. 1

1Whether tokens of math-domain addresses can be transferred to other users
is left as a design issue. The author advocates that such a transfer is not
necessary, making the network be the only possible party to trade math-domain
tokens with.

Notation Number of variables Output Remarks
∅ 0 set The empty set

∈ _ _ 2 proposition Membership
= _ _ 2 proposition Equality
∀ _ _ 2 proposition Universal quantifier
∃ _ _ 2 proposition Existential quantifier
¬ _ 1 proposition Logical negation

→ _ _ 2 proposition Logical implication
{} _ 1 set set operation
∪ _ 1 set Union set

{} _ _ 2 set set builder

TABLE I
SUGGESTED LIST OF BASIC DEFINITIONS FOR A MATHCOIN BLOCKCHAIN

B. Native Addresses and Choices of Axiomatic Systems

In the beginning of a MathCoin blockchain, there is a
number of pre-defined math-domain addresses, collectively
called the native addresses. Native addresses include the basic
definition addresses in the definition sub-domain, and the
axiom addresses in the proposition sub-domain.

The choice of the set of native addresses is an implementa-
tion issue, and is usually based on an established foundation
of mathematics. For the sake of simplicity, the following
presentations adopt the commonly accepted Zermelo-Fraenkel
set theory with axiom of choice (ZFC) [12] in our explanation.
The choice in this article for the explanation purpose shall not
exclude any team from choosing a different foundation, or a
different set of native addresses. In fact, it is possible that two
or more MathCoin blockchains with different choices of native
addresses could exist simultaneously. In this case, the value of
a particular MathCoin blockchain may be highly associated
with the axiomatic system based on which it was built.

Based on the ZFC system, the following usual notations
shall be included in the basic definition addresses:

1) Membership “∈”
2) Equality “=”
3) The empty set “∅”
4) Quantifiers ∀,∃,∃!.
5) Logical connectives ∧,∨,¬,→.
6) The set operation “{·}.”
7) The union set operation “∪.”

Detailed interactions between these definitions will be elabo-
rated in the subsequent subsections.

C. Definition Addresses and New Definition Transactions

Every definition address, including all the basic definition
addresses, is either a constant set or a function that takes one
or more variables. If it is a function that takes one variable,
then the output shall be either a constant set or a proposition.
If it is a function that takes n variables where n ≥ 2, then by
applying the function on one variable will produce a function
that takes n− 1 variables.

Table I presents a list of possibly the minimal set of
basic definitions that a ZFC-based MathCoin blockchain needs
before launching. We adopt the common notations used in
functional programming languages by putting the operands
of every binary operation after the operation even if is not
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normally written this way. For example, the common mem-
bership notation a ∈ A is expressed as “∈ A a”. Applying
a binary function on a single operand will result in another
unary function. So, “∈ A _” can be defined by combining the
binary function ∈ and a set A to form a unary function. The
set builder “{} _ _” may take two operands, the first being a
set (say, X), and second being a propositional function (say,
P (·)), to form the set {x ∈ X | P (x)}. The “x” commonly
written in a mathematical expression is not required. Similar
things happen in, for example, the universal quantifier: if
“∀ _ _” takes a set X and a propositional function P (·) as
operands, it results in the proposition normally expressed as
“∀x ∈ X,P (x).”

Notice that some more common notations are not listed in
Table I, for example the logical connectives ∧ and ∨, and the
set intersection ∩. This is because these common operations
can be defined as new definition addresses after a MathCoin
blockchain is launched by combining basic definitions listed
in Table I. For example, all the logical connectives, including
∧ and ∨, can be defined by a number of combinations of
¬ and →. The set intersection can be defined by combining
the membership operation and the set builder23. It is up to a
development team’s choice to include these common notations
in the basic definitions or not.

A larger set of basic definition addresses may include the
set of natural numbers N along with the succeeding (+1)
and additive (+) operations. More complicated, but still very
common number sets, including Z,Q, or even R and C, can
also be considered in the basic definition addresses. But one
can imagine that if a complicated set like R is included, the
initial implementation can be very large. Nevertheless, existing
libraries of sophisticated automated proof assistants can be a
good source of reference if a team chooses to include these in
the initial setup.

After a MathCoin blockchain is launched, users can create
new definition addresses by combining existing definitions
appropriately. To network charges the creator of any new
definition address a fee that is proportional to the length of
the description of the new definition. It may seem to a user
that creating a definition is not beneficial at first. But if a
user finds that she will use a definition multiple times in some
propositions she is going to create later, such kind of fee would
be worthy. From the network’s perspective, the charging for
a newly created definition is to prevent users from creating
numerous lengthy definitions that may not be very useful.
Users will then be guided to create definitions that are truly
useful. Other users can then re-use existing definitions with
no cost.

A valid new definition transaction should include the fol-
lowing information:

1) The description of the definition (building from existing
definitions).

2) (Optional) The name of the definition.
3) The fee (calculated from the length of the description

plus the name).

2A ∩B = {x ∈ A|x ∈ B}.
3One of the two quantifiers may also be removed from the suggested list

of basic definitions

4) (Optional) Additional fee to the miner.
A human-readable text may be given as the name of the

newly created definition. For example, one may define a set
of prime numbers with a label “Prime” or “The set of prime
numbers.” However, such a text is not necessarily required to
be recorded on-chain. Indeed, since the name of a definition
is irrelevant to all subsequent logical operations it is going
to involve with. Since a fee can occur in proportion to the
length of the name, users are therefore discouraged to include
the name on-chain in order to save their MathCoins. However,
users are encouraged to give the name of a definition off-chain.
In fact, people around the world shall be able to use their
native languages to describe a mathematical object defined on
a MathCoin blockchain, for example, when teaching children
elementary mathematics in a non-English speaking society.
There is absolutely no need to learn English before one can
learn math well. The definition sub-domain of a MathCoin
blockchain can become a universal, permanent, and language-
independent reference for math teachers around the world.

