
From Zebras to Tigers∗: Incentivizing participation
in Crowd-sensing applications through fair and

private Bitcoin rewards
Tassos Dimitriou, Senior Member, IEEE

tassos.dimitriou@ieee.org

Abstract—In this work we develop a rewarding framework that
can be used as a building block in crowd-sensing applications.
Although a core requirement of such systems is user engagement,
people may be reluctant to participate as sensitive information
about them may be leaked or inferred from submitted data.
Thus monetary incentives could help attract a large number of
participants, thereby increasing not only the amount but also the
quality of sensed data. Our first contribution in this work is to
ensure that users can submit data and obtain Bitcoin payments
in a privacy-preserving manner, preventing curious providers
from linking the data or the payments back to the user. At the
same time, we thwart malicious user behavior such as double-
redeeming attempts where a user tries to obtain rewards for
multiple submissions of the same data. More importantly, we
ensure the fairness of the exchange in a completely trustless
manner; by relying on the Blockchain, we eliminate the trust
placed on third parties in traditional fair exchange protocols.
Finally, our system is highly efficient as most of the protocol
steps do not utilize the Blockchain network. When they do, we
only rely on simple Bitcoin transactions as opposed to prior works
that are based on the use of highly complex smart contracts.

Index Terms—Crowd-sensing, Participatory sensing, Security
and Privacy, Data reporting, Incentives, Rewarding mechanisms,
zkSNARKs, Bitcoin, Blockchain.

I. INTRODUCTION

The proliferation of sensor-enabled smart devices gave rise
to crowdsensing, a new sensing model where participants use
their mobile devices to collect data at a larger scale thus en-
abling a number of innovative people-centric applications such
as environmental monitoring, assistive healthcare, intelligent
transportation, and so on [1].

In a typical crowdsensing application, a service provider
administers the data sharing infrastructure and recruits the
people who will start gathering data for the advertised sensing
tasks. The collected data are then analyzed and made available
to the users or the broader public. It is this lack of a fixed
sensing infrastructure and the ubiquitousness of WiFi and
mobile Internet connectivity that gives crowdsensing its unique
advantage over traditional sensing paradigms.

∗The title of the paper is inspired by the one in [9]. According to the
authors of this work, the delicate anonymity offered in their system is an
analog of the way stripes are used in zebras; as a way to camouflage against
predators but also as a way to identify peers. A tiger is another animal with
stripes, however a level up in the food hierarchy. We believe our rewarding
framework achieves the goals of anonymity, accountability and fairness in a
much more efficient way than the one described in [9].

For up-to-date contact information please visit http://tassosdimitriou.com.

From the viewpoint of the service providers, the key factor
to the success of crowdsensing is user participation. However,
collecting information from user devices has important privacy
implications since contributed data may be strongly related to
user activities and daily routines [2]. For example, sensed data
may include visited locations or even personal data such as
photos and videos. This in turn may have a negative impact
on participation as users may be reluctant to endanger their
personal lives without immediate benefits [3]. To this effect,
monetary incentives could help attract a larger number of
participants, thereby increasing the amount and the quality of
sensed data. Hence incentivizing users by means of rewards
can be the only way to motivate user engagement and improve
the quality of collected information.

Although many incentive schemes have been proposed in
the literature (for a survey see [4]), the problem of incentiviz-
ing user participation has been overshadowed by other design
challenges such as accountability and fairness. Rewarding is a
challenging problem as only authenticated users should be able
to submit data and obtain rewards. Authentication is required
in order to prevent malicious users from submitting multiple
data using fake IDs (an instance of a Sybil attack). On the
other hand, if the identity of the user is not protected, task
submissions and other contextual information like location
data and participation history may result in serious loss of
privacy and hence lack of motivation to participate in the
sensing process.

A last remaining issue that complicates things further is
to ensure the fairness of exchanging crowd-sensed data for a
payment. In particular, when a user submits her data, nothing
prevents a malicious collector of obtaining the data and
refusing to pay the user. For the same reason, a provider cannot
reward the user first as the user may refuse to submit the data
afterwards. Thus, in the absence of a centralized authority
that monitors the exchange of goods and is responsible for
resolving any conflicts that may arise due to failures or fraud,
both parties can cheat the other. We solve this conundrum
in an elegant manner using the blockchain network, without
requiring the existence of a trusted third party as in traditional
fair exchange protocols [5].



Contributions: In this work1, we propose a data-for-
bitcoins rewarding system that uses the blockchain network to
ensure strong fairness of the exchange. Apart from an initial
registration phase, our protocol ensures that users remain
anonymous in all phases of the protocol; from data submission
to payment verification. We place no trust in third parties or
the service provider, thus ensuring both unlinkability of user
submissions as well as unlinkability of rewards. More impor-
tantly, our protocol guarantees the fairness of the exchange,
ensuring that data is delivered if and only if an appropriate
bitcoin payment is received,

Our work can easily be integrated in existing crowd-sensing
frameworks, making sure that an unlinkable bitcoin reward can
be credited to a user’s untraceable address. Contrary to prior
works, the majority of the protocol steps take place offchain.
Additionally, we only rely on simple Bitcoin transactions to
perform the payment instead of complex smart contracts as
in prior works, thus further contributing to the efficiency of
the protocol. Finally, we have analyzed the security aspects
of our proposal showing that both submission and rewarding
mechanisms are indeed privacy-preserving.

Organization: In the next section, we review related work
in the context of crowd-sensing. In Section III, we present the
system model, threat model, security assumptions and define
the properties we expect from a secure data rewarding system.
Section IV highlights the cryptographic primitives used in our
proposal, while details of our protocol are presented in Section
V. The protocol’s security, privacy and efficiency aspects are
discussed in Section VI, while Section VII concludes the
paper.

II. RELATED WORK

There is already a number of works in the literature that
attempt to use the blockchain as a medium to exchange data
and rewards. Tanas et al. [7] developed a framework that
uses the blockchain as a rewarding mechanism. The scheme
focuses mostly on the anonymity of payments since user data
are sent in the clear to the data collector who must first
perform a validation test on the data before payment. This
may compromise fairness as a malicious collector may refuse
to reward users once data are sent.

CrowdBC [8] is a smart contract based solution which can
be used by a requester to solicit a number of workers to solve
a particular task. However, the system is neither private nor
anonymous since the collected data and the user identities
can leak to the blockchain network. In particular, miners in
CrowdBC play a central role in collecting and evaluating user
submitted data. This can also affect fairness as a malicious
miner may easily collude with the collector and leak user
sensitive information as well as the data themselves.

