Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (730)

Search Parameters:
Keywords = SPAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1789 KiB  
Article
Predicting Vase Life of Cut Lisianthus Based on Biomass-Related Characteristics Using AutoML
by Hye Sook Kwon and Seong Heo
Agriculture 2024, 14(9), 1543; https://doi.org/10.3390/agriculture14091543 - 6 Sep 2024
Viewed by 235
Abstract
Lisianthus, a globally popular ornamental plant, has a variable vase life (5–28 days). This study investigated biomass-related characteristics of four cultivars grown in soil or hydroponic cultivation with different treatment timings (vegetative and reproductive stage) and concentrations (0, 0.1, 0.3, and 0.5 mM) [...] Read more.
Lisianthus, a globally popular ornamental plant, has a variable vase life (5–28 days). This study investigated biomass-related characteristics of four cultivars grown in soil or hydroponic cultivation with different treatment timings (vegetative and reproductive stage) and concentrations (0, 0.1, 0.3, and 0.5 mM) of salicylic acid (SA) in order to explain vase life. The results show that the SA treatment effects varied depending on cultivar, SA treatment timing, concentration, and cultivation method. Principle component analysis revealed that Blue Picote cultivar cultivated hydroponically with 0.5 mM SA at the reproductive stage had the longest vase life. Furthermore, vase life demonstrated a high positive correlation with dry weight, SPAD, Mg content, and flowering day. We developed a model using automated machine learning algorithms to estimate postharvest vase life, based on biomass-related characteristics measured during the pre-harvest period. Similar to the PCA results, this model also identified dry weight as the most influential predictor of vase life. This model proposes the possibility of estimating vase life by setting characteristics highly correlated with vase life as features for machine learning. It is anticipated that this model will be widely utilized in the floriculture industry for standardizing cut flower quality assessments in the future. Full article
(This article belongs to the Special Issue Agricultural Products Processing and Quality Detection)
Show Figures

Graphical abstract

14 pages, 5297 KiB  
Article
Area-Efficient Mixed-Signal Time-to-Digital Converter Integration for Time-Resolved Photon Counting
by Sergio Moreno, Victor Moro, Joan Canals and Angel Diéguez
Sensors 2024, 24(17), 5763; https://doi.org/10.3390/s24175763 - 4 Sep 2024
Viewed by 438
Abstract
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD [...] Read more.
Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD arrays. Fabricated using a 150 nm CMOS process, the prototype occupies an area of only 18.3 µm × 36.5 µm, a notable size reduction compared to conventional designs. The experimental results demonstrated high performance, with an integral nonlinearity (INL) of 0.35/0.14 least significant bit (LSB) and a differential nonlinearity (DNL) of 0.14/−0.12 LSB. In addition, the proposed TDC can support the construction of histograms comprising up to 512 bins, making it an effective solution to accommodate a wide range of resolution requirements. Validated in a point-of-care (PoC) device for fluorescence lifetime measurements, it distinguished between lifetimes of approximately 4.1 ns, 3.6 ns and 80 ns with the Alexa Fluor (AF) 546 and 568 dyes and Quantum Dot (QD) 705, respectively. The analog storage design and area-efficient architecture offer a novel approach to integrating TDCs in SPAD-based systems, with potential applications in medical diagnostics and beyond. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 1989 KiB  
Article
Interaction Effects of Water and Nitrogen Practices on Wheat Yield, Water and Nitrogen Productivity under Drip Fertigation in Northern China
by Xin Zhang, Jianheng Zhang, Liwei Li, Yang Liu, Wenchao Zhen and Guiyan Wang
Agriculture 2024, 14(9), 1496; https://doi.org/10.3390/agriculture14091496 - 2 Sep 2024
Viewed by 539
Abstract
Water resource shortage and unreasonable application of nitrogen (N) fertilizer have been problems in wheat production of northern China. However, the interaction effects of water regimes and N practices on wheat root growth, grain yield, soil water, and inorganic N changes as well [...] Read more.
Water resource shortage and unreasonable application of nitrogen (N) fertilizer have been problems in wheat production of northern China. However, the interaction effects of water regimes and N practices on wheat root growth, grain yield, soil water, and inorganic N changes as well as water-N use efficiency are still unclear under drip irrigation. A field experiment was conducted during the 2020–2021 and 2021–2022 winter wheat (Triticum aestivum) growing seasons. In this study, three irrigation schedules (i.e., irrigation was applied up to 80% [D1], 75% [D2], and 70% [D3] as soon as the soil water content decreased to 65%, 60% or 55% of field capacity) and two N practices (i.e., N applied at the base, jointing, booting stages were 90, 72, 48 kg ha−1 [N1], and the base, jointing, booting, filling stages were 90, 40, 40, 40 kg ha−1 [N2], respectively) were considered. The decease in irrigation water amount was offset by the increase in soil water consumption. In addition, N practices significantly interacted with irrigation on soil NO3–N accumulation (2021–2022), NH4+–N accumulation, SPAD value (2020–2021), N content in stems and grains at maturity, and average root length and weight density at the flowering stage. Irrigation, rather than N practices, significantly affected grain yield, total N uptake, crop N transformations (NT), the contribution of NT to grain (NTPC), water and N productivity, in which, for the value of these two seasons, D2 increased total N uptake by 18.1% (p < 0.05), and NT by 39.4% (p < 0.05) under N1 as compared to D3. Additionally, the highest WUE and ANUE were found in D2 during 2021–2022. Heavy irrigation water amount caused high a LAI; further analysis proved that the LAI was the key factor affecting grain yield, and positively and significantly correlated to yield. However, no significant difference in the LAI between D1 and D2 was found. N1 was beneficial to prevent N leaching and increase water and N use efficiency, biomass, and N transformation amount. This study recommends that D2 + N1 might be a promising system for manipulating irrigation and fertilization practices under sub-surface drip irrigation systems to improve water and N use efficiency and grain yields in semi-arid regions. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