D. Proposition Addresses and New Proposition Transactions

In the proposition sub-domain, there are axiom addresses
and user-created proposition addresses. The axiom addresses
are included before the blockchain is launched. For example, if
the ZFC system is selected as the foundation of a MathCoin
blockchain, then there can be nine axiom addresses. Every
proposition address at any moment has a price that is pub-
licly calculable and known. While user-created proposition
addresses have varying prices, the axiom addresses always
have a fixed price, (i.e., 1).

Users can create two types of new proposition addresses.
The first type is to create the new proposition with a proof
that it is a logical consequence of existing proven addresses.
It is therefore a proven proposition address by creation. In the
very beginning, a new proposition created this way can only
be direct consequences of the few axiom addresses. But as
time goes by, when the number of proven addresses increases,
many more new proven addresses can be created this way (i.e.,
as a logical consequence of other proven propositions).

A new proposition address of the second type is created
only with the description and without a proof. The truthfulness
of such a newly created proposition is therefore uncertain
to the public at the time of creation. Besides, if the newly
created proposition is the combination of a finite number of
logical connectives and existing proposition addresses, it is
required that at least one of existing proposition addresses is
unproven, such that the expression remains unproven in public.
Otherwise, it would have reduced to a first-type transaction.
The creator of a second-type proposition should deposit an
amount of MathCoins, in additional to all fees, as a sign to
the public about her confidence level on the proposition being
true. She will not lose the deposit as long as the proposition
is not eventually proven false. A price of a value between 0
and 1 is assigned to such an unproven proposition, and the
proposition creator will get a certain amount of tokens of the
proposition. Other users may purchase additional tokens from
an existing unproven proposition. The price varies according
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to token sale activities and is calculated according to a set of
deterministic formulas that all parties in the network know. In
general, the price shall increase when new tokens are issued
and sold to users; and decrease when existing tokens are sold
back to the network and vanished. In addition, users can also
choose to purchase the tokens of the negation of any unproven
proposition at a price that is complementary to that of the
original proposition. When tokens of the negation proposition
are issued and sold to users, the price of the original propo-
sition decreases, and vice versa. The prices of the original
proposition and the negation proposition always add up to 1.
More details on the pricing of unproven proposition addresses
will be described in the next section.

A valid new proposition transaction of the first type should
include the following information:

1) The description of the proposition (building from exist-
ing definition addresses and proposition addresses).

2) A proof that the proposition is a logical consequence
of existing proven propositions (building from existing
definition address and proven propositions).

3) (Optional) The name of the theorem.
4) The fee (calculated from the sum of lengths of the

proposition description, the proof, and the name).
5) (Optional) Additional fee to the miner.
A valid new proposition transaction of the second type

should include the following information:
1) The description of the proposition (building from exist-

ing definition addresses and proposition addresses).
2) (Optional) The name of the conjecture.
3) The fee (calculated from the length of the proposition

description plus that of the name).
4) (Optional) Initial deposits for getting the tokens.
5) (Optional) Additional fee to the miner.
6) (Optional) Additional fee to the network (public fund).
It is observed that the first-type new proposition transactions

are very similar to new definition transactions in the way that
users will only be charged fee and get nothing else. The name
of the theorem, again, is not important and can be optionally
left blank to save the fee. In addition, the longer the proof,
the more fee is charged by the network. So, users are usually
not encouraged to sign the first-type transaction (unless under
some special circumstances, to be explained later). Instead,
in the second-type transaction, not only is that a proof is
not required, but the creator can acquire an amount of initial
tokens issued by the newly created proposition, with a price
usually lower than other users who purchase tokens of the
same proposition later.

A proposition that was created via the second type is by
design unproven to the public. It may later turn into a proven
one if the following event occurs. Suppose some user creates
a first-type proposition p in the following special form:

p1 → p2

where p1 is an existing proven proposition and p2 is an existing
unproven proposition. Since a first-type proposition is created
along with its proof, the proposition p = p1 → p2 is by
creation a proven proposition. Now that both p = p1 → p2

and p1 are proven propositions, this implies p2 is also proven.
All owners of the tokens issued earlier from the proposition
p2 are rewarded with MathCoins in the same amount (i.e.,
the final token price = 1). In the contrary, all owners of the
tokens issued from the negation proposition ¬p2 are destroyed
without any refund. Conversely and similarly, if a first-type
proposition in the following special form

p1 → ¬p2

where p1 is an existing proven proposition, is created, then
the proposition p2 is proven false. All owners of the negation
proposition tokens will be credited and the original proposition
token owners will lose in this case.

It is possible (although not usual) that p2, the proposition
that just got proven, is also in the special form

p2 := p3 → p4

where p3 is an existing proven proposition and p4 is an
existing unproven proposition. Then, p4 is declared proven.
Recursively, the form of p4 will be checked again until the
next proven proposition is no longer in this special form. All
the associated activities described above shall be processed in
the same block that includes the first-type proposition p in
order to let all miners in the network agree that the block is
valid.

E. Token Transactions

A valid token purchase transaction associated with an un-
proven proposition should include the following information:

1) The address of the unproven proposition.
2) Indicator of the intention of buying either the original

proposition or the negation proposition.
3) (Optional) MathCoins for getting the tokens.
4) (Optional) Additional fee to the miner.
5) (Optional) Additional fee to the network (public fund).

This becomes required if item 3 is zero.
In item 3, an amount of MathCoins is specified to obtain
proposition tokens starting at the current price. The exact
units of tokens obtained is calculated through a deterministic
function to be described in Section III-A. The additional fee
that goes to the public fund (i.e, item 5) is be preserved to
reward those who help to prove or disprove the proposition
eventually.

A valid token sale transaction associated with an unproven
proposition should include the following information:

1) The address of the unproven proposition.
2) Indicator of the original proposition or the negation

proposition.
3) The units of the tokens for sale.
4) (Optional) Additional fee to the miner.