Lu et al. [9] developed ZebraLancer, a system similar to
CrowdBC that tries to overcome data leakage and identity

1This paper extends and improves our prior work [6] that has appeared
in the IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS2020).

breach. The smart contract handles both worker submissions
and payments by the collector, preventing dishonest behavior
by either party. However, in the case of a cheating collector, the
smart contract will distribute the budget evenly among users
thus violating fairness since some users may have contributed
more than others. Furthermore, as all information (both user
data and payments) goes through the smart contract this
essentially turns the system into a centralized one.

The work of Duan et al. [10] is also based on smart
contracts bearing monetary rewards along with hardware-
assisted transparent enclaves to ensure correctness of data
aggregation and sanitization of data. The system consists of
consumers who post the sensing tasks as a smart contract,
workers who send the data to the contract, and providers who
perform data sanitization. Unfortunately, the threat model is
very limited as the authors assume that data consumers and the
service provider do not collude with each other since otherwise
data confidentiality and user privacy is lost.

A characteristic of all smart contract-based solutions is that
all data go through the smart contract, resulting in rather
inefficient systems. Additionally, smart contract transactions
induce direct monetary costs to the collector, thus affecting
the practicality of large scale solutions. Our work overcomes
these issues by having most of the protocol steps taking
place offchain. Only the actual payment transaction uses the
blockchain network, thus making the system highly efficient.
Additionally, we do not rely on the blockchain network or
the miners to store and verify data submissions as in past
works. Doing so paves the way to collusion attacks in which
malicious miners can collaborate with the collector to steal
data or compromise user privacy.

A recent work that avoids the use of smart contracts is [11].
While the authors use rather simple blockchain transactions,
both the workers and the collector have to go through many
rounds of submissions in the blockchain, seriously affecting
the efficiency of the protocol. More importantly, the collector
obtains the data before the actual rewarding phase, thus
violating fairness. Wang et al. [12] proposed another incentive
mechanism to reward users. Miners first verify the quality of
the sensed data conforming to assessment criteria published by
the server, then reward the users accordingly. However, since
the miners get the data first, a malicious miner may forward
these to the server thus undermining the fairness of the process.
Finally, Delgado-Segura et al. [13] describe a protocol for
fair data trading. However, fairness is only probabilistically
enforced and the actual protocol follows a cut and choose
approach: in order to convince the buyer that the required data
is correct, a portion of it has to be revealed first. This increases
the communication overhead of the protocol. Additionally,
there is no way for the buyer to be sure about the utility of the
data beforehand. Both issues are taken care by our protocol.

In this work, the blockchain will be used to ensure the
fair exchange between the submitted answers and their cor-
responding rewards, eliminating the possibility of cheating by
any party. Previous works on fairness using blockchain focus
on fair purchase operations of a product. For example, Bentov



Fig. 1. System Model - Data submission and rewarding phases.

and Kumaresan [14] use Bitcoin to enforce proper behavior
of participants by means of a penalty mechanism, while
Heilman et al. [15] design an unlinkable payment hub that
allows participants to make fast, anonymous, off-blockchain
payments through an untrusted intermediary. Campanelli et
al. [16] achieve strong fairness for the case where a seller
wants to be paid after proving that a service has been rendered,
as opposed to selling a secret in Zero Knowledge contingent
payments [17]. Our work is similar to those in the sense that
the “secret” to be sold is the user data. However, care has to
be taken to ensure that only authenticated users can benefit
from the existence of rewards.

For token-based mechanisms that do not use the blockchain
to reward users, the reader is referred to [18], [19] and the
references therein.

III. SYSTEM MODEL

Our base architecture consists mainly of two entities: users
that participate in sensing tasks and a service provider that
collects data and rewards users for the data they provide.
Users install sensing applications in their mobile devices
and gather sensor readings which might include location,
accelerometer data, pictures, sound samples, environmental
data like temperature and pollution levels, and so on. Once
they have data to report, they contact the application server
which collects the results and organizes them in appropriate
form for display to the general public or locally to the user
devices.

A snapshot of this architecture is shown in Figure 1. The
core operation governing the structure of such a system con-
sists of a user U transmitting sensed data to a service provider
P that has initiated the specific data collection campaign.
However, before users engage in participatory sensing, they
must register first (Step 1). This role is typically assumed
by a separate registration authority (RA) that verifies user
identities and issues credentials bound to these identities. From
a security point of view it does not really matter whether the

RA is different from P as these two entities may collude to
break user privacy during sensing and reporting. Hence we
treat them as one.

When the provider needs to collect data about a particular
sensing task, it has to advertise the task to the users. Typically,
this procedure is handled by a task server (T S) which is
contacted by users wishing to engage in some sensing activity.
Here, again, we will not distinguish between the service
provider, the task server or even the reporting server as
is customary in participatory sensing applications [2] since
these servers may collude with each other to recover user
information. So, we will just assume that the user is in
possession of an authentic task (Step 2) and then moves to
the target area (Step 3) to start collecting data.

In the main operational phase of our protocol, users submit
data (Step 4) and collect bitcoin payments (Step 5). However
to prevent the provider from getting the data and refuse to
reward the user, the data is sent encrypted with a key that
will be released if the provider pays the user. However, a user
may also act maliciously, i.e. get the money and refuse to
release the key that unlocks the data. Thus, Step 5 is using
the Blockchain network to make sure that no party can cheat
the other (strong fairness). Our protocol ensures that data is
delivered if and only if an appropriate payment is made.

However, since the provider does not have access to the data
beforehand, he also needs to be sure that (i) data is worthy
of some value val according to an established rewarding
policy R(), and (ii) that no user can obtain another reward
for the same data. This chicken-and-egg situation is resolved
by our protocol in a very methodical manner thus achieving
the required balance between anonymity and accountability.
These steps take place offchain thus further contributing to
the efficiency of the protocol. The only part that uses the
Blockchain network is the key-for-money exchange in Step
5 that helps ensure fairness.

In the following we define the various operations expected
from our system. For simplicity, only a high-level system
interface is presented, not listing every single input which
may be required by the parties to execute the protocols.
These operations enable users to register, submit data, receive
payments, and so on.
• Setup(1κ) is a probabilistic algorithm executed by P to

setup the data reporting and payment system. On input a
security parameter 1κ it generates P’s public and private
key (pkP , skP) and a public common reference string
CRS to be used in the more advanced operations of the
system.