18 pages, 2946 KiB  
Article
Assessing the Management of Nitrogen Fertilizer Levels for Yield Values, Photosynthetic Characteristics and Non-Structural Carbohydrates in Rice
by Xiaoe He, Haijun Zhu, Ailong Shi, Weijian Tan and Xuehua Wang
Agronomy 2024, 14(9), 1983; https://doi.org/10.3390/agronomy14091983 - 1 Sep 2024
Viewed by 446
Abstract
The interaction between the amount and frequencies of nitrogen application has always been a hot issue in improving crop yield and reducing environmental pollution. Photosynthesis and non-structural carbohydrates (NSCs) play an important role in the formation of rice yield. However, the research on [...] Read more.
The interaction between the amount and frequencies of nitrogen application has always been a hot issue in improving crop yield and reducing environmental pollution. Photosynthesis and non-structural carbohydrates (NSCs) play an important role in the formation of rice yield. However, the research on photosynthetic characteristics and NSCs under nitrogen fertilizer management on rice yield is still insufficient. This work was a two-year field trial in China’s Hunan Province in 2020–2021. To analyze the photosynthetic characteristics and NSCs of the hybrid rice “Zhu Liangyou 819” (ZLY819), the experiment was set up with N application frequencies, specifically P1 (basal-tiller fertilizer at a ratio of 5:5), P2 (basal-tiller-spike fertilizer at a ratio of 4:3:3), and P3 (basal-tiller-spike-grain fertilizer at a ratio of 4:3:2:1). Additionally, three distinct amounts of N applications were utilized: N1 (90 kg ha−1), N2 (150 kg ha−1), and N3 (210 kg ha−1). The findings indicated that under the same N application amount, N2 increased the effective spike by 9.32–17.80% and the number of grains per spike by 12.21–13.28% compared with N1. Under the same N application frequency, P3 had the highest effective number of spikes and number of grains per spike, which were 320.83 × 104 ha−1 and 113.99–119.81, respectively. Under the same N application amount, the SPAD and photosynthetic rate (Pn) of N2 at the heading stage were increased by 5.61–5.68% and 11.73–13.81%, respectively, compared with that of N1; and at the maturity stage, the SPAD of N2 was increased by 14.79–17.21%. At the same N application frequency, SPAD and Pn were 5.40–6.78% and 4.70–12.85% higher in P3 compared to P1, respectively, at the heading stage. At maturity, SPAD showed 14.59–15.64% higher values in P3 compared to P1. The photosynthetically active radiations (PAR) and radiation use efficiency (RUE) of ZLY819 obtained the highest values under N2 or N3 as the differences between these both were nonsignificant. PAR and RUE tended to increase with the increase in the application frequency. NSC accumulation, output, and contribution rate to grains all exhibited a pattern of initial increase followed by a subsequent decline in response to escalating nitrogen application, i.e., it was highest under N2 treatment. A statistically significant positive correlation was observed between rice yield and effective number of spikes, number of grains per spike, SPAD, Pn RUE, output of NSCs, and contribution rate to grains. Appropriate amount and frequency of N application (P3N2) can significantly improve photosynthetic characteristics and NSCs of rice, thus increasing rice yield. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

