SPORT: Sharing Proofs of Retrievability across Tenants

Frederik Armknecht
University of Mannheim, Germany
armknecht@uni-mannheim.de

David Froelicher
NEC Laboratories Europe, Germany
david. froelicher@neclab.eu

Abstract—Proofs of Retrievability (POR) are cryptographic
proofs which provide assurance to a single tenant (who creates
tags using his secret material) that his files can be retrieved
in their entirety. However, POR schemes completely ignore
storage-efficiency concepts, such as multi-tenancy and data
deduplication, which are being widely utilized by existing cloud
storage providers. Namely, in deduplicated storage systems,
existing POR schemes would incur an additional overhead for
storing tenants’ tags which grows linearly with the number
of users deduplicating the same file. This overhead clearly re-
duces the (economic) incentives of cloud providers to integrate
existing POR/PDP solutions in their offerings.

In this paper, we propose a novel storage-efficient POR,
dubbed SPORT, which transparently supports multi-tenancy
and data deduplication. More specifically, SPORT enables
tenants to securely share the same POR tags in order to
verify the integrity of their deduplicated files. By doing so,
SPORT considerably reduces the storage overhead borne by
cloud providers when storing the tags of different tenants dedu-
plicating the same content. We show that SPORT resists against
malicious tenants/cloud providers (and against collusion among
a subset of the tenants and the cloud). Finally, we implement
a prototype based on SPORT, and evaluate its performance
in a realistic cloud setting. Our evaluation results show that
our proposal incurs tolerable computational overhead on the
tenants and the cloud provider.

1. Introduction

The cloud is gaining several adopters among SMEs and
large businesses that are mainly interested in minimizing
the costs of both deployment and infrastructure management
and maintenance.

Cost effectiveness is realized in the cloud through the
integration of multi-tenancy and storage efficiency solu-
tions with tailored distributed algorithms that ensure un-
precedented levels of scalability and elasticity. The com-
bination of multi-tenancy solutions with storage efficiency
techniques (e.g., data deduplication) promises drastic cost
reductions. For instance, recent studies show that cross-
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user data deduplication can save storage costs by more than
50% in standard file systems [27], [28], and by up to 90-
95% for back-up applications [27]. Moreover, nearly three
quarters of these savings could also be obtained by means
of straightforward whole-file deduplication [28].

The advent of cloud storage, however, introduces serious
concerns with respect to the confidentiality, integrity, and
availability of the outsourced data [22]. For instance, Google
recently admitted permanent loss of customers’ data in their
storage systems due to a malfunction of local utility grid
located near one of Google’s data centers [4]. The literature
features a number of solutions that enable users to verify
the integrity and availability of their outsourced data [14],
[16], [26], [32]. Solutions include Proofs of Retrievability
(POR) [26], [32] which provide end-clients with the as-
surance that their data is retrievable, and Proofs of Data
Possession (PDP) [8] which enable a client to verify that its
stored data has not undergone any modifications. Although
these solutions can be indeed effective in detecting data loss,
they completely ignore storage-efficiency requirements, such
as multi-tenancy and data deduplication, which are being
widely utilized by existing cloud storage providers.

Namely, existing POR/PDP solutions assume a single
trusted tenant (i.e., honest verifier) who pre-processes the
files to create tags using secret material before outsourcing
them to the cloud, and later regularly performs verifications
on the pre-processed files and tags in order to react as early
as possible in case of data loss.

A straightforward adaptation for the multi-tenant case
would be that each tenant constructs and stores his own tags
in the cloud. However, this approach threatens to cancel out
the benefits of data deduplication over popular objects—
which might reduce the (economic) incentives of cloud
providers to integrate existing POR/PDP solutions in their
offerings.

In Figure 1, we estimate the additional storage overhead
incurred by such an instantiation using the existing privately-
verifiable POR scheme of [32], the publicly-verifiable RSA-
based POR/PDP schemes of [8], [32], and finally the
publicly-verifiable BLS-based POR scheme of [32]. Here,
we assume a block size of 8 KB. Notice that the smaller
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Figure 1. Storage overhead due to the storage of individual tenant tags
in (private and public) POR schemes of [32] and the public PDP scheme
of [8]. Here, we assume 8 KB block sizes.

the block size is, the larger is the storage overhead due
to the storage of the tenant tags (since the tags’ sizes are
fixed per block and are independent of the block size). Our
results show that, even with block sizes as large as 8 KB, the
metadata storage per tenant incurred by existing POR/PDP
schemes are considerable. Clearly, such storage overhead
reduces the profitability of existing storage-efficiency solu-
tions and, in turn, reduces the incentives of providers to inte-
grate POR/PDP schemes in their offerings. For example, in
the 2048-bit RSA-based schemes of [8], [32], each POR tag
requires around 1.5% additional storage overhead per tenant
per block; popular blocks, e.g., shared amongst 50 tenants,
would then require 75% additional storage overhead.

Consequently, one way to minimize this additional stor-
age overhead would require to use the same set of tags
for each tenant. However, in practice, given that files are
typically deduplicated across tenants, and different tenants
do not tend to trust each other, tenants will be reluctant
on sharing the secret material used to construct tags in
POR/PDP. Notice that the leakage of the secret material
invalidates the security of POR/PDP; for instance, a cloud
provider which has access to the secret material can always
construct correct responses in existing POR schemes—even
if the oustourced data is deleted.

In this paper, we address this problem, and propose
a novel solution (SPORT)—which goes one step beyond
existing POR and transparently supports multi-tenancy and
data deduplication. More specifically, SPORT enables dif-
ferent tenants to share the same POR tags in order to
verify the integrity of their deduplicated files. By doing so,
SPORT considerably reduces the storage overhead borne by
cloud providers when storing the tags of different tenants
deduplicating the same content. We show that SPORT re-
sists against malicious tenants/cloud providers (and against
collusion among a subset of the tenants and the cloud).

We argue that SPORT is technically and economically
viable. Indeed, by reconciling functional (i.e., storage effi-
ciency and multi-tenancy) and security requirements (i.e.,
data retrievability in the cloud), SPORT provides consider-
able incentives for cloud providers to issue security SLAs

for their users accounting for data loss, in exchange, e.g.,
for additional service fees. While the main barriers of wider
adoption of POR lie in the lack of compliance with func-
tional requirements in the cloud, SPORT bridges these gaps
and enables cloud providers to offer their customer extended
POR services, without incurring additional bandwidth and
storage overhead.
Our contributions can be summarized as follows:

Formal Framework. We propose the first formal frame-
work and a security model for multi-tenant POR,
dubbed MTPOR. Our framework extends the POR
model outlined in [32] and addresses security risks that
have not been covered so far in existing models.

Concrete Instantiation. We describe a concrete MTPOR
scheme, dubbed SPORT, which builds upon publicly
verifiable BLS POR scheme [32] and that is secure in
the MTPOR model. SPORT deploys a novel mech-
anism which enables different tenants to (in-place)
update the POR tags created by others corresponding
to the same deduplicated file—thus saving considerable
storage. We show that this process resists against a ma-
licious cloud provider, and malicious tenants (as well
as against any collusion between tenants/providers).

Prototype Implementation. We implement and evaluate a
prototype based on SPORT, and we show that our
proposal incurs comparable overhead on the users and
cloud providers, when compared to existing publicly-
verifiable POR/PDP schemes.

The remainder of this paper is organized as follows. In
Section 2, we introduce a novel framework for secure multi-
tenant POR, MTPOR. In Section 3, we propose SPORT, an
efficient instantiation of MTPOR, and analyze its security.
In Section 4, we describe a prototype implementation and
evaluation of SPORT and compare its performance to ex-
isting publicly-verifiable POR/PDP schemes. In Section 5,
we overview related work in the area and we conclude the
paper in Section 6.

2. Multi-Tenant Proofs of
Retrievability

In this section, we introduce a formal model for multi-
tenant POR (MTPOR). Since MTPOR extends POR, we
first quickly recall the POR model from [32].