III. PRICING RULES OF UNPROVEN PROPOSITIONS

A. The Token Pricing Function

Figure 3 illstrates the idea of the token pricing function
(TPF) and how the price of a proposition address varies
according to activities of token buyers.
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Fig. 3. Illustration of the token pricing function

The token pricing function φ : R → [0, 1] adopted by a
MathCoin blockchain must satisify the following properites:

1) φ is monotonically non-decreasing: that is,

∀x, y ∈ R, x ≥ y ⇒ φ(x) ≥ φ(y).

2)
∫∞

0
(1− φ(x))dx < +∞.

3) φ(x) + φ(−x) = 1,∀x ∈ R.
These properties deduce that φ(0) = 0.5, limx→∞ φ(x) =

1, and limx→−∞ φ(x) = 0. Once a token pricing function φ
is selected, the following definitions associated with φ will be
found useful in the upcoming developments:

1) A finite positive number rφ defined as

rφ :=

∫ 0

−∞
φ(x)dx (1)

2) A function Γφ : R→ R defined as the integral of φ:

Γφ(y) :=

∫ y

0

φ(x)dx. (2)

3) A function tφ : R → R defined as the inverse function
of Γφ:

tφ(x) := Γ−1
φ (x) ∈ {u ∈ R | Γφ(u) = x}. (3)

The token pricing function φ can be understood as: the token
price is φ(x) when the equivalent total amount of issued
tokens is x units. As illustrated in Figure 3, the creator of
the proposition address acquires u1 units of tokens after he
pays the initial “investment” to the network in the amount of

v1 = Γφ(u1) =

∫ u1

0

φ(x)dx.

The units of tokens to be given to the creator is calculate
through the tφ function: u1 = tφ(v1). After the purchase, the
price rises from 0.5 to φ(u1). Suppose that subsequently, some
more token buyers made purchases of u2 and u3 units of the
token, making the price rises to φ(u) where u = u1 +u2 +u3.
The red spot (u, φ(u)) indicate the equivalent total amount of
issued tokens (u) and the price (φ(u)). It is known publicly
to the network and informs the next token buyer that if you
would like to acquire ∆u more units of token, you shall pay
MathCoin in the amount of

v =

∫ u+∆u

u

φ(x)dx, (4)

and after your purchase, the price will be updated to φ(u +
∆u). It also tells all the token holders that if you would like
to sell ∆u units of the tokens at your hand, you will be given
MathCoin in the amount of

v =

∫ u

u−∆u

φ(x)dx,

and the token price will decrease to φ(u−∆u) after the sale.
As the final value of any unit of token is either 1 or 0, all the
token buyers are supposed to believe that the proposition is
true (or at least a good chance to be true) and expect the
final value is 1. Once the proposition is proven true (i.e.,
it is connected to the axiom nodes and becomes a logical
consequence thereof), the token holders will be paid what they
deserve.

Since the final payment back to token holders is larger than
the sum of what all users transferred to the math-domain, the
public fund will be responsible for paying the difference, using
the public fund accumulated from miners’ taxes of previous
blocks. Fortunately, this extra payment can be found to be
finite and bounded by the value rφ. Therefore, the public fund
can just reserve rφ units of MathCoins for this conjecture. The
actually amount that is finally paid by the public fund is

r =

∫ u

0

(1− φ(x))dx,

as shown in the green area in Figure 3. The remaining unused
MathCoins in the amount

∫∞
u

(1 − φ(x))dx is returned back
to public fund.

If the miner’s tax rate is set as 0.5 (i.e., for every block
found, half of the newly created coins goes to the miner and
the other half goes to the public fund, then we have a good
reason that there should be sufficient amount of math-domain
coins to be paid to the winners, at least for the first proven
proposition. However, after the reserved coins are awarded
to the token buyers and flow to the user domain, there may
be more user-domain coins than math-domain coins. Such an
issue will be addressed in a later section.

B. Tokens of the Negation Proposition

Once a proposition address is created, users can also pur-
chase tokens for the negation of the proposition. The price of
the negation proposition is 1−φ(u). So if some user believes
that this proposition is false, she can buy tokens of the negation
of the proposition. As illustrated in Figure 4, the buyer of the
negation proposition token can choose to buy ∆u units and
pay the amount of

v =

∫ u

u−∆u

(1− φ(x))dx.

Then, the price of the original token will reduce to φ(u−∆u).
While the total amount of issued proposition tokens is still
u units, the equivalent total amount of proposition tokens is
updated to be u−∆u, which decides the updated token price
that is publicly known.

More generally, let us denote up as the total amount of
user-held tokens of the original proposition and un as the total
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Fig. 4. Token price function with token buyers of the negation proposition.

amount of user-held tokens of the negation proposition. Then
the equivalent total amount of proposition tokens is defined as

u = up − un
which can be any real number, positive or negative (or zero).

Fig. 5. Token price function with token buyers of the negation proposition.

Figure 5 shows the case when un > up. In this case, the
price of the original proposition token, φ(u), becomes less
than 0.5 because u < 0. The coins needed to be reserved
by the network change to the bottom left part of the figure.
If the negation proposition is eventually proven true (i.e., the
original proposition proven false), these coins are used to pay
the negation token buyers (together with the coins from the
positive token buyers, who lose the game).

The smaller value between up and un, i.e., min{up, un},
is called the total amount of disagreement tokens. For these
tokens, the network do not need to preserve any coins to pay
the winner. The coins collected from the users of both parties
already cover it (see the dashed rectangles in Figures 4 and
5).

C. The Public Fund’s Participation In Token Purchasing

The previous subsections describe the rules of price changes
of any created proposition address involving only the token
purchases and sales of the token holders of the proposition
and its negation. It is interesting to note that the public fund
can also involve in the game, as will be elaborated here. In this
subsection, we propose ways to change prices of proposition
addresses by the network itself and without user activities.
The rule of thumbs is to change prices so that the whole
network may converge to a point that is closer to the “truth.” Of

course, since the MathCoin blockchain may not be equipped
with a sophisticated theorem prover (it should not; as this will
increase unnecessary complexity for miners), the blockchain
can use simple logic that it knows to do this task (and earn
some coins, though in small amount, for the public fund).