• Register(U ,P) is an interactive protocol executed be-
tween a user U and the provider P . As output, U obtains a
long term public/private key pair (pkU , skU ). P registers
U’s public key and identity information to prevent the
user from trying to obtain multiple rewards for the same
data.
A second outcome of this protocol is an ephemeral key
pair (pkeU , sk

e
U ). The private key skeU will be used by U



to submit sensing data and sign bitcoin transactions. The
public key pkeU (essentially a bitcoin address) will act
as an authorization credential allowing only authorized
users to receive payments in a privacy-preserving manner.
However, none of these keys can be linked to the long
term public key of the user which is known to P .

• IdentDR(taskID,DBP) is an algorithm executed by P
to check if there exist two different submissions by the
same user for a given task. This is to prevent double-
redemption attempts in which users try to obtain more
than one payments for the same sensing task.

• Submit(U) is a protocol executed between a user U and
P . U encrypts the sensed data with a one-time symmetric
key K and sends the encrypted data C and the hash hK of
the key to the provider through an anonymizing network
like TOR. U also produces a proof π that demonstrates
knowledge of the key K and that encrypted data worth
val bitcoins according to the rewarding functionR(). The
data sent are signed with the user’s ephemeral signing key
skeU to produce a signature σe.

• Verify(P, σe, C, hK , π). This protocol is executed by the
provider to check the validity of the signature σe and
the proof π. The signature attests to the fact that the
user is authorized. If the proof π also verifies, P posts a
transaction TP→U to the Bitcoin network that promises
to pay val bitcoins to whoever presents a key that hashes
to K. This is the only place where an actual bitcoin
transaction takes place. This operation also uses IdentDR
to check for double-redemption attempts.

• Release(U ,K). This is executed by U once the user
confirms that transaction TP→U has been posted on the
blockchain network. The user posts a transaction TU→P
that releases the key K. TU→P is signed with the private
ephemeral key of the user to prevent forwarding attacks
in which the user broadcasts K to the blockchain network
and a malicious miner (or anyone else) sees K and uses
it to claim P’s funds.

All the above algorithms should meet the following correct-
ness definition:

Definition 1: (Correctness) A rewarding scheme composed
from the above algorithms is called correct if all of the
following properties hold for all system parameters CRS and
P’s public and private key pair created from Setup(1k), U’s
secret identity skU , public identity pkU and ephemeral keys
〈pkeU , skeU 〉 created from Register(U ,P), and entities U and
P honestly following the protocols.
• Correctness of issuing and verifications. When issued in

Register and used in Submit and Verify, all ephemeral
keys can pass verification.

• Correctness of payment. All data m worth value val un-
der some rewarding function R(), can be redeemed suc-
cessfully under operations Submit, Verify and Release.

A. Security and privacy model

In this section, we discuss what kind of adversaries and
attacks are covered by our security and privacy models. Our

threat model contains both malicious providers and users.
Malicious providers may try to collect data without reward-
ing users. Additionally, they may try to infer private user
information. A malicious user on the other hand may try to
get a “free ride” by receiving rewards for useless or even
already submitted data. To prevent this we will demand that
only authorized users can access the system, without however
risking user privacy. Thus, a careful design is required in
order to ensure that users remain anonymous, their actions
unlinkable and yet they cannot misbehave. The necessary
requirements are listed below:

• Authorization. Only authenticated users should be able
to submit sensed data. The provider should be able to
verify the origin of this data as coming from a legitimate,
registered user. However, this must be done in a way to
ensure that user privacy is not violated.

• Confidentiality and integrity. The interactions between a
user and the provider should be protected from anyone
who is not authorized to have access to this data. Reported
data should be protected against eavesdroppers or mali-
cious entities who want to read/modify this information.
Additionally, blockchain transactions should not reveal
any information about the sensed data or the link between
the user and the submitted data.

• Anonymity/unlinkability. Neither the provider nor other
users of the system should be able to learn anything
about the identity of a user during the data reporting and
payment phases of the protocol. Additionally, different
sessions between the user and the provider should also
be unlinkable to each other.

• Protection against malicious providers. In addition to
the usual adversarial behavior where the provider tries
to break user privacy, users should be protected from
providers who deny to pay for submitted data. Thus, it
should not be possible for a provider to obtain the data
for free or, more generally, in a price smaller than the
one advertised by the rewarding function R.

• Protection against double redemption attacks and ma-
licious user behavior. Similarly, providers should be
protected against malicious users who might (i) obtain
a reward and refuse to release the promised data, (ii)
release data whose value is less than the promised one,
or (iii) try to obtain more than one rewards for the same
data.

Remark 1: At the network level, we assume that data sub-
missions take place through anonymizing connections which
can be used to hide the network identities of the communi-
cating devices. We also assume that the nature of the tasks
does not leak information about the users accepting these
tasks. For example, if only a few users are willing to accept
a task, the anonymity set is reduced thus making it easier
to de-anonymize these users, even if anonymous reporting is
enforced by other techniques. Such selective tasking attacks [2]
are outside the scope of this work. Finally, we don’t consider
data pollution attempts. While we prevent malicious user



behavior, we have no control over users that report falsified
sensor data. One approach to this problem is attesting to the
correct operation of the actual sensors as described in [20].
Another approach would be to use reputation frameworks that
can penalize users that submit erroneous data [21].

The above set of properties will be defined by means of
experiments using a probabilistic polynomial time adversary
A. The adversary may control a set of malicious colluding
users or may eavesdrop on honest users. A will play the role
of the user, may interact with an honest provider an arbitrary
number of times but may not follow protocol specifications.
Additionally, A is assumed to receive all the messages ex-
changed in the scope of the protocols but may manipulate the
messages sent during protocol runs of malicious users. A’s
behavior will be captured by the set of oracles defined below:

• Register*(U) lets A initiate the Register protocol with
an honest P provided there is no pending or successful
Register* call for U yet. We assume that the secret keys
skU and skeU are unique and unknown to the adversary.

• Submit*(U) lets A initiate the Submit protocol with an
honest P for some data m1, . . . ,mn.

• Verify*(val) is used by the adversary to initiate the Verify
protocol with P for input val.

• Release*(U , val) lets A initiate the Release protocol
with an honest P with an input val.

Now we consider adversarial goals against the properties of
authorization, balance between value of data and payments,
and double-redemption detection. The first property ensures
that only authorized users can submit data and obtain rewards.

Definition 2: (Authorization) A data submission and re-
warding scheme holds the Authorization property if for any
PPT adversary A in the experiment ExpAuthA (κ) below, the
advantage of A is negligible in κ.

Experiment ExpAuthA

Let (CRS, (pkP , skP)) ← Setup(1κ). Then run
ARegister*, Submit*, Verify*, Release* (pkeU , pkP). The experiment
outputs 1 iff

1) A holds a valid authorization credential (pkeU , sk
e
U )

that is not an output from any Register* query; or
2) A makes successful calls to Submit*,

Verify*,Release* such that the honest P is convinced
that the calls involve a valid public-key pkeU for
which there has not been a successful execution of
Register* up to this call.