18 pages, 3765 KiB  
Article
Optimizing Fertilization Strategies to Promote Leaf-Use Ginkgo Productivity and Ecosystem Economic Benefits: An Integrated Evaluation of a Field Trial in Southern China
by Mengrui Xiao, Shuangshuang Chu, Fenglin Zheng, Lihua Xian, Jie Lu, Dandan Liao, Jianhui Ouyang, Mandi Long, Douglass F. Jacobs, Dongnan Hu and Shucai Zeng
Agronomy 2024, 14(9), 1956; https://doi.org/10.3390/agronomy14091956 - 29 Aug 2024
Viewed by 254
Abstract
Field experiments were conducted on a four-year-old leaf-use ginkgo plantation in southern China to assess the impact of nine different fertilization strategies with varying N-P2O5-K2O rates at three growth phases (FBD: March for bud development; FLG: May [...] Read more.
Field experiments were conducted on a four-year-old leaf-use ginkgo plantation in southern China to assess the impact of nine different fertilization strategies with varying N-P2O5-K2O rates at three growth phases (FBD: March for bud development; FLG: May for leaf growth; FLS: July for leaf strengthening) on leaf-use ginkgo (Ginkgo biloba L.) leaf productivity and ecological economic benefits (EEBs). The results indicated that regardless of timing and rate, fertilizer application led to an increase in leaf area and thickness, resulting in higher ginkgo leaf yield. The highest fresh (215.14 g tree−1) and dry (78.83 g tree−1) yields were observed with 3 g N + 2.5 g P2O5 + 1.5 g K2O tree−1 in FLG. FLS was found to mitigate the decline in SPAD values of leaves during late summer. Furthermore, fertilized ginkgo trees exhibited higher flavonoid concentrations in leaves, enhancing profitability. However, higher fertilizer rates were associated with elevated greenhouse gas emissions, nitrogen losses and ecological costs. Despite these drawbacks, all fertilization treatments resulted in increased net economic income. Specifically, compared to no fertilization, FBD, FLG and FLS treatments boosted net income by 3.5~26.6%, 11.6~60.5% and 5.8~35.4%, respectively. Using the entropy weight TOPSIS method, it was concluded that optimizing the N, P and K fertilization rate and timing (applying 3–2.5–1.5 g tree−1 of N-P2O5-K2O in May) is a beneficial approach to maximize EEBs and industrial benefits in leaf-use ginkgo plantations in southern China. This study provides valuable insights into suitable fertilization patterns and management for leaf-use ginkgo plantations in southern China. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 3140 KiB  
Article
Detection of Rice Leaf SPAD and Blast Disease Using Integrated Aerial and Ground Multiscale Canopy Reflectance Spectroscopy
by Aichen Wang, Zishan Song, Yuwen Xie, Jin Hu, Liyuan Zhang and Qingzhen Zhu
Agriculture 2024, 14(9), 1471; https://doi.org/10.3390/agriculture14091471 - 28 Aug 2024
Viewed by 567
Abstract
Rice blast disease is one of the major diseases affecting rice plant, significantly impacting both yield and quality. Current detecting methods for rice blast disease mainly rely on manual surveys in the field and laboratory tests, which are inefficient, inaccurate, and limited in [...] Read more.
Rice blast disease is one of the major diseases affecting rice plant, significantly impacting both yield and quality. Current detecting methods for rice blast disease mainly rely on manual surveys in the field and laboratory tests, which are inefficient, inaccurate, and limited in scale. Spectral and imaging technologies in the visible and near-infrared (Vis/NIR) region have been widely investigated for crop disease detection. This work explored the potential of integrating canopy reflectance spectra acquired near the ground and aerial multispectral images captured with an unmanned aerial vehicle (UAV) for estimating Soil-Plant Analysis Development (SPAD) values and detecting rice leaf blast disease in the field. Canopy reflectance spectra were preprocessed, followed by effective band selection. Different vegetation indices (VIs) were calculated from multispectral images and selected for model establishment according to their correlation with SPAD values and disease severity. The full-wavelength canopy spectra (450–850 nm) were first used for establishing SPAD inversion and blast disease classification models, demonstrating the effectiveness of Vis/NIR spectroscopy for SPAD inversion and blast disease detection. Then, selected effective bands from the canopy spectra, UAV VIs, and the fusion of the two data sources were used for establishing corresponding models. The results showed that all SPAD inversion models and disease classification models established with the integrated data performed better than corresponding models established with the single of either of the aerial and ground data sources. For SPAD inversion models, the best model based on a single data source achieved a validation determination coefficient (Rcv2) of 0.5719 and a validation root mean square error (RMSECV) of 2.8794, while after ground and aerial data fusion, these two values improved to 0.6476 and 2.6207, respectively. For blast disease classification models, the best model based on a single data source achieved an overall test accuracy of 89.01% and a Kappa coefficient of 0.86, and after data fusion, the two values improved to 96.37% and 0.95, respectively. These results indicated the significant potential of integrating canopy reflectance spectra and UAV multispectral images for detecting rice diseases in large fields. Full article
(This article belongs to the Special Issue Multi- and Hyper-Spectral Imaging Technologies for Crop Monitoring)
Show Figures