Fig. 6. Illustration of the activities of the public fund when p → q is a proven
proposition on chain but p has a higher price than q.

Consider the case depicted in Figure 6, where we have two
proposition addresses p and q, with their current price being
φp := φ(up) = 0.7 and φq := φ(uq) = 0.5 which reflect
the current human confidence levels of these two propositions.
Here, up represents the units of equivalent issued tokens for p,
and uq that for q. Now, suppose there is another proposition
r := p → q, whichends up being proven by the network.
Then, a reasonable price of q should be greater than that of
p. In presence of the event of up > uq , the public fund will
do the following things:

1) Let ∆u = (up − uq)/2.
2) Purchase ∆u units of ¬p and ∆u units of q.
After the action, both the prices of p and q will reach to

an equilibrium: φ((up + uq)/2)). It is not difficult to see that
the public fund will not lose any MathCoins in the long term
by the above actions. Instead, it may even earn some coins
roughly in proportional to the price gap φp−φq , since at least
one of ¬p and q will eventually be proven true.

Now, consider the case where the proposition r := p → q
has not been proven, but has a rather high price close to 1.
Then, as long as the price gap between p and q, φp(up) −
φq(up), is greater than 1 − φr(ur), it is still possible for the
public fund to do something to reduce the price gap:

1) Find ∆u > 0 such that the updated price gap, written as
φp(up−∆u)−φq(uq+∆u), is equal to 1−φr(ur−∆u).

2) Purchase ∆u units of ¬p, ∆u units of q, and ∆u units
of ¬r.

After the operation, the prices of these three propositions
will satisfy

φp(u
′
p)− φq(u′q) = 1− φr(u′r)
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Fig. 7. Illustration of the activities of the public fund when r := p → q
is an unproven yet high-priced proposition address and p has a higher price
than q.

where u′p := up −∆u, u′q := uq + ∆u, and u′r := ur −∆u
are the updated units of equivalent issued tokens of p, q, and
r, respectively.

A few remarks are made below.

1) The public fund is used to purchase ∆u units of three
proposition tokens (¬p, q, and ¬r = ¬q → ¬p).
According to the basic logic, at least one of these three
proposition is true. Therefore, the public fund will never
lose for such kind of actions. It is somehow like an
“arbitrage.”

2) In practical situations, the occurrence that the price of
p is greater than q with a large gap like this may be
an unusual event, since the users and mining nodes on
the network are smart enough to know a chance of
“arbitrage.” But there are a number of reasons to set
up this public rule of a MathCoin blockchain.

We describe it from the perspective of the public fund.
First, recall that the very reason for establishing the public
fund is to encourage submissions of true knowledge that will
end up helping “revealing” the true knowledge. Although the
blockchain protocol itself is not equipped with a sophisticated
theorem proving capability, it can still use the basic logic
to help reveal the knowledge in case users of the network
accidentally forget this opportunity of arbitrage. Secondly,
for many users, the above action may not really seem to be
a worthwhile investment. Although the action is guaranteed
not to lose money, it does not earn much as well. For ∆u
units of the three kinds of tokens that guarantee a return no
less than ∆u MathCoin, one needs an amount very close
to ∆u MathCoins, not including the miner’s fees (for the
three separate token transactions). So, unless the price gap
is very large, it is reasonable to say that users may not be
very interested in it. The public fund, on the other hand, does
not need to pay the miner’s fee. In addition, note that the
amount of MathCoins held by the public fund, until rewarded
to users for proven propositions, is just a number recorded by
the blockchain protocol and has never been actually coined
yet. As long as it can be sure it will not lose the MathCoins
(with the tokens), it does not care how long it will take for
this “investment” to return, since the public fund is not for

profit anyway.
Knowing that the blockchain protocol will have some,

although not frequent, “interventions” of proposition prices,
the users are encouraged to create new proposition addresses
as logical implications of others (e.g., r := p→ q) as an act to
support the proposition q they may have real interest in. In the
next subsection, we elaborate on how different roles involved
in the game can gain, leading to an all-win situation.

D. The Game of Creating New Proposition Addresses

The rules of creating new math-domain addresses shall be
designed to encourage contributing privately-held knowledge
to the public. Predictable incentive should be awarded to
the contributor. The following reference design of the rules
describe how this can be done.

1) Contributors: For a potential contributor who knows that
a particular well-formed formula s := s1, ..., sn is true, where
s1, ..., sn are existing math-domain addresses already defined
on the chain. She can then claim the truthfulness of s by
signing a proposition-creation transaction. As introduced in
Section II-D, the information of the transaction should include
1) the statement s1, ..., sn itself, 2) an optional name for the
conjecture, 3) the required network fee vnet, 4) an initial
deposit vinit used to acquire tokens, 5) an optional additional
fee vdonate to the network, and 6) an additional fee vminer

to the miner who include this transaction in the next block.
Accordingly, the total cost of the transaction in MathCoins
would be:

v = vinit + vminer + vnet + vdonate. (5)

The number of tokens that the contributor will acquire is
uinit := tφ(vinit), where tφ was defined in (3), and the price
will rise from φ(0) = 0.5 to φ(uinit). If the proposition is
indeed true, the price of the proposition address will eventually
rise and approach 1. So the gain that the contributor can expect
is

vgain =

∫ uinit

0

(1− φ(x))dx− vminer − vnet − vdonate. (6)

As long as the gain vgain is positive, a contributor will
eventually earn what she deserves.

The required network fee vnet is designed to be proportional
to the length of the proposition. As the blockchain space is
very precious, it is important to set up a criterion to prevent
users from creating propositions that are long in description. If
the contributor can reuse as many definitions already defined
on-chain as possible, she will be able to save a great amount
of network fee.

The miner’s fee vminer is optional. But in the case of a
network congestion, a certain amount of miner’s fee may help
to expedite the process for the contribution being recorded on
the chain.