The property of Double-redeeming Detection (DrD), en-
sures that two transactions leading to the same redeeming tag
must have been initiated by the same user.

Definition 3: (Double-redeeming Detection) A data sub-
mission and rewarding scheme holds the Double-redeeming
detection property if for any PPT adversary A in the exper-

iment ExpDrD
A (κ) below, the advantage of A is negligible in

κ.

Experiment ExpDrD
A

Let (CRS, (pkP , skP)) ← Setup(1κ). Then run
ARegister*, Submit*,Verify*, Release*(pkP). The experiment
returns 1 iff A makes two successful Submit or Release
queries to the same data, which implies double-redeeming,
however, using the IdentDR algorithm, at least one of the
following conditions is satisfied:
• The user public-keys extracted from the queries are pk1U

and pk2U , with pk1U 6= pk2U or
• The double-redeeming tags shown in these two queries

are t1 and t2 respectively, with t1 6= t2 or
• IdentDR with these two transactions outputs 0.

We next consider the provider balance property (BaP).
This property ensures that the amount redeemed for data
m1, . . . ,mn cannot exceed R(m1, . . . ,mn), the value re-
turned by the application of the rewarding function R on
data mi. This also suggests that an adversarial user cannot
obtain a reward and release no data, or redeem more than one
rewards for the same data. Thus this property is used to model
adversaries who want to gain more than what they actually
deserve for the data submitted to an honest provider.

Definition 4: (Provider Balance) A data submission and
rewarding scheme holds the Provider Balance property if for
any PPT adversary A in the experiment ExpBaPA (κ) below, the
advantage of A is negligible in κ.

Experiment ExpBaPA

Let (CRS, (pkP , skP)) ← Setup(1κ). Then run
ARegister*, Submit*,Verify*, Release*(pkP). The experiment
outputs 1 iff

1) A managed to extract a valid authorization credential
(pkeU , sk

e
U ) which can spend it by signing a new

bitcoin transaction using skeU ; or
2) A claims a payment that is larger than the value
R(m1, . . . ,mn) of previously submitted data with
pkeU ; or

3) A claims another payment for the same data and
IdentDR outputs zero.

Similarly, the user balance property (BaU) ensures that a
malicious provider A cannot cheat the user in paying less
than the data’s worth.

Definition 5: (User Balance) A data submission and re-
warding scheme holds the User Balance property if for any
PPT adversary A in the experiment ExpBaUA (κ) below, the
advantage of A is negligible in κ.



Experiment ExpBaUA

Let (CRS, (pkP , skP)) ← Setup(1κ). Then run
ARegister*, Submit*,Verify*, Release*(pkeU , pkP). The experiment
outputs 1 iff

1) A managed to extract a valid authorization credential
(pkeU , sk

e
U ) which can spend it by signing a new

bitcoin transaction using skeU ; or
2) A makes a payment that is smaller than the value
R(m1, . . . ,mn) of previously submitted data with
pkeU .

3) A extracts the key K and recovers the encrypted data.

We next turn our attention to privacy. Here we consider
an adversarial provider A whose goal is to identify the user
behind a sequence of protocol runs or try to link certain
protocol runs. In general, data submissions and payments (even
by the same user) should not be linkable to the user, and
the actions of one user should not be distinguishable from
the actions of another user. To formalize the behavior of the
adversary, we let A use an additional oracle Corrupt(U) which
lets A interfere (corrupt) an honest user U and obtain U’s
secret key skU .

Definition 6: (Privacy) A data submission and rewarding
scheme is user private if for any PPT adversary A in the
experiment ExpPrivA (κ) below, the advantage of A is negligibly
close to 1/2.

Experiment ExpPrivA

Let (CRS, (pkP , skP)) ← Setup(1κ). The experiment
consists of the following phases which are run one after
the other.
• Learning phase: A may ask any number of users to

Register*, Submit*, Release* data multiple times. A
may also Corrupt any number of users except two that
will be used in the challenge phase.

• Challenge phase: A picks two honest users U1 and
U2 whose key material has not been corrupted in the
previous phase. The challenge oracle selects at random
a bit b ∈ {0, 1} and sets user UL equal to Ub and UR
equal to U1−b. A chooses data m1, . . . ,mn and may
execute the following steps:

– Ask users UL or UR to submit data using Submit*.
– Ask users UL or UR to receive payments using

Release*.
• Post-Challenge phase: A may ask both users to further

Submit*, Release* data multiple times and concur-
rently.

A outputs a guess b′ for b. The experiment returns 1 if b′ = b.

IV. TOOLS

In what follows we describe the main tools we will be using
in our proposal.

zkSNARks: Our protocol is based on the security of zero-
knowledge Succinct Non-interactive ARguments of Knowl-
edge (zkSNARKs) as developed in [22]. zkSNARKs allow a
prover to convince a verifier about the validity of an NP
statement by constructing a small size proof π.

zkSNARKs consist of three algorithms setup, prove and
verify. The setup algorithm, given a security parameter κ and
an NP language L corresponding to a relation R = {x,w}
where w is a witness that x ∈ L, outputs a common reference
string CRS consisting of a public evaluation key for proving
that w is a witness for x and a public verification key used
in the verification of such statements. Prove is an algorithm
that, given CRS, x and w, produces a proof π that w is a
valid witness for x. Verify is an algorithm that given CRS, x, π
outputs either ‘Accept’ or ‘Reject’ depending on the validity
of the proof.

The properties expected by zkSNARKs are: (i) completeness,
that for (x,w) ∈ R the prover can produce a proof π that
passes the verification test; (ii) soundness, that no malicious
prover can generate a proof π for x 6∈ LQ that fools the verifier
to accept (x, π); and (iii) zero-knowledge, that no information
leaks about the witness, i.e. there exists a (randomized)
polynomial simulator S, such that for any x ∈ LQ S a proof
can be generated that is computationally indistinguishable
from a honestly generated one. We say a zkSNARK is secure
if all the above properties hold [22].

Remark 2: zkSNARKs require a trusted party to generate
the common reference string CRS for the production and
the verification of the proofs. This is typically assumed to
be generated honestly. However, a malicious verifier (e.g. the
service provider) can provide a CRS that allows it to break
the ZK property and learn information about the user’s secret
parameters. This attack can be prevented if the user checks that
the CRS is correctly formed. Hence no trust is really placed
on the service provider. Another possibility is to use the notion
of Subversion-NIZK [23], where the zero-knowledge property
is preserved even when a (possibly malicious) verifier chooses
the CRS .