Figure 1

20 pages, 5289 KiB  
Article
Phenotyping for Effects of Drought Levels in Quinoa Using Remote Sensing Tools
by Nerio E. Lupa-Condo, Frans C. Lope-Ccasa, Angel A. Salazar-Joyo, Raymundo O. Gutiérrez-Rosales, Eric N. Jellen, Neil C. Hansen, Alberto Anculle-Arenas, Omar Zeballos, Natty Wilma Llasaca-Calizaya and Mayela Elizabeth Mayta-Anco
Agronomy 2024, 14(9), 1938; https://doi.org/10.3390/agronomy14091938 - 28 Aug 2024
Viewed by 415
Abstract
Drought is a principal limiting factor in the production of agricultural crops; however, quinoa possesses certain adaptive and tolerance factors that make it a potentially valuable crop under drought-stress conditions. Within this context, the objective of the present study was to evaluate morphological [...] Read more.
Drought is a principal limiting factor in the production of agricultural crops; however, quinoa possesses certain adaptive and tolerance factors that make it a potentially valuable crop under drought-stress conditions. Within this context, the objective of the present study was to evaluate morphological and physiological changes in ten quinoa genotypes under three irrigation treatments: normal irrigation, drought-stress followed by recovery irrigation, and terminal drought stress. The experiments were conducted at the UNSA Experimental Farm in Majes, Arequipa, Peru. A series of morphological, physiological, and remote measurements were taken, including plant height, dry biomass, leaf area, stomatal density, relative water content, selection indices, chlorophyll content via SPAD, multispectral imaging, and reflectance measurements via spectroradiometry. The results indicated that there were numerous changes under the conditions of terminal drought stress; the yield variables of total dry biomass, leaf area, and plant height were reduced by 69.86%, 62.69%, and 27.16%, respectively; however, under drought stress with recovery irrigation, these changes were less pronounced with a reduction of 21.10%, 27.43%, and 17.87%, respectively, indicating that some genotypes are adapted or tolerant of both water-limiting conditions (Accession 50, Salcedo INIA and Accession 49). Remote sensing tools such as drones and spectroradiometry generated reliable, rapid, and precise data for monitoring stress and phenotyping quinoa and the optimum timing for collecting these data and predicting yield impacts was from 79–89 days after sowing (NDRE and CREDG r Pearson 0.85). Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 3309 KiB  
Article
Design of an Electronic Interface for Single-Photon Avalanche Diodes
by Salvatore A. Pullano, Giuseppe Oliva, Twisha Titirsha, Md Maruf Hossain Shuvo, Syed Kamrul Islam, Filippo Laganà, Antonio La Gatta and Antonino S. Fiorillo
Sensors 2024, 24(17), 5568; https://doi.org/10.3390/s24175568 - 28 Aug 2024
Viewed by 292
Abstract
Single-photon avalanche diodes (SPADs) belong to a family of avalanche photodiodes (APDs) with single-photon detection capability that operate above the breakdown voltage (i.e., Geiger mode). Design and technology constraints, such as dark current, photon detection probability, and power dissipation, impose inherent device limitations [...] Read more.
Single-photon avalanche diodes (SPADs) belong to a family of avalanche photodiodes (APDs) with single-photon detection capability that operate above the breakdown voltage (i.e., Geiger mode). Design and technology constraints, such as dark current, photon detection probability, and power dissipation, impose inherent device limitations on avalanche photodiodes. Moreover, after the detection of a photon, SPADs require dead time for avalanche quenching and recharge before they can detect another photon. The reduction in dead time results in higher efficiency for photon detection in high-frequency applications. In this work, an electronic interface, based on the pole-zero compensation technique for reducing dead time, was investigated. A nanosecond pulse generator was designed and fabricated to generate pulses of comparable voltage to an avalanche transistor. The quenching time constant (τq) is not affected by the compensation capacitance variation, while an increase of about 30% in the τq is related to the properties of the specific op-amp used in the design. Conversely, the recovery time was observed to be strongly influenced by the compensation capacitance. Reductions in the recovery time, from 927.3 ns down to 57.6 ns and 9.8 ns, were observed when varying the compensation capacitance in the range of 5–0.1 pF. The experimental results from an SPAD combined with an electronic interface based on an avalanche transistor are in strong accordance, providing similar output pulses to those of an illuminated SPAD. Full article
Show Figures