The donation to the network vdonate is also optional. It is
an amount provided to the network to reward those who help
prove (or disprove) the proposition. Note that for every created
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proposition, the network should reserve an amount to reward
those who help prove or disprove the proposition:

vprize =

∫ ∞
0

(1− φ(x))dx =

∫ 0

−∞
φ(x)dx = rφ

where rφ was defined in (1). The source of this reservation
of prize primarily comes from accumulation of miners’ tax of
previously blocks. But the donation vdonate by the contributor
can be used to cover the cost from the network.

Normally, a contributor in the mindset of earning MathCoins
will not donate. But another type of contributors, namely those
who are eager to know the answer and willing to pay for the
answer, may set the donation. The donation can be even larger
than the maximum prize reservation, i.e., vdonate ≥ vprize,
making it possible for the token holders of true propositions to
receive more than 1 MathCoin per unit token. Smart contracts
can be used here to let a contributor specify a deadline by
which she hopes to see the answer: if the network is not able
to answer her by the deadline, the donation is returned to the
contributor. Details on how such smart contract templates can
be designed are left to a development team and will not be
elaborated in this article.

According to the rules described above, there will be many
users who are trying to post propositions that are very easy
to prove. They can expect to earn up to vprize whenever such
a transaction is successfully recorded by a miner. But such
kinds of proposition requests will eventually drain out the
public fund. In a viable design, some mechanisms should
be employed to prevent users from creating propositions that
are too easy to prove. We will elaborate on this in the next
subsection.

2) Block Miners: For the block miners, the direct incentive
to include a proposition-creation transaction is the fee to the
miner (vminer). So, in general, as long as the fee value vminer

is sufficiently attractive to a miner, it would choose to include
it in a subsequent block it is finding. However, it is also
clear to the miner about the potential gain that the contributor
would get (see Eq. (6)). Suppose a miner possesses some
capability of automated theorem proving. If the proposition
is somewhat trivial and can be verified by a miner before
it even finds the next block, then the miner may choose
not to include the transaction. Instead, it may immediately
broadcast another proposition-creation transaction of the same
proposition, but with a higher miner’s fee vminer. Since only
one of the identical propositions will be finally written on-
chain, the other miners will naturally drop the one with a
lower fee, making the original contributor gain nothing. This
may discourage contributors from creating propositions that
are too obvious.

The protocol can even be designed to allow a miner to take
all the MathCoins the contributor provided (Eq. (5)) if the
miner managed to write down the full proof in the next block
it finds (using the first-type proposition transaction, with a
network fee proportional to the length of the proof). With such
a potential risk, a contributor will only post propositions that
she believes are hard to prove by others. This also helps the
blockchain to use the limited space and processing capability
to reveal only the most difficult theorems to the world.

3) Endorsers: For any on-chain proposition whose price
is still not converging (i.e., not close to 0 or 1), this is an
opportunity to anyone who knows more about the proposition
than the entire community. If one believes a proposition is true
but is under-valued, she can purchase some units of tokens
of the proposition and expects a price increase in the future.
Token holders who hopes to expedite the price increase can
create one or more propositions serving as the “lemmas” of
the propositions. If the lemmas are easier to verify by the rest
of the network, the prices of the lemmas are expected to rise
much faster, which will eventually help the price increase of
the original proposition.

The contributors or the endorsers of a proposition really do
not have the obligation to post the proof to the blockchain. It
is up to their choice whether to publish a proof in a research
article (off-chain). In fact, a contributor does not even need
to have a formal proof. As long as she is confident that the
proposition can one day be proven true, she can make the
contribution or endorsement, which serves as the price to be
paid once she is proven wrong. On the other hand, if a token
holder finds that the price of the proposition severely under-
valued, she can reverse the trend by posting lemmas, which is
an action of showing she is right (well, before doing so, she
may have also purchased some more tokens at a low price).

4) Research community: For authors of research articles
that contain some mathematical theorems, besides writing
a proof or a proof sketch on the paper, they can also act
as a contributor to the MathCoin blockchain. For reviewers
of the research articles who are responsible to check the
validity of the theorems, as an alternative to reading the
proof meticulously, they can also simply check the MathCoin
network to know the level of correctness of the theorem.
Moreover, when the development of MathCoin blockchains
becomes mature, some journal editors can even choose to
require contributing authors to pre-verify their theorems on
the MathCoin blockchain before the review process begins.
This will substantially save the reviewers’ resources, while
maintaining (or even improving) the quality of the published
results of a publication.

5) Investors / Funding Agencies: For investors whose
business of interest involves some knowledge that can be
formulated as some mathematical propositions, traditionally
they may choose to hire experts of the interested fields as
consultants and ask the consultants to advise. However, it
may be difficult and inefficient to find a competent expert
who really knows the problem with limited social connections,
and within a short time. In the presence of a well-functioning
MathCoin network, the investors can simply create an award
(using a large vdonote described earlier in the subsection,
before Eq. (5)) to the network to encourage real experts of
this problem to show up, solve the problem, and get the award
(without even having to know each other or meet each other).
Given the above protocol, an investor who wants to know
whether a proposition s = s1, ..., sn is true or false can do
the following:

1) Post a proposition-creation transaction for s = s1, ..., sn
with no initial deposit (because it does not know if it is
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true of false), some fee to miners, and fee to the network,
and a large additional fee vdonote.

The investor can also set a deadline using a smart contract,
making the excess fund to be returned to the investor if the
proposition addresses are still not proven (i.e., isolated to other
proven proposition addresses on chain) by the deadline.

From the above descriptions, it is imaginable that in the long
term, the eco-system of investors and experts can be changed
in the following way:

1) The investors can be exposed to less risk related to
technical development. They only need to focus on
the real market value and pay only affordable (and
reasonable) fees to the network and wait for the network
to return a reliable answer.