Bitcoin and Blockchain: A blockchain is an open, dis-
tributed ledger that can be used to record transactions in
a transparent and verifiable manner. It is a linked-list data
structure consisting of blocks of transactions, where each block
contains a cryptographic hash value of the previous block in
the list. Thus attempting to modify an existing transaction will
result in a chain of updates all the way until the last block;
however this cannot happen without consensus by the majority
of the peers maintaining the ledger. This property gives the
blockchain its immutable (and transparent) character.

In this work the provider will be using the blockchain as
the means to transfer Bitcoin payments for the data submitted
by the user. Payments can be sent (or received) to bitcoin
addresses which can be thought as user pseudonyms. Each
such address is bound to a public key (more precisely to
the hash of the public key) and a transaction is considered
valid when it is signed by the corresponding private key. Thus



nobody can act on behalf of another user unless they know the
corresponding private key. To transfer bitcoins, a transaction
must be created with one or more input addresses from which
the money will be taken and one or more output addresses to
which the money will be sent.

One such important transaction is the Pay-to-Script-Hash
(P2SH) [24] shown below.

ScriptPubKey: OP_HASH160 <redeemScriptHash>
OP_EQUAL

ScriptSig: <sig><pubKey><redeemScript>

To spend bitcoins sent via P2SH, the recipient must provide
a script matching the script hash and data which makes the
script evaluate to true. We will be using this transaction to
exchange sensed data with bitcoins of appropriate value. The
user will first sent offchain the encrypted data along with a
hash of the key K used to decrypt the data. The provider will
then include the hash of the key in a P2HS transaction which
can be redeemed only when the user signs the transaction and
releases the secret key K used to encrypt the data (this is
called the fulfilment condition).

However, to ensure that the bitcoins of the provider are not
locked forever if the user denies to release the key, the provider
can make the transaction a time-locked one by using the
CheckLockTimeVerify or CheckSequenceVerify
opcodes. In such a time-locked transaction, the provider can
claim back its money, if the user does not release the key
within a specified time interval.

This exchange ‘key-for-bitcoins’ is the only place where the
blockchain network is used thus contributing to the efficiency
of the protocol. In the next section, we describe the specifics
of our protocol most of which takes place offchain.

V. PROTOCOL DETAILS

Overview: In the main operational phase of our protocol,
a user U wants to receive a payment from a service provider
P for data m1, . . . ,mn sensed with her smart device. The
data worths some value val which can be computed by the
application of a rewarding function R(). R() is announced by
the provider and its purpose is to capture the value of the data
for attributes set forth by P for the given task such as location,
sensing time, sampling frequency, type of sensor used, and so
on.

The utility val = R(m1, . . . ,mn) is calculated locally at
the mobile device, as all necessary information is already
available to the user. However, the data cannot be released to
the provider as P may act maliciously and refuse to pay the
user. Hence the data is sent encrypted using a one-time key
K. This key will be released only when the provider posts
a time-locked transaction offering val bitcoins in exchange
for K. However, before the provider posts this transaction, it
must be convinced that the encrypted data worth value val and
have not been submitted before by U . This is an NP statement
and can be implemented efficiently using a zkSNARK proof
π. Once this proof is verified, the key-for-money transaction
takes place.

This ensures that none of the parties can cheat the other.
The provider is certain that nobody can claim the money unless
they present a key K within a specific time period that matches
the key used to encrypt the data in the proof π. Similarly, the
user is sure that she will get her money when she posts the
decryption key K. The above approach ensures that either
both parties will get what they deserve or none can be in
disadvantage, guaranteeing the fairness property of our scheme
(see also [16], [17] for similar assumptions).

One subtle issue that we need to take care is that the user’s
transaction must be signed with her secret key to be valid.
However to ensure unlinkability and prevent P associating
the signing key with multiple submissions of data from U ,
this key has to be an one-time, ephemeral key. But while this
ephemeral key will not be tied to a particular user, we need to
ensure that only authorized users can submit data. This tension
between unlinkability and accountability will be the focus of
subsequent sections.

A. Setup

The system is initialized with a call to Setup(1κ), where
κ is the security parameter. This method creates the public
common reference string CRS used in the zkSNARKs op-
erations and generates the provider’s public and private key
(pkP , skP).

B. Registration

One of the key requirements of our protocol is that a user
cannot claim more than one reward for the data they provide
(double-redemption also known as double-spending). A simple
way to prevent this is to embed information in the submitted
data so that the user is either prevented or identified if she tries
to double-redeem. This information will have the form of a
redeeming tag τ that will be unique for the sensing task the
user is responding to. Thus, if a user attempts to reap multiple
rewards for a given task, she will be prevented from doing so.
However, this must be carefully done to ensure that the user
remains anonymous when she follows the protocol.

To this respect, before a user is allowed to participate in the
crowd-sourcing application, she must register first. Thus she
generates a public-private key pair (pkU , skU ) and registers
pkU with the Service Provider P . P signs the user’s public
key and produces a certificate certU for the authenticity of
pkU . The provider ensures that pkU is unique and stores it in
its database along with any other useful information about the
user. We define operation CertVerifyP(certU ) that returns 1
if the public key of U is indeed signed by P . This can be used
to test the authenticity of the public key contained in certU .

It is important to note here that this registration step cor-
rectly binds each user identity to a unique credential. This is to
ensure accountability by preventing Sybil attacks, guaranteeing
that only authenticated users participate in the system, and
eventually, preventing double-redemptions of data. However,
as we will see later on this step does not have any effects on
user privacy since we make sure that users remain anonymous
in all subsequent phases of the protocol. The user’s key pair



can now be used to establish an ephemeral bitcoin address
that will be used in the actual rewarding phase to provide for
unlinkability between the reported data and the rewards.

To this respect, U generates a new public-private key pair
(pkeU , sk

e
U ) and asks the provider to blindly sign pkeU using any

secure blind signature scheme. For example, if the provider
possesses an RSA key pair (eP , dP), the user can first send
rePH(pkeU ) to the provider, where r is some blinding factor
chosen by the user and H a secure hash function. After signing
with P’s private key, the user obtains a signature r(H(pkeU )

dP ,
which after removal of r, is a signature on the hash of the
ephemeral key pkeU . Thus, when the provider sees such a
bitcoin address, it knows it is coming from an authenticated
user but cannot tell which user it is due to the security of the
blind signature scheme. When all these steps are performed,
the user is consider authorized and can participate in the
crowd-sensing task.