2.1. Single-Tenant Proofs of Retrievability

Proofs of Retrievability (POR) are interactive protocols
that cryptographically prove the retrievability of outsourced
data. More precisely, POR consider a model comprising of
a single user (or tenant), and a service provider that stores
a file pertaining to the user. POR basically consist of a
challenge-response protocol in which the service provider
proves to the tenant that its file is still intact and retrievable.
Note that POR only provide a guarantee that a fraction p of



the file can be retrieved. For that reason, POR are typically
performed on a file which has been erasure-coded in such
a way that the recovery of any fraction p of the stored data
ensures the recovery of the file [7].
A POR scheme consists of four procedures [32], setup,
store, verify, and prove. The latter two algorithms define a
protocol for proving file retrievability. We refer to this pro-
tocol as the POR protocol (in contrast to a POR scheme that
comprises all four procedures). A POR scheme consists of
four procedures [32], setup, store, verify, and prove [32].
setup. This randomized algorithm generates the involved
keys and distributes them to the parties. In case public
keys are involved in the process, these are distributed
amongst all parties.

store. This randomized algorithm takes as input the keys of
the user and a file M. The file is processed and store
outputs M which will be stored on the server. store
also generates a file tag 7, which contains additional
information about M shared by the user and the service
provider and is used in the subsequent protocol.

verify. The randomized verification algorithm takes the se-
cret and public key, and the file tag 7 outputted by
store during protocol execution. It outputs at the end
of the protocol run TRUE if the verification succeeds,
meaning that the file is being stored on the server, and
FALSE otherwise.

prove. The prover algorithm takes as input the public key
and the file tag 7 and M that is output by store.

2.2. Multi-Tenant POR (MTPOR)

In the sequel, we formally define the model for multi-
tenant POR, dubbed MTPOR. Similar to the standard POR
model, we distinguish between tenants and the service
provider S. The main difference to the aforementioned POR
model lies in the direct integration of the notion of multiple
tenants (or users) that can upload the same file to be stored at
S. In general, these tenants are independent of each other and
do not necessarily trust each other. That is, we do not assume
the existence of shared secrets or direct communication
between the different tenants.

Conforming with the operation of existing cloud
providers, we assume that S stores duplicate data (either
at the block level or the file level) uploaded by different
users only once—thus tremendously saving storage costs.
Recent studies show that cross-user data deduplication can
save storage costs by more than 50% in standard file sys-
tems [27], [28], and by up to 90-95% for back-up applica-
tions [27]. Nonetheless, any user who uploaded a file should
be able to execute PORs later on to verify that the file has
been stored. Therefore, we assume that the provider stores
for each uploaded file M the following:

1) The file M itself which is stored only once.

2) Additional metadata Data(M) which contains e.g., a
list of the users who uploaded M and information for
conducting the POR on M.

If a provider stores several files, e.g., My,...,M,, we
assume that S maintains separate metadata Data(M;) for

each file that he stores. Clearly, metadata corresponding
to different files may contain duplicate information about
the same user to account for the case where the user has
uploaded different files. For simplicity, if we refer to a meta-
data Data(M) where the file M has not been uploaded yet,
we assume that the metadata is empty, e.g., Data(M) = L.
Moreover, for ease of presentation, we simply write Data
instead of Data(M), whenever the considered file is clear
from the context.

In the sequel, we assume that all communication is
authenticated and encrypted (e.g., using the TLS protocol).
Similar to the POR model outlined in Section 2.1, we con-
sider three basic procedures: Setup, Store, and POR where
POR is an interactive protocol that extends the notions of
verify and prove discussed earlier.

The Setup Protocol. The Setup protocol is used to
establish the keys that are required by the users to instrument
the POR; notice that these keys may be different from the
keys used to authenticate and encrypt the communication.
The input of this protocol is the security parameter A and
the outputs are a secret and a public key. In case such keys
are not required in some settings, the respective values are
simply L. Formally, it holds for a party running Setup that:

(sk, pk) < Setup(A) (1

Whenever it is necessary to refer to the keys of a specific
user U, we denote the corresponding secret and public key
by sky and pky, respectively.

The Store Protocol. This randomized file-storing pro-
tocol takes as input the keys of the user, a file M from the
user U that has to be stored by the service provider and
the current metadata of the provider. During the protocol
execution, it may happen that the file is processed prior
to being stored—we denote this file by M. The output of
Store is a verification key vky that allows the user to run
the proof of retrievability. The verification key may be equal
to (or depend on) the secret or public key that the user
generated in the Setup procedure. On the provider’s side,
the (processed) file M is stored and the metadata Data(M)
is updated.! Formally, it holds that:

[U: skU,pkU,M; S : Data(M))
— [U: vky; S: M, Data(M)].

Store:

Observe that unlike the single-tenant POR model out-
lined in Sec. 2.1, we do not utilize the notion of a file tag
7 that needs to be known to both parties. Instead, we split
this information into two parts: (i) the part that needs to be
known to the user (or verifier)—captured by the notion of a
verification key vky—and (ii) the part that needs to be stored
by the provider, which is part of the metadata Data(M).

Observe that the Store protocol essentially requires a
user to join the set of users who all uploaded the same
file M. In practice, one may also prefer to have a protocol
that allows users to leave this set. However, as we aim to

1. Recall that we model the state Data(M) being empty unless M is
uploaded.



achieve that the model for a multi-tenant POR falls back
to the classical single-tenant POR when only one user is
present, we do not integrate such a protocol into the model.

The POR Protocol. The aim of the POR protocol
is to allow a user (or a verifier) to check if the file is
still entirely stored at the provider. To this end, the user
uses his personal keys and the verification key to verify the
response sent by the provider; the latter uses the public key
of the user, the uploaded file, and the metadata to issue the
response to the user. At the end, the user outputs a Boolean
value dec € {TRUE, FALSE}. Formally, we have:

POR [U : sky, pky, vky; S : pky, M, Data(M)]

— [U: vky, dec].

The protocol run is accepted by the user if and only if
dec = TRUE. Unlike the Store protocol, we point out that
metadata maintained by the provider is not modified in this
protocol. However, it may be the case that the user has to
update his verification key vky—which explains the reason
why this is part of the local output.

Adopting common terminology, we say that an MTPOR
is publicly-verifiable if the POR-protocol does not require
the secret key sky of the user. In such cases, verification
can be outsourced to a third party verifier V. Otherwise, an
MTPOR is said to be privately-verifiable.

2.3. Correctness

We consider correctness from the perspective of the
provider and the user. From the former perspective, it is
necessary to ensure that if two honest users initiate Store
with the same file M, then during the protocol run the
same file M is outsourced. This notion ensures correct and
effective whole-file deduplication.

From a user’s perspective, correctness intuitively means
that if an honest user U uploaded a file to an honest provider
S and later on runs the POR protocol, the user should
accept. For a formal treatment though, one needs to take
into account that in the time lapse between the file upload
by a user U and the execution of the POR procedure, the
provider may have executed other Store protocol runs (i.e.,
with another user U’) which may have changed the metadata.
For example, while the file M would not be stored a second
time, information about U’ would be integrated into the
metadata Data(M). Still, the POR protocol executed by
U afterwards should be successful although Data(M) has
changed from the initial Store performed by U. We stress that
this property has to hold even if some tenants are malicious,
e.g., deviate from the protocol, as long as both U and S are
honest. We capture this formally by saying that the new
content of Data(M) evolved from the last known metadata
that has been generated when U executed Store.