2) Technical experts may not have to rely on a fixed em-
ployment. They can just scan on the MathCoin network
to check whether there are open questions on chain that
may be rewarding. As long as they are capable enough,
they can choose not to be employed by anyone, and will
be able to earn their own living by solving questions that
the rest of the world do not know well. For the rest of the
time, they can continue develop to skills and knowledge
of their own interest, and live a happy life.

E. Illustrative Examples and Discussions

In this subsection, we use Figure 8 to illustrate a possible
example sequence of proposition creations. The blockchain
was born natively with Na axiom addresses a1, a2, ..., aNa

,
whose prices are fixed to 1 forever (and no tokens will be
issued from these addresses). Then, proposition p1, a second-
type proposition address, was created by some user (through
exisiting definition addresses: p1 := s3s6), with an initial price
of something slightly greater than 0.5, say, 0.55. Since the
proposition p1 are believed to be true by many users (some
users even have a proof of the proposition themselves), they
use their MathCoins to buy the p1 tokens, driving the price
of p1 to 0.99. Later on, another proposition address p2 was
created by another user. The price does not increase as fast as
p1, probably because it is more difficult to prove. The token
owners of p2, in order to boost the price of p2, are trying
to persuade the community that p2 is true. They might do
all sorts of off-chain activities like publishing papers, giving
seminar talks, making videos, etc., to “promote” the validity
of p2, in order to encourage other MathCoin owners to invest.
On the other hand, they may also do some on-chain activities
to promote p2. A straightforward way might have been just
posting the proof of p2 on-chain. But the full proof they have
at hand is too lengthy and would have cost a high network fee,
so instead, they try to relate their proposition to some high-
priced propositions. For example, they make a new proposition
address p3 defined as p1 → p2. Since p3 is easier to prove
than p2, the price p3 goes up very quickly. The presence of p3

creates a chance to help increase the price of p2 from p1. Since
p1 has a higher price than p2, according to the mechanism
described in Section III-C, the participation of the public fund
will increase the price of p2. Later on, someone even provides
a direct proof of p3 by expressing p3 as a finite combination

of axioms and definitions. Now, p3’s price becomes 1 and all
token holders of p3 are rewarded by the full price. p3 becomes
an address “connected” to the axioms and is label “proven” by
the network. Now that p3 is proven, value keeps flowing from
p1 to p2 whenever p1 has a higher price than p2. The price
of p1 may be decreasing for a while since the public fund
purchased the tokens of ¬p1, but for the users who believe p1

is true, it is not a big deal, but a good chance to invest.
It is not necessary for all the propositions to be connected to

the axioms eventually (i.e., labeled “proven”). Knowledgeable
persons (i.e., those who have checked the proof in private, or
those with capable ATPs) may view it as an advantage against
those who are not sure whether the proposition is correct. Until
the proposition becomes “proven” and has a price fixed to
1 forever, they always have a chance to earn MathCoins by
buying the proposition’s tokens. Such an advantage disappears
when someone else finally posts a valid proof on-chain.

Now, let us turn to propositions p4, p7 and p8 on the
upper-right corner of Figure 8. The token owners of p7 find
that the price is unfavored to them because many people on
the network believe it is wrong and purchase many tokens
of ¬p7. In order to save the price, one of them creates
p8 := p4 → p7, in an attempt to attract value to flow from
p4 to p7. Unfortunately, p8 is also not experiencing a good
evaluation. However, as long as the price of p8 is still large
enough (φp8 ≥ 1 − φp4 + φp7 ), there is always a chance for
value to flow from p4 to p7. In order to remove this possibility,
token owners of p4 who do not believe p7 is correct may
try to invalidate p8. One direct method is to post a proof
that shows that p8 implies the negation of any axiom or of
any proven proposition. Once this is done, all values of p8

go back to the public fund. It is important to note that even
if p8 is invalidated, it does not automatically invalidate p7.
The failure of p8 makes proposition p7 lose a value support
from p4, but believers of p7 can still try to promote p7 by
posting other “proofs”, either by directly showing that p7 is a
a logical consequence of some other proven propositions, or
by showing that p7 is a logical implication of another properly-
priced proposition. The opponents of p7 (i.e., token holders of
¬p7), on the other hand, can try to prove that p7 is wrong by
showing that p7 implies the negation of one axiom or of any
proven proposition.

This is actually a race between advocates and opponents of
p7. They indeed disagree with each other. But they do not have
to fight with each other in the real world. They do not have
to meet to “discuss.” In fact, they don’t even need to know
who the other party is. They just keep working on the proof
of the proposition they believe is true. Posting a final proof
on-chain is the end of the race. Whoever does it first wins the
game. (Well, actually the winner was already known by God;
the human are just doing the race to complete the game and
reveal the truth). The loser of the game will not complain (and
can not complain) since they see the proof of the negation of
the proposition they once believed to be true. Although they
lose some MathCoins, they finally learned the truth. At the end
of the race, the rest of the people in the world is benefited by
the augmentation of the knowledge on-chain, for free.

Now, let us go to p2, p10, and p11. Proposition p10 was
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Fig. 8. Exemplary illustration of relationships of math-domain addresses

created by someone but undergoes unfavorable evaluation.
The token owners try to claim that the properly-priced p2

implies p10 by creating the proposition p11 = p2 → p10.
Unfortunately, p11 is still not well priced probably because it
is intuitively wrong to many. Nevertheless, the believer of p11

and p10 managed to divide p11 into two parts that are easier
to prove by the general public: p12 and p13. They created two
propositions p12 and p13 and show that p11 is a consequence
of p12 ∧ p13. After p12 and p13 receive good pricing (or even
be proven “true” by the network), the prices of p11 and p10

will eventually goes up.
Note that any proposition can either be proven true or

proven false. If any of them is proven both true and false,
that means the underlying axioms are inconsistent, and there-
fore the entire blockchain will collapse. Before launching a
MathCoin blockchain, it is important to make sure that the
axioms are consistent (many experts in the field, other than
the author of this paper, know how to choose a good set of
axioms). It is also important to make the code go through
formal verification before launching.