Notice that every time the user needs to participate in a new
task, she has to use a new ephemeral bitcoin address to avoid
linkability. It is necessary to use different ephemeral keys
to collect rewards in order to provide unlinkability between
these rewards. The user may have as many ephemeral keys
authenticated as she likes simply by asking the provider to
blindly sign a collection of such keys as described above.
However, if the provider is not willing to sign multiple keys,
new ephemeral keys can be obtained on the fly at the time of
data submission. Section V-D describes how this can be done
in an unlinkable way.

C. Task advertising

When the provider needs to collect data about a particular
sensing task, it has to advertise the task to the users. As
mentioned in Section III, this is typically the job of a task
server which users may contact. Here, however, we will not
distinguish between the service provider and the task server.

Each sensing task may look for user data or other useful
information based on various criteria (region, sampling fre-
quency, etc.). Tasks can be either downloaded by users (pull
model) or sent to them when the provider has a new sensing
task (push model). The tasking and downloading processes
may endanger the privacy of the participants in several ways
(recall the selective tasking attack mentioned in Remark 1).
These attacks are out of the scope of this work as our main
focus is on rewarding, however we must insist that users
communicate with the service provider through anonymizing
networks like TOR.

An example of a task published by P is shown below. In
this task participants have to report 5 min temperature readings
in London for a duration of one day.

s = 〈 taskID = #53621,
Location = London,
sensingType = getTemperature,
Frequency = 5 min,
Start = December 1, 2019,
Duration = 24 h 〉

Such a task will be unique as indicated by its taskID and
must be signed by the provider to be valid. Thus any user
downloading such a task will know that is an authentic one.
The uniqueness of the task will come into play later on as
it will be crucial to ensure that no user can double-redeem,
i.e. obtain more than one reward for the same task.

In addition to the task, the provider will publish its reward-
ing function R(). Users can use this function to compute the
amount of reward they will get for the data they provide.
The reward val for data m1, . . . ,mn will result from the
application of this function on the data and some auxiliary
variables ai, i.e. val = R(a1, . . . , ak,m1, . . . ,mn). The
rewarding function is also public information and is known
to the users.

D. Responding to a sensing task

Let m1, . . . ,mn be the measurements to be reported to
P . The user applies the rewarding function to compute the
value val = R(m1, . . . ,mn) of the data. Now the user has
to convince P about the utility of the data, however without
sending the data as is. To do so, the user engages in the
following steps:

1) U encrypts the data with a one-time symmetric key K
to produce a ciphertext C = EK(m1, . . . ,mn). Both C
and the hash hK of K will be sent to P along with a
proof π that proves knowledge of K and the valuation
val of the data. In addition to C, the user constructs and
sends a double-redeeming tag τ = H(taskID, skU ),
where skU denotes the long term private key of the user.
The role of τ is to prevent the user from redeeming the
same data twice for the given task.

2) Given public information 〈taskID,C, hK , val, τ〉, the
user constructs a zkSNARK proof π that demonstrates it
knows (m1, . . . ,mn,K, certU , skU ) such that:

a) K was used for the encryption of the data and
H(K) = hK

b) τ = H(taskID, skU )
c) certU is a valid certificate signed by P
d) val = R(m1, . . . ,mn).

More formally, if R is the rewarding function, we define
the NP language LR for the zkSNARK-proof system to be the
set of the following NP statements:

LR =


〈taskID,C, hK , τ, val〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ {mi}ni=1,K, certU , skU :
hK = H(K)
C = EK(m1, . . . ,mn)
τ = H(taskID, skU )
CertVerifyP(certU )
GenVerify(pkU , skU ) = 1
val = R(m1,m2, . . . ,mn)


,

where operation GenVerify(pkU , skU ) returns 1 if (pkU , skU )
is a valid public-private key pair. This is needed to ensure that
the user created the redeeming tag with its long term key, thus
linking skU with the public key in certU . For example, if x
is the user’s secret key and y = gx her public key for some



User U Provider P

Data submission (offchain)

Prepare sensed data m1,m2, . . . ,mn

Compute value val = R(m1,m2, . . . ,mn)
Pick one-time symmetric key K
Compute hK = H(K)
Let C = EK(m1,m2, . . . ,mn)
Set τ = H(taskID, skU )
Set σe = SigskeU (EncP(C), hK , val, τ)
Compute zkSNARK proof π

EncP(C), hK , val, τ, pk
e
U ,SigP(pk

e
U ), σe, π−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ANON
Verify signature σe
Verify proof π

Blockchain transactions
If both tests succeed,

If TP→U posted correctly, post transaction TP→U
post transaction TU→P

Fig. 2. Data submission and rewarding. The offchain part consists of a single message from U to P .

generator g, then GenVerify simply checks that y = gx and
returns 1 if the test succeeds.

At this point, the user sends the following message to P .

U Anon−−−−→
offchain

P : EncP(C), hK , val, τ, π, pk
e
U , SigP(pk

e
U ), σe

(1)
This message is signed with U’s ephemeral key skeU to

produce a signature σe and is sent through an anonymizing
network connection. The ciphertext C is encrypted with P’s
public key to prevent third parties from accessing the data in
C once the key K is posted to the blockchain by U . Thus only
P can obtain the data. This message takes place offchain.

Notice that U also sends its ephemeral public key pkeU that
was blindly signed during the registration phase. SigP(pkeU ) is
the associated signature that can be used to verify the validity
of the key. This ephemeral key (bitcoin address) will be used
by the provider to pay for the data during the onchain phase
of the protocol.

1) Obtaining a new ephemeral key: We mentioned in the
registration phase that the ephemeral key is blindly signed by
the provider. Hence the first key of the user is authenticated but
the provider cannot link it to the user’s ID. Once this key has
been used to receive a payment, a new one must be generated
to avoid linking payments with the same key.

A new ephemeral key can be piggybacked on Message 1 as
follows. The user picks a new ephemeral key pke

′

U , computes
its hash he′ and sends a blinded version rePhe′ along with the
rest of the components in the message. The provider knows
this is coming from an authenticated user but cannot tell
which one due to the security of the blind signature. When
the provider signs rePhe′ with its RSA key, the user obtains a
new ephemeral key that can be used for the next submission of

data. Thus, a series of signed ephemeral keys can be generated
on the fly that are all unlinkable to each other.

E. Getting paid for the data

Once P obtains Message 1, it first verifies the signature σe
as coming from an authenticated ephemeral key pkU (recall the
blind signature during registration) by checking SigP(pk

e
U ).