Definition 1 (Evolvable Metadata). For a key pair (sk, pk),
a file M, and two metadata Data, Data’, we denote
by E = E(sk, pk, M, Data, Data’) the event that when
running Store with inputs sk, pk, M on the user side

and input Data on the provider side where the provider
behaves honestly, the metadata with respect to M is
updated to Data’. We say that Data’ is evolvable from
Data with respect to (sk, pk, M) if:

Pr [E(sk, pk, M, Data, Data/)] > 0. 2)

This captures that the metadata Data may be possibly
updated to Data’ while running Store for a file M with
keys (sk,pk). We express this by:

(sk,pk M)

Data = — ’ Data’. 3)

Moreover, we extend this notion to the case where one
metadata may be evolved from another metadata also
after running Store multiple times. That is, we write

Data 2 Data’ if there exists metadata Datay, ..., Datay
and key pairs (ski,pkq),..., (ske, pky) such that:

kq,pky, M

o Data "FREM) Data;
(skit+1,pk;41,M) .

o Data; +1—>+1 DataiH fori=1,... A =1
(sket1,pkyqq,M)

e Data, 2T Data’

In this case, we likewise say that Data’ is evolvable from
Data. Finally, we say that a metadata Data is M-

evolvable if | 2 Data. Recall that the metadata is
initially set to L. Hence, this notion expresses that Data
could be a possible metadata resulting from multiple
executions of Store for the same file M.

Note that the definition of evolvable metadata refers to
the file M as seen by S (i.e., after the user has uploaded it to
the cloud). We are now ready to give the formal definition
for correctness of a MTPOR.

Definition 2 (Correctness). An MTPOR scheme is correct
if the following holds with overwhelming probability in
the security parameter for any key pairs (sk,pk), any
file M, and any M -evolvable metadata Data.

Consider a Store execution with the above mentioned
inputs and the outputs vk and Data’. Then, it holds

for any metadata Data” with Data’ 2% Data”, and any
protocol execution of POR with inputs sk, pk, vk (user
side) and M, Data” (provider side), the user accepts at
the end of the protocol run.

2.4. Security

MTPOR exhibits similar security considerations as in
the case of single-tenant POR. Recall that the purpose of
executing a POR or an MTPOR is to allow users to verify
whether the file is still entirely stored by the provider.
Consequently, we do not consider in this paper other security
goals besides data retrievability. For example, to ensure
the confidentiality of the file M, the user can encrypt
the file during the Store protocol by leveraging message-
locked encryption using a key derived from the file contents
such as [6], [10]. We also do not take into account any
privacy leakage resulting from the use of deduplication [24].
More specifically, we assume that the cloud storage employs



Proofs of Ownership [23] in order to ensure that tenants
indeed possess the files.

In a nutshell, our attacker model concentrates on a
dishonest provider A who aims to mislead the user by storing
few (or no) parts of the file but still tries to pass the POR
protocol. Hence, security can be captured by a similar notion
as in single-tenant POR, i.e., using the notion of an extractor.
Recall that an extractor algorithm expresses the notion that
if a provider is able to convince a user within the POR
protocol, one can extract the file from the provider.

However, as opposed to the case of single-tenant POR,
we have to consider a stronger attacker model where A might
collude with one or several tenants. We call such tenants
corrupted. Corrupted tenants are under the full control of
the attacker. In particular, the attacker knows all their keys,
including the verification key.

To formalize security, we envision a game between
an adversary A and an environment E. The task of the
environment is to play the role of all honest users and to
challenge the adversary. That is, whenever we say that an
honest user executes a certain protocol, we mean that the
environment honestly executes the protocol on behalf of this
user. However, we allow the attacker to initiate protocol runs
by honest users at her wish. To keep track of all honest
users, we assume that the environment maintains a set .
The adversary can now interact with the environment using
four types of queries: a Setup-query, a Store-query, a POR-
query, and a Corrupt-query.

In a Setup-query, a new honest user U is created. That is,
the environment generates a key pair (sky, pky) and stores a
quadruple (U, sky, pky, VKy) in U. The first entry identifies
the user, the following two entries give the keys of the user,
while VKjy represents the set of verification keys stored by
the user—each per file stored by U. Initially, VKy is set to
(. In addition, we assume that the environment hands the
public key to the adversary.

In a Store-query, the adversary presents a user U and a
file M to the environment E. The environment stores for
each file M that has been part of a Store-request a set
Users(M) that contains the set of users that have executed
Store with the attacker for the file M. Upon receiving a
Store-query, the environment proceeds as follows:

o If the user has not been created before (in terms of a
Setup-request) or if the user is corrupted, the environ-
ment aborts the game. This is equivalent to checking
if some quadruple (U, sky, pky, VKy) is stored in U.

e The environment executes on behalf of the user the
Store protocol with the adversary, using the key pair
sky, pky and the file M as input. Let vky denote the
output for the user. If the set VKy of verification keys
stored for user U already contains a tuple (M, vky),
this tuple is replaced by (M, vky). This reflects the
case that an honest user runs Store again for the same
file. Otherwise, VKy is updated to VKy < VKy U
{(M,vky)} and the quadruple stored in U/ is updated
accordingly.

« Finally, the environment stores U in Users(M) if this
is not the case already.

Observe that this captures the situation where the adversary
runs the Store protocol for a given file with an honest user.
As he can simulate the protocol with a corrupted user on
his own, we do not need a separate oracle query for this
case. Similarly, corrupted users do not need to be stored in
U—see also below.

In a POR-query, the attacker A gives a user U and a file
M to E. The environment first checks if U is recorded in
Users(M) and if a quadruple (id, sky, pky, VKy) is stored
in U. If this is not the case, E aborts. Otherwise, it executes
on behalf of U the POR-protocol with A, using the values
sky, pky, vky as input such that (M,vky) € VKy. The
purpose of this query is to allow the attacker to execute
the POR-protocol with an honest user of its choice. Also
here, POR executions with corrupted users can be simulated
by A and hence do not require any interaction with the
environment.

Finally, in a Corrupt-query, the attacker A hands a user
U to E. If the user is not recorded in U/, it aborts the
game. Otherwise, it locates the corresponding quadruple
(id, sky, pky, VKy) € U and hands the secret key sky and the
set of verification keys VKy to the attacker. Furthermore, it
removes the quadruple from I/, indicating that U is no longer
honest.

The attacker is allowed to make a polynomial number of
queries (i.e., polynomial in the security parameter \). We say
that the attacker is static if he makes no Corrupt-queries and
adaptive otherwise. Notice that a static adversary can still
collude with corrupted users but these are under the control
of the attacker right from the start. That is, the attacker can
create both honest and corrupted users but cannot corrupt
honest users. Eventually, the attacker quits the game by
selecting a file M, an honest user U that is recorded in
Users(M), and by providing the description of a cheating
prover P. Observe that the attacker cannot quit if no honest
user is present at this point in time.

From this point on, the definitions are analogous to
the standard POR definitions [32]. Namely, we say that a
cheating prover P is e-admissible if in an ¢ fraction of POR
runs with U, this user accepts at the end of the protocol.
Here, the probability is over the coins of the user and the
prover.

Definition 3 (Soundness). We say a MTPOR is e-sound if
there exists an efficient extraction algorithm Extr such
that, for every adversary A, whenever A executes the
game explained above, outputs a e-admissible cheating
prover P for a file M and a user U, the extraction
algorithm recovers M from P except with negligible
probability. We say that it is strongly e-sound if this
property holds in the presence of an adaptive attacker.

2.5. Tag Sharing

Within our model, we distinguish between two types of
data that are stored by the provider: the uploaded files and
associated metadata. The crucial aspect of multi-tenant POR
lies in the deduplication of the files, meaning that duplicate



files/objects are stored only once. For generality purposes,
multi-tenant POR, however, does not make any specific
assumptions about the storage of the associated metadata.

In fact, a trivial instantiation of multi-tenant POR would
be that the metadata Data(M) is simply a collection of the
user data for all users U € Users(M) that are registered
for this file M and the respective file tags 7y as outlined
for single-tenant PORs (cf. Sec. 2.1). Here, each tenant U
constructs his own tags 7y using his own secret material;
that is, only the file is deduplicated, but the tags are stored
separately for each user. While this approach would resist
against malicious tenants, its storage overhead is essentially
the number of tags times the number of users (cf. Figure 1).