F. Accounting of the Public Fund

The public fund shall obey the following rules.
1) The usage of the public fund shall be completely pre-

dictable and transparent.
2) The public fund shall never go in deficit.

The first rule is usually feasible as long as all the activities
that the public fund will involve (rewarding to the contributors
and public token purchasing) are governed by formulas pre-
defined in the protocol. At the end of a block, the balance
of the public fund is known by all mining nodes. It is the
balance of the previous block, plus the tax collected from the

miner, plus fees from creators of new math-domain addresses,
minus the distribution of rewards to token owners of all proven
propositions, minus those used in public token purchases. The
tokens that the public fund purchases should also be listed as
assets. According to the analysis given earlier, these assets are
always have a value greater than or equal to the total amount
spent in public token purchases. So, the only possibility that
the public fund may lose money is the distribution of rewards
to token owners of proven propositions. For every created
unproven proposition, the public fund will reserve MathCoins
in the amount of rφ =

∫∞
0

(1 − φ(x))dx in preparation of
paying to the token holders (no matter whether the proposition
is eventually proven true or false). In order to keep the public
fund to always remain nonnegative, a policy could be set up to
limit the number of newly created proposition addresses within
a period of time. When the public fund is low, the requests of
proposition creation can be suspended until there is sufficient
fund. Other approaches may include increasing the miner’s tax
rate in the event of a low public fund, or to change the token
pricing function φ with a smaller reservation amount rφ.

IV. IMPLEMENTATION ISSUES

A MathCoin blockchain that follows the above descriptions
and principles can be implemented with various paramaters
and assumptions. A successful implementation may be due to
careful choices of these design parameters. The choice of the
parameters are left to the design teams under their discretion
in the market acceptance. We make a list of implementation
issues here for a developer’s reference:

A. Choice of the consensus algorithm and coin distribution
Just like Bitcoin and other blockchains, some design pa-

rameters need to be considered and shall include at least the
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concensus algorithm, the block reward, the expected block
interval. These parameters govern the mining and distribution
of the coins supplied by the chain. The total supply of
MathCoins should be set to be a fixed number. This means
the miner’s reward per block can not always be constant. It
must decrease and converge to zero as time goes by. When the
block reward approaches to zero, the speed of accumulation of
public fund will also slow down and approach zero. What will
the network use to attract new contributions then? If the price
of MathCoin keeps going up (if the market keeps giving it an
increasing value for its increasing contents), then the incentive
will still be good.

B. Choice of the miner’s tax rate

The miner’s tax rate dictates the speed of accumulation of
the public fund. And the size of the public fund affects the
capability of the network to attract knowledge contributors. It
is therefore preferable to have a higher tax rate. However,
when the tax rate is too high, the regular miners may be
discouraged and leave, leading to an immediate risk of the
blockchain operation. The choice of the miner’s tax rate
is therefore a critical problem in establishing a successful
MathCoin blockchain. A tax rate that varies according to
runtime situations may also be considered (e.g., increase the
tax rate when the fund size is low and the number of miners
is sufficiently high) as long as a deterministic formula of tax
rate is pre-defined and known by all miners.

C. Choice of the token pricing function

The token pricing function as introduced in Section III-A
may have a wide range of choices to satisify the constraints
described therein. Many logistic functions ranging from −1 to
1 can be chosen. For example, the hyperbolic tangent functions

φ(x) = tanh(λx) =
eλx − e−λx

eλx + e−λx

where λ > 0 are a perfect class of functions satisfying the TPF
constraints introduced in Section III-A. When the parameter λ
is chosen to be a large number, a steep slope in φ will result
in a sharp price change. Also, the maximum amount that the
public fund needs to reserve for a single unproven proposition
rφ =

∫∞
0

(1− φ(x))dx is smaller. However, the problem with
this kind of function is that it may be difficult to calculate the
number of tokens (i.e., the inverse operation of the integral
equation (3)). It should be noted that the TPF function is not
necessarily differentiable nor continuous. Furthermore, since
the total supply of MathCoins is a finite number, the domain
of the TPF that is relevant is actually just a subset of R of a
finite length (i.e., (−a, a) where a is the maximum number of
tokens issued to a single proposition when all MathCoins are
used to buy its tokens). A non-decreasing piecewise constant
function or a non-decreasing piecewise linear function are also
good choices, despite that they are not “smooth,” since the
token number is much easier to calculate. Since every full node
that participates in mining MathCoins would calculate this (in
order to verify every block), it is of paramount importance to
choose one that has a low computational burden, and also,

a low chance of disagreement among participating mining
nodes.

D. Encoding schemes of definitions and propositions

Any definition and proposition addresses is a sequence
of finite existing addresses, including the basic definition
symbols (∀,¬,→,∅). It is reasonable to assume that basic
definition symbols are more frequently used than definitions
created afterwards. While user-domain addresses can be fixed-
length, it is suggested to let math-domain addresses have
variable lengths. The native math-domain addresses (i.e., basic
definitions and axioms) will have the shortest length since they
will be likely to be used more frequently than many others.

E. Choice of the set of axioms

The axioms nodes are the foundation of the whole
blockchain. They are the only nodes that are set to be true since
the inception of the chain until forever. Any other proposition
shall not violate any axioms, or their prices will fall down as
time goes by. For example, one may choose to use the nine
axioms in the Zermelo-Fraenkel with choice (ZFC) theory as
the foundation of the blockchain and it can be marketed as
the ZFC chain.

F. Choice of Basic definitions

It is up to an implementation team to decide how many
basic math definitions are to be included in the initial chain.
It can be chosen as the minimal suggestions listed in Table I.
It can also include much more commonly used definition such
as set of numbers, etc. The former will have a simple initial
implementation while the latter makes the platform useful for
much more people in the very beginning of the launch.