Then it verifies whether the proof π is correct.
If everything checks out, it posts to the blockchain a time-

locked transaction TP→U which says that P offers val bitcoins
to U under the condition that “U must present a pre-image K
to the hash value hK as well as a signature within some time
window t”; if the conditions are not satisfied the bitcoins return
to P . More precisely, the transaction TP→U has an output of
val bitcoins that can be redeemed by a (future) transaction T
if one of the following is true:

1) T is signed by U and contains a valid pre-image of hK ,
or

2) T is signed by P and the time window t has expired.
The transaction TP→U is satisfied if U posts a transaction

TU→P that contains K. This would satisfy condition 1 of
TP→U and so val bitcoins are transferred to U . If U does
not act within the time window t, then P can sign and post a
transaction T that returns the val bitcoins back to him, thus
satisfying the second condition of TP→U . If TP→U is posted
with the wrong amount, U simply aborts and does not release
K.

This concludes the onchain phase and the description of the
protocol. A summary of the protocol steps is shown in Figure
2. Contrary to prior works, only one offchain message needs
to be sent from the user to the provider greatly contributing
to the efficiency of the protocol.



VI. ANALYSIS

In this section we analyze the security, privacy and effi-
ciency aspects of the protocol.

A. System security

We prove the following theorem:
Theorem 1: If the signature schemes used to create the

ephemeral key are unforgeable, the proposed scheme holds the
authorization property as defined in Definition 2. The proposed
scheme holds the property of double-redeeming detection as
defined in Definition 3. Additionally, if the zkSNARK scheme
is secure, and the hash function is one way, the proposed
scheme holds the user and provider balance properties as
defined in Definitions 4 and 5. Finally, if the blind signature
and the zkSNARK schemes are secure, the proposed scheme
holds the privacy property as defined in Definition 6.
Proof :

a) Authorization: By Definition 2, the adversary A can
win the authorization game if A holds a valid ephemeral key
that is not an output from any Register* query in which P
authenticates the user and then signs the blinded ephemeral
key. If this is possible, it means that A either knows the secret
key of U , or can forge a key without the involvement of P .
Both conditions contradict the assumption that the signature
schemes used in our proposed scheme are secure.

Alternatively, A can make successful calls to Submit*,
Verify*, and Release* queries such that P believes that these
calls involve a valid ephemeral key that is not the result of
Register* up to this moment. But this is not possible since
A could not have generated the signature without knowledge
of the secret ephemeral key. The security of the signing
algorithms ensures that this cannot happen.

b) Double-redeeming Detection: Each double-redeeming
tag τ = H(taskID, skU ) is bound to a unique user identity
(as is expressed by skU ). The security of the hash function
and the security of the zkSNARK argument ensures that the
tag cannot be modified without being detected. Additionally,
a user cannot generate a tag without knowledge of the cor-
responding secret key. This is ensured by the security of the
authorization procedure discussed previously. Thus each user
can only redeem once, since the data is associated with a
specific task and skU . Finally, A cannot use the tag of a user
to get a reward for a different user as the ZK proof will fail
due to the appearance of an invalid certificate for the public
key matching the secret key in the tag.

c) Balance: Since both the authorization and double-
redeeming properties hold, to win the user balance game the
adversary must extract a valid signing ephemeral key skeU
and sign a new bitcoin transaction, sending the money to
a bitcoin address owned by A. This can be done by either
getting skeU from pkeU , which would make the underlying
public key cryptosystem insecure, or extracting skeU from the
zkSNARK which would make the proof not zero-knowledge.
Similarly, obtaining a larger reward than the one embedded
in the zkSNARK through the computation of R() is also

infeasible as this would break the soundness property of the
proof system. Thus in both cases user balance is preserved.

For the same reasons as above, a malicious provider cannot
recover a valid signing ephemeral key skeU and use it to sign a
bitcoin transaction to himself. Neither can he post a transaction
containing a smaller reward as the user would abort and not
post the transaction that releases the encryption key K. Finally,
the one-wayness of the hash function and the zero-knowledge
property of the zkSNARK ensures that a malicious provider
cannot obtain K from the received H(K) or the proof π.

d) Privacy: An adversary A can win the privacy game
by either breaking the security of the blind signature scheme
or the ZK property of the proof π. If there was an adversary
A that could distinguish the ephemeral keys of the two users
U1 and U2 this would imply an adversary that could break
the blindness property of the underlying signature scheme.
The second adversary would simply use A’s guesses for the
ephemeral keys of U1 and U2 to answer the challenge of the
corresponding blind signature game. Alternatively, A can win
the privacy game, by recovering the secret ephemeral key of
each user from the proof π. However this is infeasible under
the security of the zkSNARK proof system. ♦

B. Efficiency aspects

In this section, we start by reporting the time and memory
requirements to generate and verify the zkSNARK proof π
(recall Section V-D). The proof attests to the validity of the key
used to encrypt the data, the correctness of the evaluation using
function R as well as the application of the user’s ephemeral
signing key in the construction of the redeeming tag.

The experiment was run on a machine with an 1.90GHz
i7-8650U CPU processor with 8GB of RAM. For the
zkSNARK, we choose the construction of libsnark from
[25]. The rewarding function on data m was given by
R(m) = max (umin,min (a1m+ a0, umax)), for some con-
stants umin, umax, a0, a1. Typically, the reward can be a fixed
amount for user submissions, however here we used a more
complicated expression to stress test the zkSNARK generator.
The user data m was set to 1KB as if responding to a task
that asked for 5 min temperature readings for a duration of
more than one day.

Our findings show that the time to generate the proof π
is 25.3 seconds on the user side, however the time to verify
it is only 4.8ms. This is important from the provider’s point
of view as the work per user is negligible. Thus, a provider
can handle a large number of users with minimal overhead.
Additionally, the proof size is fixed (288 bytes), ensuring that
the communication overhead is dominated by the encrypted
data C which had to be sent anyway (in either encrypted or
plain form). To see this consider the message send from U to
P (recall Figure 2):

〈EncP(C), hK , val, τ, π, pkeU , SigP(pkeU ), σe〉.

Both hK and τ are hash outputs so they can be taken to
be equal to 160 bits or 20 bytes each. The value val of the
data can fit in a 64-bit word, so this contributes another 8



bytes to the total. Bitcoin is based on the use of elliptic curve
cryptography (secp256k1 curve) and in particular the ECDSA
algorithm for signing. Thus the size of the public key pkeU is 33
bytes, while the size of the resulting signature σe is bounded
by 73 bytes. Using RSA as our blind signature scheme, the
signature SigP(pkeU ) of the provider contributes another 128
bytes (however elliptic curve variants or less expensive blind
schemes can be used instead). Thus, without considering the
size of the encrypted data, the user must send 570 bytes, which
also includes the size of the zkSNARK proof π.