In this section, we address this problem and introduce
the definition of tag sharing. The overall goal of tag sharing
is to enable storage efficiency with respect to the storage
of that tags. To motivate the definition, observe that the
size |Data(M)| of the metadata can be expressed as a
function of two parameters®: the size |M| of M, and the
number k of users registered to the file. For example, a
straightforward realization of MTPOR based on a single-
tenant POR consists of storing the file only once but storing
the tags separately for each user. In this case, it would
hold that |Data(M)| € O(k - |M]). That is, the number
of users and the file size are directly coupled in the storage
complexity. The goal of tag sharing is to make the storage
consumed for storing the tags independent of the number of
users. We capture this as follows.

Definition 4 (Tag Sharing MTPOR). We say that an MT-
POR achieves tag sharing if it holds for all files M (with
their respective number of users k) and the maintained
metadata, that its size can be expressed by

|Data(M)| = f(|M]) + g(k) )

for some function f and g. We denote by Data =
(Datagie, Dataysers) the splitting of the metadata such
that |Datagie| = f(|M|) and |Dataysers| = g(k).

We stress at this stage that the storage efforts induced by
the number of users and the file size, respectively, are
decoupled. Notice that we make no assumptions on the
functions f and g—for instance, g could be a constant
function.

Next, we highlight an intrinsic property of the Store
protocol that holds in a tag sharing MTPOR. Recall that
in a tag sharing MTPOR, the size of Datag) is f(|M]) and
is therefore independent of the number of users. Hence, even
if the number £ of users that upload this file continuously
increases, the size of Datag)e is bounded by a function that
solely depends on |M|. This means that, after a certain
number of uploads, the information stored in Datagj, may
still change when Store is executed but the size will no
longer increase. We denote this variant of Store as Store™:

Definition 5. In a tag sharing MTPOR, we refer to the
variant of the Store protocol where the Datag), part

2. We assume here that global values such as the security parameter are
fixed.

of the metadata does not further increase as Store®. It
formally holds

[U: ]T/f; S : Datage, Dataysers)
— [U:vky; S: M,Datag,,, Datal ..

users

Store™:

with |Datag;,| < |Datagie|-

Notice that Store™ updates the metadata associated to a file
but not the file itself.

3. SPORT: Sharing POR across
Tenants

In this section, we detail SPORT, an efficient publicly
verifiable instantiation of tag sharing MTPOR. We start by
outlining the main intuition behind our scheme.

3.1. Overview

One straightforward approach to realize a tag sharing
MTPOR from existing single-tenant POR schemes would
consist of sharing the keys required to verify the POR
among all tenants deduplicating the same file. However, this
approach would not resist malicious tenants who can share
the secret material used to construct the POR with the cloud
provider. Namely, in case the secret material is leaked to the
provider (e.g., by means of a malicious/colluding tenant),
then the provider may be able to correctly answer all POR
challenges, without the need to store the file. This equally
applies to existing public-verifiable POR schemes, if the
original creator leaks the private keys used to construct the
POR, the underlying security of the POR is invalidated. This
also rules out the possibility to derive the secret material to
instrument POR from the file content itself (e.g., in a way
similar to message-locked encryption [10]). In this case,
the entropy of the secret material will be dependent on
the predictability of messages; providers can acquire the
material e.g., by means of brute-force search, and/or by
colluding with malicious tenants.

To overcome these challenges, SPORT extends the pub-
licly verifiable POR scheme of SW [32] based on BLS
signatures. Here, tags were essentially signatures of com-
bination of message blocks. Unlike [32] which exploits
the message-homomorphism of BLS signatures to allow for
compact batch verification of multiple blocks, SPORT goes
one step further and leverages key-homomorphism of BLS
signatures to combine different tags (protected by different
keying material) constructed by multiple untrusted tenants
into one tag—thus resulting in tremendous storage savings.
Key-homomorphism here ensures that the underlying secret
material of the combined tag depends on the contribution of
each of the users registered to the same content. As a result,
SPORT support public verifiability and provides security
against a collusion between tenants/service provider as long
as there is one single honest tenant storing the content (and
not compromising his own secret material).

SPORT achieves this without requiring any trusted entity
(e.g., an identity manager or a proxy) to mediate the update



of tags shared by different tenants. In SPORT, this is realized
using the (decentralized) Store™ protocol—a variant of the
standard Store POR protocol—that is executed by tenants
deduplicating the same content. Unlike Store, the Store*
routine in SPORT only involves updating the tags; we show
that the tags can be efficiently verified in a single batch
(for the entire file) by the provider. Moreover, we show
that tenants only need to verify the inclusion of their own
private keys within the updated keys—while the correctness
of the tags is implicitly ensured during the POR protocol.
Observe that the service provider does not have to be
trusted when creating or updating the tags. This is the main
reason why cryptographic accumulators could not be used in
our setting.> However, most efficient accumulator constricts
assume a frusted setup, meaning that the party who setups
the accumulator needs to be trusted. Although a number
accumulators can deal with untrusted setup case [21], [30],
these proposals are either inefficient or exhibit other imped-
ing drawbacks.

In SPORT, although the Store™ protocol incurs compu-
tational load on the clients, we argue that SPORT offers
tremendous economic benefits to the clients and the service
provider. Namely, SPORT allows clients to trade the per-
manent storage costs associated with the additional storage
of file tags, with the one-time use of their computational
resources to update the tags—thus reducing the total costs
borne on users. Moreover, SPORT enables the provider to
offer differentiated services, such as proving the integrity of
stored files, with minimal additional storage overhead.

In the following subsections, we go into greater detail
on the various parts of SPORT, starting with the protocol
specification, then moving on to the security analysis of our
scheme.

3.2. Protocol Specification

We now detail the specifications for the procedures of
SPORT.

Specification of the Setup protocol

SPORT makes use of the multi-signature scheme based on
BLS signatures described in [31]. To this end, it deploys a
group G of prime order p with generator g, and a computable
efficient bilinear map e¢ : G x G — Grp. In addition, we
require three independent secure hash functions hg, by, ho :
{0,1}* — @G from the set of bit strings into the group G
(e.g., the BLS hash function). We refer the readers to [31]
for more details.

Each user U that participates in the scheme is required to
setup a key pair of signature key and verification key. More
precisely, the user chooses a private key sky € Zj, and the
corresponding public key is then given by pk, = ¢**v € G.
Moreover, U also needs to provide a proof of possession
pop = pop(sky) to prove possession of the secret key sky.

3. Recall that an accumulator is a cryptographic technique that allows
to represent a set S of elements by a single value w, the witness, such
that membership for any element © € S can be proved using w and an
according membership proof.

As we show later, proofs of possession prevent the provider
from replacing/creating tags using other keys whose secret-
keys are known to him. In a nutshell, our proof of possession
(adapted from [31]) is constructed as follows: pop(sky) =
ho((pky))** and (pky) denotes an encoding of pk; as a
bit string. As we show later, such a proof of possession
is required to protect against a rogue-key attack, where an
adversary forges the multi-signature of a group using an
invalid key (i.e., a public key whose private key is unknown
to the adversary).

Specification of the Store protocol

To store a new file M, the user first has to encode the
file with a deterministic erasure code as required by the
utilized POR (in order to provide extractability guarantees).
As mentioned earlier, we assume that prior to this step
the file is encrypted with a deterministic file-key securely
obtained, e.g., using the schemes of [6], [10], in order to
support deduplication of encrypted content across different
users. The result is denoted by M.

Next, the user creates a unique file identifier fid for M,
e.g., by hashing the encrypted file, or by computing the root
of the Merkle tree of the file [6]. The server checks if the
corresponding file with identifier fid has already been stored
by another tenant. Now, we distinguish between two cases:
(i) the file has not been stored previously, and (ii) the file
is already stored. In the latter case, the user will continue
with the Store™ protocol (see below).