G. Choice of Allowing Transfers of Proposition Tokens

In the preceding presentations, the proposition tokens are
designed in a way that one can only purchase tokens from the
network and can only sell tokens back to the network. There is
no token transfer transaction defined in this article. Although
the author holds the stance that such a type of transactions is
not necessary, it is up to a development team’s consideration
on whether to allow token transfers. Allowing token transfers
between user-domain addresses may create opportunities to
buy and sell proposition tokens using other currencies via
some exchanges.

H. Standalone or non-standalone implementations

A new MathCoin cryptocurrency may be implemented as
a standalone blockchain. It can also be deployed as a set of
smart contracts on top of Ethereum or any other blockchain
that supports smart contracts. Although the majority of the
article is written assuming the standalone implementation, it
should still be possible to change it as a smart contracts
deploying on another chain. In fact, it may be easier and
quicker for a team to realize the idea by deploying a smart
contract on an existing blockchain (e.g., as an ERC20 token
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on ETH) than starting everything from scratch. However, some
constraints inherently from the underlying blockchain may
arise (e.g., smallest decimal, block interval, congestions caused
by other services on the underlying chain) and they may
affect the long term developments of the new coin. On the
other hand, if a team chooses to implement it as a standalone
blockchain, it would be responsible for making sure the incen-
tives given to the miners are sufficiently strong to avoid the
events where miners may collectively refuse to include some
legal transactions in a block. In either case, it is especially
important to note that the foundation of the blockchain must be
impeccably sound such that no malicious attacks can destroy
the consistency of the network. A formal verification process
that verifies the soundness of the implementation, not only to
the team members themselves, but also to the general public
who may participate as investors or contributors, is strongly
recommended before the official launching.

I. Choice of external storages

As new definitions and propositions are created, the size
of the blockchain may grow larger and larger. New materials
may also have longer descriptions than existing ones that may
require larger fees. In order to the blockchain continues to
grow without bound, it should be in the consideration of a
development team to survey the possibility of incorporating
storage services (such as IPFS, Storj, etc.).

J. Price Stability of MathCoin

The incentives, rewards, penalties discussed in this article
so far are all in MathCoins. However, the exchange rate
of a MathCoin to other major currencies, crypto- or fiat, is
an important factor. But the developers may not have too
many means to control it except for marketing strategies. It
is preferable to make the MathCoin price stable in the short
term and make the price steadily and gradually grow in the
long term. Some recent works on this issue [13] may be a
good reference for this purpose.

K. Relationship with Existing ATP Tools

Although there are already many automated theorem prov-
ing (ATP) tools that can verify proofs interactively (e.g., Coq,
Isabelle) or automatically, the contribution of the current pro-
posal is still significant since the common public users will be
given the ability to instantly and reliably learn the truthfulness
of any given proposition recorded on-chain without having to
get familiar with the ATP tools.

It should be emphasized that the proposal MathCoin
blockchain is not intended as a replacement of existing ATP
tools. Quite the contrary, it is intended to become a com-
plement of these many excellent ATP tools. The blockchain
structure described in this article does not actually contain
powerful capabilities in automated theorem proving. Its (ex-
pected) strengths will come from the many contributors around
the world, and the strengths of these people may be from these
powerful ATP tools.

Therefore, an implementation of the MathCoin protocol
does not have to specify any existing ATP tools. However,

it should be expected that the participating users and miners
may have their own ATP capability in order to gain them-
selves some advantages in the game. Conversely, a MathCoin
protocol that can attract sufficient users and miners with good
ATP capabilities has a better chance to maintain the long-term
value of the whole blockchain.

V. CONCLUSIONS

In this article, we have presented MathCoin, a blockchain
proposal aiming to deliver all proven mathematical theorems
to every person in the world in a manner that is reliable,
instant, and with low cost. Mechanisms are carefully designed
to garner and accumulate wisdom of the whole human society
(plus their machine assistants) by fairly paying the contributors
of true knowledge. Specifically, experts who have correct
proofs at hand of theorems that the rest of the world does
not know can eventually earn MathCoins from the network.
Funding agencies can pour their precious fund into specific
problems of interest and encourage research activities around
the problems, and expect to get a definite answer within a
preferred time frame. Speculators who only guess the prices of
open questions without really work on the proofs themselves
will usually lose the game. Common people who are not
familiar with technical details of a proof will be able to
access to proven mathematical theorems with a high level of
confidence without having to trust a small number of experts.
They are required to pay a fee only when the problem of
interest is still not well known by the chain. Years after the
launch of any successful MathCoin blockchain described here,
we may expect the world to be much more reasonable than
today, yet without requiring many people to become geeks.

Although many design details are still needed for interested
development teams to decide, materials provided in this article
show that it is promising for such a plan to succeed. With a
huge total gain to the entire human society, it is reasonable
that some entrepreneurs can find profitable ways to develop.

Up to now in the article, we have only discussed the issue of
verifying mathematical theorems. However, it is possible in the
near future to consider an extension of the current blockchain
design to include physically observable events into the system.
The truthfulness of anything ranging from physical laws to
historical events can be first added by anyone as a conjecture
in the blockchain (with some bets or donations). And later
on, using observable facts contributed by users (given some
incentives, of course) and the blockchain’s existing reliable
mathematical and logical theorems, the conjectures can be
logically connected to other observable facts. Since any fact is
a logical consequence of other facts, any fact that was not clear
or widely accepted can be gradually proven true on-chain as a
logical consequence of confirmed observable physical events.
How the extended blockchain may confirm observable events
is left as a future work (existing cryptocurrencies involving the
prediction market, e.g., the augur project [9], may be a good
source of design reference). Markets may decide the values
of finding a particular fact, but it is imaginable that the total
cost for finding the truth will be much cheaper than today, and
every person can contribute freely within their expertise and
earn fairly from and for the rest of the world.
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With contributors around the world and from various dis-
ciplines, the extended blockchain will be able to reveal vir-
tually every fact and their logical consequences to everyone
connected to the Internet. When this eventually happens, it
will be effortless to combat rumors, as rumor spreaders will
find it hard to let their statements achieve a good price in the
extended blockchain.
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