The remaining overhead comes from EncP(C). However,
instead of encrypting C with the provider’s public key one can
encrypt a symmetric key and use this to encrypt the remaining
data. Thus, public key encryption can be reduced to encrypting
just a single key instead of the remaining data. As the data
has to be sent anyway, the overhead of encryption is minimal.

The above findings establish the viability of our approach
in the practical settings envisioned by crowd-sensing applica-
tions.

VII. CONCLUSIONS

In this work, we proposed a privacy-preserving mechanism
that can be used to incentivize and increase user participation
in crowdsensing applications. With the help of our framework
users can submit data collected with their smart devices and
obtain rewards in the form of bitcoin payments. Our protocol
guarantees the anonymity of submissions without sacrificing
accountability. Indeed one of the key requirements in our work
is to prevent double-redeeming attacks in which a user may
attempt to obtain multiple rewards for the same data. Our
proposal prevents this malicious behavior without giving up
anonymity of transactions. Thus user submissions cannot be
distinguished and rewards remain unlinkable. More impor-
tantly, our protocol guarantees the fairness of the exchange as
neither the user nor the provider can cheat each other. Finally,
our protocol is highly efficient as most of the steps take place
offchain and only the actual bitcoins-for-data exchange uses
the blockchain network. Additionally, we only rely on simple
Pay-to-Script-Hash transactions as opposed to complex smart
contracts used in prior works, thus ensuring the viability of
our approach in realistic deployment settings.

REFERENCES

[1] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos
Laoudias, and Demetrios Zeinalipour-Yazti. “Crowdsourcing
with smartphones.” IEEE Internet Computing 16, no. 5, 36–44,
2012.

[2] Delphine Christin. “Privacy in mobile participatory sensing:
Current trends and future challenges.” Journal of Systems and
Software 116, 57–68, 2016.

[3] Ioannis Krontiris, Felix C. Freiling, and Tassos Dimitriou. “Lo-
cation privacy in urban sensing networks: research challenges
and directions”. In IEEE Wireless Communications 17, 5, 2010.

[4] Francesco Restuccia, Sajal K. Das, and Jamie Payton. “Incentive
mechanisms for participatory sensing: Survey and research chal-
lenges.” In ACM Transactions on Sensor Networks 12, no. 2,
13, 2016.

[5] N. Asokan, V. Shoup, and M. Waidner. “Optimistic fair exchange
of digital signatures.” IEEE Journal on Selected Areas in Com-
munications, 18(4):593-610, 2000.

[6] Tassos Dimitriou. “Fair and private Bitcoin rewards: Incen-
tivizing participation in Crowd-sensing applications.” In IEEE
International Conference on Decentralized Applications and
Infrastructures (DAPPS), 2020.

[7] C. Tanas, S. Delgado-Segura, and J. Herrera-Joancomart, “An
integrated reward and reputation mechanism for MCS preserv-
ing users privacy,” in International Workshop on Data Privacy
Management and Security Assurance, 2015.

[8] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.N. Liu,
Y. Xiang, and R. H. Deng. “CrowdBC: A blockchain-based
decentralized framework for crowdsourcing.” IEEE Transactions
on Parallel and Distributed Systems 30, no. 6 (2018): 1251–
1266.

[9] Yuan Lu, Qiang Tang, and Guiling Wang. “Zebralancer: Private
and anonymous crowdsourcing system atop open blockchain.”
In 38th International Conference on Distributed Computing
Systems (ICDCS), pp. 853–865, 2018.

[10] Huayi Duan, Yifeng Zheng, Yuefeng Du, Anxin Zhou, Cong
Wang, and Man Ho Au. “Aggregating Crowd Wisdom via
Blockchain: A Private, Correct, and Robust Realization.” In
IEEE International Conference on Pervasive Computing and
Communications (PerCom2019), 2019.

[11] Junwei Zhang, Wenxuan Cui, Jianfeng Ma, and Chao Yang.
“Blockchain-based secure and fair crowdsourcing scheme.” In
International Journal of Distributed Sensor Networks 15, no. 7,
2019.

[12] Jingzhong Wang, Mengru Li, Yunhua He, Hong Li, Ke Xiao,
and Chao Wang. “A blockchain based privacy-preserving incen-
tive mechanism in crowdsensing applications.” In IEEE Access
6, 2018.

[13] S. Delgado-Segura, C. Prez-Sol, G. Navarro-Arribas, and
J. Herrera-Joancomarti. “A fair protocol for data trading based
on Bitcoin transactions.” In Future Generation Computer Sys-
tems, 2017.

[14] Iddo Bentov and Ranjit Kumaresan. “How to use bitcoin to
design fair protocols.” In CRYPTO 2014.

[15] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessan-
dra Scafuro, and Sharon Goldberg. “Tumblebit: An untrusted
bitcoin-compatible anonymous payment hub.” In Network and
Distributed System Security Symposium (NDSS), 2017.

[16] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo.
“Zero-knowledge contingent payments revisited: Attacks and
payments for services.” In ACM CCS, 2017.

[17] G. Maxwell. “Zero knowledge contingent
payment”, 2015. https://en.bitcoin.it/wiki/
Zero Knowledge Contingent Payment.

[18] Tassos Dimitriou. “Privacy-respecting reward generation and ac-
cumulation for participatory sensing applications.” In Pervasive
and Mobile Computing 49: 139–152, 2018.

[19] Tassos Dimitriou, Thanassis Giannetsos, Liqun Chen. “RE-
WARDS: Privacy-preserving rewarding and incentive schemes
for the smart electricity grid and other loyalty systems.” In
Computer Communications 137: 1–14, 2019.

[20] Stefan Saroiu and Alec Wolman. “I am a sensor, and I approve
this message.” In Proceedings of the Eleventh Workshop on
Mobile Computing Systems & Applications, 2010.

[21] Ujwal Gadiraju, Ricardo Kawase, Stefan Dietze, and Gian-
luca Demartini. “Understanding malicious behavior in crowd-
sourcing platforms: The case of online surveys.” In CHI, 2015.

[22] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio:
Nearly practical verifiable computation.” IEEE Symposium on
Security and Privacy, 2013.



[23] M. Bellare, G. Fuchsbauer, and A. Scafuro. “NIZKs with an
untrusted CRS: security in the face of parameter subversion.” In
ASIACRYPT 2016.

[24] https://en.bitcoinwiki.org/wiki/Pay-to-Script_Hash
[25] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.“Succinct

non-interactive zero knowledge for a von neumann architecture.”
In the 23rd USENIX Conference on Security Symposium,
SEC’14, 2014