We start by discussing the former case where the out-
sourced file has not been stored previously at S. Similar
to [32], the file is interpreted as n blocks, each is s sectors
long. A sector is an element of Z,, with p being the order of
G and is denoted by m;; with 1 <4 <n, 1 <j <s. That
is, the overall number of sectors in the file is n - s. For each
1 < j < s a group element u; € G is pseudo-randomly
extracted from the file as u; = hy(H(M)||j) where H
denotes a cryptographic hash function.

Similar to the BLS scheme of [32], for each block index

i€{1,...,n} afile tag o; is computed as follows:
s sky
m_QMMMwa4W>. )
j=1

Observe that o; effectively represents a BLS signature under
the key sky of the following value:

wi = ho(H(M)|li) - [T uj™, ©)
j=1

The user uploads the file M, the public key pk; along
with the proof of possession pop(sky), and the file tags
7= (01,...,0p) to the provider S. The user stores locally
pk,s = pky as the verification key for the file and the hash
value H (M) to be able to reconstruct the values {u;};—1..m
later on.

Upon receiving (M, pky, pop(sky), 7), the provider S
first verifies the validity of U’s key using pop(sky). Fur-
thermore, S checks that the tags o; in 7 are indeed valid



for the key pky. A straightforward approach would be to
check that each tag o; indeed represents a signature of
w;, incurring an effort to evaluate n pairings, which incurs
considerable computational overhead on the provider. In
SPORT, we exploit the fact that the signature scheme is
homomorphic and verify all the signatures in a single batch
verification. More precisely, S samples for each block index
i a random exponent r; € Z, and checks whether the
following verification holds:

e (H Uf*,g) Le (H w?‘,pku> ) @)

Observe that this reduces the effort from n bilinear pairings
to n exponentiations and one pairing. In Section 4, we show
that this verification considerably reduces the computational
overhead borne by the provider in verifying the tags.

If the key and tags are correct, S sets pk,, := pky,
being the public key associated to a secret key sk, := sky.
Moreover, the provider creates a log file, pklog, that will
provide the necessary information needed for any other user
to verify that the keys are well formed. Here, pklog is initial-
ized with {(pky, pop(sky))}. Following the notation from
Section 2.5, the provider stores the file M, the metadata
Dataysers = (pk,s, pklog), and file metadata Datage = 7.

Specification of the Store™ Protocol

In case the file M is already stored and will be deduplicated,
the Store™ protocol is executed in order to update the
file tags 7 on the fly, allowing the new user U to obtain
guarantees from the POR protocol without the need to trust
the correctness of the already stored tags (created by other
tenants).

In Store, the user proceeds analogously to Store in
order to compute the file M, its hash value H(M), and
the file tags 7 = {0} };=1...n. Here, U also computes M and
the hash value H (M) and stores the same values as in Store.
The main difference is that the user does not upload the file
M but only (pky, pop(sky),7) to S.

Upon reception of (pky, pop(sky), 7), S checks the va-
lidity of pky using pop(sky). Moreover, he verifies the
correctness of the newly uploaded tags o;. In principle,
one could apply the same verification given in Equation 7.
However, this would require the provider to recompute or
store the values w;. To avoid this, we leverage the bilinear
map to combine the two verifications (in the signature) and
the fact that the already stored file tags o} are correct (as
they have been previously validated by S).

Namely, let 7 = (0;)1<i<n denote the file tags uploaded
by the user and 7" = (0])1<i<n be the tags stored by
the provider. SPORT applies cross-verification between the
uploaded tags 7 and the stored tags 7. More precisely, an
uploaded tag o; is correct if and only if it holds that:

o

e(oi,pkys) = e(af’PkU)a ®)

Similar to the Store procedure, S does a batch cross-
verification by sampling for each block index ¢ a random

exponent r; € Z, and checks whether Equation 9 holds:

e <H 0?’7pk]\7> Ze (H (07)" ,pku> ©)
If the verification succeeds, S updates pk,, with pk,, - pky,
and likewise the already stored tags o by replacing them
with ¢} - 0;. Due to the homomorphic properties of the
BLS signature, the new tags will still be correct signatures
under the updated key pk,, with respect to an updated
secret key skj; — skps + sky. The metadata about the
file, Datag)e, is hence updated to the new tags 7*—observe
that the size of Datagje remains unchanged. Moreover, the
key pk;,, is updated in Datayses While the public key
and the corresponding proof of possession of the new user
(pky, pop(sky)) are appended to pklog.

Finally, the provider sends to the user the log file
pklog. Then, U proceeds to check the validity of each pair
(pk’, pop’) € pklog with pk’ # pky. In case all these keys
pass the verification, U sets pky; := [ (o1 pop)epkiog pk'.

The core idea here is that, at each point in time, the
public key pk,, associated to a file M corresponds to a
secret key ), sky, which captures the sum of all secret
keys belonging to the users who uploaded M (see also the
discussion in Section 3.3.2). This ensures that the secret key
to pk,, is unknown to the provider as long as at least one
user is honest (and hence kept his key secret). In addition,
our construct easily allows a user to unsubscribe from M.
To do so, a user with secret key sky executes Store™ again
using the secret key —sky instead. This results into removing
(or cancelling) sky from skj;.

Specification of the POR Protocol

To conduct POR on M for a user U, a verifier ¥V (who could
be the user himself) downloads the current verification key
pk},; from the provider and compares it with the locally
stored key pk,,.* If these are not equal, this signals that a
new tenant has deduplicated the same content, and updated
the corresponding file tags. In this case, V checks that pk},
has been correctly updated and includes information from
his local key pk,,.

To this end, S sends to V all pairs (pk’, pop’) € pklog of
public keys and proof of possessions for currently registered
users that joined since the last time that V or U executed
a protocol with S with respect to M. Here, we assume
that the keys are sorted in the order of the executions of
Store/Store™ by the users so that these values can be easily
@d\ out from pklog. We denote the set of these pairs by
pklog.

Clearly, this allows U to learn the number of users that
uploaded the same file. We point out, however, that this
information leakage can be prevented if, for example, S
inserts a number of “bogus” keys within pklog; in this case,
U can only learn an upper bound on the number of other
users that store the same file. Observe that the knowledge

4. If the verifier is not the user, we assume that he received all values
from the user before except of the secret key sky.



of the number of users deduplicating the same file can prove
to be useful in a number of use-cases; for example, a number
of studies show that such a level of transparency might
motivate new pricing models in the cloud by allowing users
to collaboratively share the costs of storing the same file [6].

Additionally, we point out that U might pseudorandomly
create different signature keys for each file in order to
prevent any entity to associate the user’s public key with
the stored files.

Starting from the locally stored verification key pk,,,
. . ? * !
the verifier V verifies pk,; = pk), - llri',pop’)Ep/klo\g pk
Furthermore, for each (pk’,pop’) € pklog, V checks the
validity of the key pk’ by verifying the proof of possession
pop’. If the verification succeeds, V accepts the downloaded
key pkj, as the verification key for M, updates the verifi-
cation key pk}, locally to this value, and proceeds with the
actual POR protocol as follows.
Subsequently, V creates a random challenge C' and sends
it to S. Here, C contains a random ¢-element set of tuples

(i,v;) where ¢ € {1,...,n} denotes a block index, and

v; 2 Zy is a randomly generated integer. These values
will be used to verify the retrievability of the data. Upon
reception of C, S computes:

o « ] oveq, (10)
(6v:)€Q

pi < Y vimg €L, 1<j<s. (1)
(i,v;)€Q

Finally, these values are sent back to V who reconstructs u;
checks that:

? .

e(o,9) =e H ho(H (M)][2)"" - HUT,PkM
(i,vi)eC j=1

(12)

If this verification does not pass, V is certain that his

file has been modified, and takes actions, such as informing

the user (if different from V) or downloading and repairing

the file.

3.3. Correctness and Security

In this section, we show that MTPOR is correct accord-
ing to Definition 2 and secure according to the soundness
property of Definition 3.

3.3.1. Correctness. In the most simple case of exactly one
user (which needs to be honest then), correctness follows
directly from the correctness of the BLS-based POR of [32].

To address the multi-tenant case, we assume first that
all involved users are honest. We say that a tag o is
correctly formed with respect to a key pair (sk, pk) if it
fulfills Equation 5. Recall that correctly formed tags are
essentially signatures of values that depend on message
blocks, i.e., o1 = w1, with respect to some verification key
pk; = ¢*k1. This signature scheme is key-homomorphic in

the following sense: given a second signature oo = w"?

of the same value w with respect to pk, = g¢°%2, then
o1 - 09 = wrtsk2 ig 3 valid signature of w with re-
spect to g¥<1+skz = pk, . pk,. It follows by induction for
any file M and for any sequence of key pairs (sk;, pk;),

1=1,...,¢, that: | (Sklﬁ%’M) e (SkZ&’M) Data implies

that L (Skﬁ'"ﬂlﬂ;{lmpk“M) Data. Hence, according to
the correctness of BLS POR of [32], it follows that POR-
protocol accepts with vk = pk;---pk, if the tags are
correctly formed with respect to (sk*, pk*) := (sky +...+
sky, pky - - - pk,). This shows correctness for the case that
all users behaved honestly.

Next, assume that some of the users are malicious (i.e.,
they deviate from the protocols). Let (pk;, pop;, 7;) denote
the values uploaded by the users during Store/Store™. Ob-
serve that GG is a cyclic group and hence any value pk; can
be expressed as g*Xi for some value sk; € Z,. This shows
that pk; represents a valid verification key. Moreover, the
tag verifications executed by the provider (see Equations 7
and 9) ensure that the tags stored in Data are correctly
formed. To see why, assume that a user uploads malicious
tags of # o; fori € I C {1,...,n}. As the user does
not know the values {r;};cs, Equations 7 and 9 would be
violated with high probability and hence not be accepted
by the honest provider. We now give an explanation for
Equation 7 (which also holds for Equation 9). Assume that
the following holds:

e (H (g;‘)” ,g) =e <H w:i,pku> =e (H (’w?k”>” 4

i i

It follows that:

i -1
[T =TI (w) <1 |e: (w) ~1.
i i iel |\ Y—m ———
£1

Since the values r; are sampled uniformly at random and
independently, the probability for this event is at most 1/|G]|.

Finally, the correctness of the proofs of possession pop;
are each individually tested according to the specifications.
This shows that all values uploaded by the users need to
be correctly built as they would be otherwise rejected with
high probability by the provider.

3.3.2. Security. We now prove that SPORT is e-sound
(cf. Definition 3). Recall that this expresses security with
respect to a static attacker. This means that the attacker
may collude with corrupted parties which are corrupted right
from the start. That is, whenever an attacker creates a new
honest user by a Store-query during the challenge game (cf.
Section 2.4), it will not be corrupted later on.

Our proof follows in principle the line of arguments
given for the BLS POR in [33]. There, the proof was
divided into three parts; the first part shows that if a verifier
accepts a response to a query, this response was constructed
correctly with overwhelming probability. The other two



parts prove that if correctly built responses are given, one
can reconstruct a constant fraction of the blocks of the file
(part two) and that with the help of erasure codes, one can
derive the full original file from these blocks (part three).
As the structure of the response in SPORT is exactly the
same as in BLS POR and as we likewise suggest the use of
an appropriate erasure code, the arguments given for parts
two and three in [33] apply directly to SPORT as well.
Consequently, it is sufficient to show the first part, i.e., that
if a verifier V accepts a response, it has to be correctly built
with overwhelming probability.

Recall that the CDH refers to the problem of deriving
the value h® where a is unknown from a given triple
(g,9% h) € G* and is usually assumed to be hard. We prove
the following theorem:

Theorem 1. If the computational Diffie-Hellman problem
(CDH) is hard in the bilinear group G, then an adversary
in the random oracle model can only cause a verifier )V
to accept a POR-instance by responding with correctly
computed values {s;} and o—except with negligible
probability.

We conduct a sequence of four games adapted from [33].We
start with Game O which is simply the challenge game
defined in Section 2.4. Game 1 is the same as Game 0 except
of the following difference. When the adversary eventually
outputs a prover P for a user U and a file M, he has to
hand to the environment a value sk; such that g°%i = pk,,
for each pair (pk;, pop,) communicated to V in the context
of M. Owing to the security of the proofs of possession,
the adversary has to know these values since, otherwise, the
verification of pop,; would fail with high probability. As the
environment performs the POR-protocols honestly on behalf
of the user V (i.e., without using this additional knowledge),
this does not impact the probability that the verifier accepts.
Hence, we assert that the success probability of the attacker
does not change.

Game 2 is the same as Game 1 with the difference that
the environment keeps a list of all messages communicated
within the challenge game. If the adversary is successful in
any of the POR instances (i.e., the verifier accepts, but the
adversary’s signature ¢’ is not equal to o = [[; ,.)e0 0i"
see Equation 10), the environment aborts the security game.
Let M denote the file considered within this POR-instance
and pk,, the used public verification key. As explained
above, it is ensured that pk,,; = g**" for some secret value
a (which is the secret key of the user represented by V) and
a known value b (being the aggregation of all remaining
keys).

Similar to [33], one can now construct from the ad-
versary a simulator that simulates the honest users and the
random oracle for the adversary and that solves the CDH for
a given triplet (g, g%, h) € G* by using g% as the public key
of simulated honest users. However, since we have to cater
for multiple users, one cannot use the same value g® each
time as the public key. Here, we exploit the fact that the tags
are signatures and that these signatures are homomorphic.
More precisely, whenever a new honest user U needs to be

created (in terms of a Setup-query), the simulator chooses a
random value 7y € Z,, and outputs pky = g% - g"* = g7,
Next, the simulator has to compute the following signa-

tures: atro
<h2(H i) -] u§””> : (13)
j=1

Since ry is known to the simulator and given that the sig-
natures can be homomorphically combined, this tgsk boils
down to compute (hQ(H(M)HZ) 1152, u?”) which
needs to be performed only by the simulator. This is ac-
complished as follows. First, a random exponent p; € Z,
is chosen. Since the values u; and m;; are known and
assuming the random oracle model, the simulator programs
the random model such that:

s —1
ho(H(M)|]i) := g - (H u;"”> : (14)
j=1

This implies that the signature is equal to (g*)”* which can
be computed since p; is known and g part of the given
CDH triple.

A further change affects how the values wu; are com-
puted. By definition, it holds that uw; = hy(H(M)||j).
Again, the simulator exploits that he simulates the random
oracle and sets hy (H (M)||5) := g -hPs for some randomly
chosen values «, 3;.

Now, if (¢/,{p’}) denotes the response given by the
adversary and (o, {y;}) the correctly-built response, then
one can deduce from that fact that o # ¢’ that there exists
at least one index j such that u;- # pj. Let Aj = u;- — 1
for each j. We obtain e(o” -0, g) = e(I]; ujAj,g), which
can be rewritten to: '

e(0' o1 (go) " Taea A

a+b+ru)2j 5]"Aj’
(15)
where g@t%*7v represents the current combined public key.
Note that > ;B - A; # 0 with high probability as the
coefficients 5; have been chosen uniformly at random and

independently. It follows that:

g)=e(hg

1
-3, aj»Aj) (Z58085) Bt

he = (0_/.0_—1 . (ga)
is a solution to the given CDH instance. Recall that ry has
been chosen by the simulator and b is given to the simulator
due to the change in Game 1.

As an additional step in our scheme, the proof of pos-
session pop for the public key pky = ¢g*™"v needs to be
provided. As the exponent a is unknown, this cannot be
directly computed by the simulator. However, recall that
pop = ho({pky))® where sky = a + ry. Therefore, the
simulator chooses a random integer p € Z, and computes
g” and pkf. Obviously, the second value is a valid signature
of the first. Hence, we re-use the trick of reprogramming the
hash and simply set ho((pky)) to g? and pop to pky.

The final Game 3 is the same as Game 2 with a sin-
gle difference. Similar to before, the environment tracks



all messages and observes all POR-instances. We know
already with overwhelming probability, that for all responses
(0,{p;}) which are accepted, it holds that o is correctly
computed. Now, the environment checks for all accepted
responses whether the aggregated messages u; are equal to
correctly generated, i.e., are equal to Z(i%)EQ vimg; €
Zy, 1 < j < s (see also Equation 11). If this is not
the case, the environment aborts the security game. Similar
to [33] and the explanations given for Game 2, one can
show that this can be used to solve the discrete logarithm
problem in G—which would contradict the assumption that
this problem is hard in G.

The core idea is the following. Given g,h € G, the
simulator honestly generates all values with the exception of
the values u; that are again set to g*J -hPi . Now, assume that
the adversary succeeds with a response (o”, {y}}) instead of
the correct response (o, {y;}). We know already that o = o’
needs to hold with high probability. Assume that A; :=
u; — p; for all j. From the fact that both responses are

accepted, it follows that ], ul? =] ;u5?, which implies
the following:

A N TRYAN B
1:Huj-7:gzj JAJ.hZ]ﬂJAJ. (16)
J

Again, it holds that ) ;B - A # 0 with high probability.
In such case, we solve the discrete logarithm problem by

h= (gzj aj-Aj)(Zj girds) (17)

Thus, we conclude that the existence of such an attacker
would contradict the hardness assumption with respect to
the discrete logarithm problem.

Summing up, a prover can only present responses that
are accepted by the verifier if all values are correctly built,
i.e., as displayed in Equations 10 and 11—thus concluding
the proof of Theorem 1.

4. Implementation & Evaluation

In this section, we evaluate an implementation of SPORT
within a realistic cloud setting and we compare the perfor-
mance of SPORT to the RSA-based and BLS-based POR
schemes due to [32]. Note that all three POR schemes are
publicly-verifiable.

4.1. Implementation Setup

We implemented a prototype of SPORT in Java. In
our implementation, we relied on the Backblaze library [3]
for constructing the erasure codes (instantiated using Reed-
Solomon coding). For a baseline comparison, we also im-
plemented the public POR (with its two BLS and RSA
variants) schemes (see Appendix A for a description of
these POR schemes). Here, we relied on SHA-256, the
Java built-in random number generator, HMAC based on
SHA-256, 2048-bit RSA modulus, and the JPBC library [2]
(based on the PBC cryptographic library [1]) to implement

[ Parameter [ Default Value |
File size 64 MB
Group size Ipl 224 bits
RSA modulus size 2048 bits

Elliptic Curve (BLS) | PBC Library Curve F
Challenge size ¢ 100

TABLE 1. DEFAULT PARAMETERS USED IN EVALUATION.
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Figure 2. Performance of SPORT with respect to the block size.

BLS signatures. Table 1 summarizes the default parameters
assumed in our setup.

We deployed our implementations on a private network
consisting of two 24-core Intel Xeon E5-2640 with 32GB
of RAM. In our network, the communication between var-
ious machines was bridged using a 100 Mbps switch. The
storage server was running on one of the 24-core Xeon E5-
2640 machine, whereas the clients were co-located on the
second 24-core Xeon E5-2640 machine; this ensures a fair
comparison between the overhead incurred on the users and
on the server for the different schemes.

To emulate a realistic Wide Area Network (WAN), we
shape all traffic exchanged on the networking interfaces with
a Pareto distribution with a mean of 20 ms and a variance of
4 ms [19]. In our setup, each client invokes an operation in
a closed loop, i.e., a client may have at most one pending
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Figure 3. Performance evaluation of SPORT in comparison to the POR-SW schemes of [32]. Each data point in our plots is averaged over 10 independent
runs. Notice that, due to their small size, 95% confidence intervals are omitted from these plots.

operation. Prior to the setup phase, each client disperses
his files with a (9,12) code. Similar to [5], [8], we assume
that clients query for the availability of ¢ = 100 randomly
selected blocks in the POR challenge phase.

When implementing SPORT, we spawned multiple
threads on the cloud machine, each thread corresponding
to a unique audit performed on behalf of a client. Each data
point in our plots is averaged over 10 independent mea-
surements; where appropriate, we include the corresponding
95% confidence intervals.

4.2. Evaluation Results

Before evaluating the performance of SPORT, we start
by analyzing the impact of the block size on the latencies
incurred in the verification of POR in the BLS POR scheme
of [32]. Our results (cf. Figure 2) show that modest block
sizes of 8 KB yield the most balanced performance, on
average, across all procedures. Throughout the rest of our
evaluation, we therefore set the block size to 8 KB.

POR protocol performance: In Figure 3(a), we evaluate the
time required by the user to verify a single POR in SPORT,
when compared to the public SW schemes. As expected,
our findings show that users in SPORT and the BLS SW
scheme witness comparable performance since the (core)
POR verification process in both these schemes are similar.
One major difference between SPORT and the BLS SW
scheme of [32] is that users need to seldomly update the
private key in order to be able to verify the POR responses
issued by the provider. This only occurs whenever a new
tenant deduplicates the same file of interest in between two
consecutive POR performed by users storing the same file
(cf. Section 3.2). As shown in Figure 3(b), this process
incurs negligible overhead on users; for example, users can
update their private keys based on the contributions of 10
additional tenants in around 3 seconds.

Figure 3(a) also shows that the latency witnessed in
the POR verification process in SPORT and the BLS-SW
scheme is almost double when compared to that of the

RSA-SW scheme. This is the case due to the fact that (i)
pairing operations (to verify tags) are considerably more
expensive than RSA exponentiations, and (ii) BLS-based
schemes result in a larger number of sectors per block,
which incurs additional computations in the store, verify,
and prove procedures.

That said, the fact that SPORT/BLS-SW exhibits more
sectors per block allows the cloud provider to efficiently
parallelize the computations required to answer a given POR
challenge. In Figure 4, we evaluate the latency with respect
to throughout exhibited by the provider in SPORT when
issuing POR responses (i.e., when computing Equation 11).
We measure throughput as follows: we require that each
client performs back to back POR verification operations;
we then increase the number of clients in the system until
the aggregated throughput attained by all clients is saturated.
The peak throughput is then computed as the maximum
aggregated number of POR responses that can be issued by
the storage server within a period of time. Our results show
that the provider can perform up to 3700 POR responses per
SPORT within 50 seconds, resulting in a peak throughput
74 operations (POR responses) per second. In the RSA-
SW scheme, a maximum of 500 POR responses can be
performed within the same time lapse, resulting in a modest
peak throughout of 10 operations per second. In other words,
the provider can scale more than 7 times better in SPORT
when compared to the RSA-SW scheme of [32].

Recall that RSA-based tags are considerably larger in
size when compared to their BLS counterparts (almost 5
times larger). Moreover, RSA does not exhibit key homo-
morphism and therefore does not allow tag sharing. As
shown in Figure 1, this incurs considerable storage overhead
on the provider when multiple tenants deduplicate the same
file. For example, assuming a file size of 64 MB, storing
the tags pertaining to 5 tenants in RSA-SW results in an
additional overhead of 10 MB; this overhead reduces to only
0.2 MB in SPORT.

Update protocol performance: In Figure 3(c), we evaluate
the time incurred on the provider when verifying the ten-
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ant’s tags in the store and update procedures. Here, we
also recall the time incurred on the tenants in the store
procedure for a baseline comparison. Our results show that
the overhead of store (in verifying the first tags uploaded for
a given file) incurred on the provider slightly improves that
incurred on the tenants in spite of the fact that BLS signature
generation (performed by clients) is considerably faster than
the signature verification process (performed by the cloud).
This is the case since SPORT leverages the homomorphism
of the underlying signature scheme in order to verify all the
tags with a single batch verification (cf. Section 3.2). As a
result of this optimization, the overhead on the provider in
this case is approximately 4% lower than that on the tenants.
Notice that this overhead is even further reduced in the
update procedure whenever an additional tenant shares the
same file/tags. In this case, the provider does not need to
partially create the tags (i.e., to reconstruct v; as given by
Equation 6). Instead, S only needs to verify that Equation 9
holds. This verification incurs negligible overhead on S; as
shown in Figure 3(c), this process is almost 40 times faster
than that required to construct the tags by the tenants.
Recall that the update protocol is performed only once
by clients (upon upload of a file that is already stored).
By doing so, SPORT trades the permanent storage costs
associated with the additional storage of file tags, with the
one-time use of their computational resources to update the

tags—thus reducing the total costs borne on users.

Store protocol performance: In Figure 5, we measure the
latency incurred in the store procedure in SPORT compared
to the RSA-SW and BLS-SW schemes of [32]. As expected,
the latency incurred in store increases almost linearly with
the file size in all POR schemes. Our results show that the
store latency incurred in SPORT is the same as that incurred
in the BLS SW of [32]. Indeed, both schemes involve the
same procedure for creating tags based on BLS signatures;
in this respect, SPORT does not incur any additional over-
head on the user when compared to the basic BLS SW store
procedure. On the other hand, although BLS signatures are
faster to generate by the user when compared to their RSA
counterpart, BLS-based tags result in considerably smaller
sector sizes than the RSA-based scheme, which results in a
larger number of sectors per block, and thus in additional
computations to create each block tag. This explains the
reason why the store latency exhibited by the users of
SPORT is almost twice as much larger than that of the
RSA-SW protocol. We, however, point out that the store
procedure is only performed once per user—after which
users simply execute the POR protocol to verify the integrity
of their outsourced data.

5. Related Work

In what follows, we briefly overview related work in the
area.

Single-tenant POR: Juels and Kaliski [26] introduce a
single-tenant POR scheme, which relies on indistinguishable
blocks, hidden among regular file blocks in order to detect
data modification by the server. This proposal only supports
a bounded number of POR queries, after which the storage
server can learn all the embedded sentinels. The authors also
propose a Merkle-tree construction for constructing public
POR, which can be verified by any external party without
the need of a secret key. Bowers et al. [15] propose various
improvements to the original single-tenant POR in [26],
which tolerates a Byzantine adversarial model. Shacham and
Waters [32] propose private-key-based and public-key-based
(single-tenant) POR schemes which utilize homomorphic
authenticators to yield compact proofs.

In [8], Ateniese et al. introduce a variant of POR called
proofs of data possession (PDP). It supports an unbounded
number of challenge queries and enables public verifiability
of the PDP. Unlike other POR schemes, this instantiation
does not offer extractability guarantees. This proposal was
later extended in [9] to address dynamic writes/updates from
the clients. Cash et al. [17] propose a dynamic POR scheme
which relies on oblivious RAM protocols. In [35], Shi et al.
propose a dynamic POR scheme that considerably improves
the performance of [17] by relying on a Merkle hash tree.
Other contributions propose the notion of delegable verifia-
bility of POR; for instance, in [29], [34], the authors describe
schemes that enable the user to delegate the verification
of POR and to prevent their further re-delegation. In [7],



Armknecht et al. introduce the notion of outsourced proofs
of retrievability, an extension of the POR model, in which
users can task an external auditor to perform and verify POR
on their behalf with the cloud provider.

Secure Data De-duplication in Multi-tenant Settings:
In [24], Harnik et al. describe a number of threats posed
by client-side data deduplication, in which an adversary can
learn if a file is already stored in a particular cloud by guess-
ing the hashes of predictable messages. This leakage can be
countered using Proofs of Ownership schemes (PoW) [18],
[23], which enable a client to prove it possesses the file in
its entirety. POW are inspired by Proofs of Retrievability
and Data Possession (POR/PDP) schemes [8], [32], with
the difference that PoOW do not have a pre-processing step
at setup time. Halevi et al. [23] propose a PoW construct
based on Merkle trees which incurs low overhead on the
server in constructing and verifying PoW. Xu et al. [36]
build upon the PoW of [23] to construct a PoW scheme
that supports client-side deduplication in a bounded leakage
setting. Di Pietro and Sorniotti [18] propose a POW scheme
which reduces the communication complexity of [23] at the
expense of additional server computational overhead. Blasco
et al. [12] propose a PoW based on Bloom filters which
further reduces the server-side overhead of [18].

Douceur et al. [20] introduced the notion of convergent
encryption, a type of deterministic encryption in which a
message is encrypted using a key derived from the plaintext
itself. Convergent encryption is not semantically secure [11]
and only offers confidentiality for messages whose content
is unpredictable. To remedy this, a number of proposals
introduce the notion of oblivious server-aided encryption
to perform data deduplication scheme [6], [10]; here, the
encryption key is obliviously computed based on the hash
of the file and the private key of the assisting server.

In [37], Zheng and Xu propose the notion of Proof of
Storage with Deduplication (POSD). Here, POSD is intro-
duced as the combination of PDP/POR and PoW schemes.
The authors claim that publicly-verifiable POR/PDP can be
inherently used to verify the integrity of deduplicated files
(since the verification can be performed by any entity).
As we mention in this paper, such schemes do not resist
collusion between malicious tenants and the cloud provider;
namely, a cloud provider which has access to the secret ma-
terial (e.g., leaked by the first user who created ) can always
construct correct responses to the challenges issued by the
clients—even if the cloud provider deletes the oustourced
data. As far as we are aware, SPORT is the first secure
POR instantiation which addresses multi-tenancy and data
deduplication.

6. Conclusion

We introduced the notion of multi-tenant proofs of re-
trievability (MTPOR), an extension of the traditional single-
tenant POR concept, and proposed an efficient instantiation
dubbed SPORT. We implemented a prototype based on
SPORT, and evaluated its performance in a realistic cloud

setting. Our results show that our proposal incurs minimal
storage overhead on the cloud provider without deteriorat-
ing the performance witnessed by tenants and the cloud
provider when compared to existing publicly-verifiable POR
schemes. SPORT is provably secure in the random oracle
model under the computational Diffie-Hellman problem, as-
suming static corruptions. In this respect, we see the analysis
of the security of SPORT under adaptive corruption as an
interesting open question.

We argue that SPORT provides an important stepping
stone to reconciliate existing cloud integrity and security
primitives with functional requirements (such as resource
sharing and multi-tenancy) in the cloud. Namely, SPORT
provides considerable incentives (i) for end-users to obtain
guarantees about the retrievability of their files in the cloud,
and (ii) for cloud providers to offer differentiated services
while preserving the efficiency of their storage system.
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Appendix A.
Public SW POR

To enable any entity which does not necessarily possess

secrets to verify a POR, Shacham and Waters [32] propose
two publicly verifiable POR schemes based on BLS signa-
tures [13] and RSA, respectively.

Public BLS SW Scheme: The setup phase requires choos-

ing a group G with support Z,, and a computable
bilinear map e : G x G — Gr. Additionally, the user
chooses a private key « € Z,, the corresponding public
key v = ¢g® € G along with another generator v € G.
In the storage phase, a signature on each block i is
computed o; = (H(z) | P
the challenge query () is generated similarly to PSW
and sent to the prover who computes:

) . For verification,

o < H O'fi € G7 Wi Z vim;; € Zp.
(4,vi)€Q (i,v:)€Q

These values are sent to the verifier who checks that:

H H(i)" - ﬁu;”,v
j=1

(1,vi)EQ

e(o, g) Ze (18)

Public RSA SW Scheme: The public RSA-based SW

scheme is similar to its public counterpart. Here,
the block authenticator can be computed by o; =
(H(i)u™)* mod N , where d is the private key of
the user. The cloud response is calculated similarly to



the public BLS SW scheme. Given the public RSA key
e, the verification unfolds as follows:
o¢ = H H(i)""u" mod N.
(i,v:)€Q