Figure 1

18 pages, 9929 KiB  
Article
Inversion of Cotton Soil and Plant Analytical Development Based on Unmanned Aerial Vehicle Multispectral Imagery and Mixed Pixel Decomposition
by Bingquan Tian, Hailin Yu, Shuailing Zhang, Xiaoli Wang, Lei Yang, Jingqian Li, Wenhao Cui, Zesheng Wang, Liqun Lu, Yubin Lan and Jing Zhao
Agriculture 2024, 14(9), 1452; https://doi.org/10.3390/agriculture14091452 - 25 Aug 2024
Viewed by 530
Abstract
In order to improve the accuracy of multispectral image inversion of soil and plant analytical development (SPAD) of the cotton canopy, image segmentation methods were utilized to remove the background interference, such as soil and shadow in UAV multispectral images. UAV multispectral images [...] Read more.
In order to improve the accuracy of multispectral image inversion of soil and plant analytical development (SPAD) of the cotton canopy, image segmentation methods were utilized to remove the background interference, such as soil and shadow in UAV multispectral images. UAV multispectral images of cotton bud stage canopies at three different heights (30 m, 50 m, and 80 m) were acquired. Four methods, namely vegetation index thresholding (VIT), supervised classification by support vector machine (SVM), spectral mixture analysis (SMA), and multiple endmember spectral mixture analysis (MESMA), were used to segment cotton, soil, and shadows in the multispectral images of cotton. The segmented UAV multispectral images were used to extract the spectral information of the cotton canopy, and eight vegetation indices were calculated to construct the dataset. Partial least squares regression (PLSR), Random forest (FR), and support vector regression (SVR) algorithms were used to construct the inversion model of cotton SPAD. This study analyzed the effects of different image segmentation methods on the extraction accuracy of spectral information and the accuracy of SPAD modeling in the cotton canopy. The results showed that (1) The accuracy of spectral information extraction can be improved by removing background interference such as soil and shadows using four image segmentation methods. The correlation between the vegetation indices calculated from MESMA segmented images and the SPAD of the cotton canopy was improved the most; (2) At three different flight altitudes, the vegetation indices calculated by the MESMA segmentation method were used as the input variable, and the SVR model had the best accuracy in the inversion of cotton SPAD, with R2 of 0.810, 0.778, and 0.697, respectively; (3) At a flight altitude of 80 m, the R2 of the SVR models constructed using vegetation indices calculated from images segmented by VIT, SVM, SMA, and MESMA methods were improved by 2.2%, 5.8%, 13.7%, and 17.9%, respectively, compared to the original images. Therefore, the MESMA mixed pixel decomposition method can effectively remove soil and shadows in multispectral images, especially to provide a reference for improving the inversion accuracy of crop physiological parameters in low-resolution images with more mixed pixels. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Robust Pixel Design Methodologies for a Vertical Avalanche Photodiode (VAPD)-Based CMOS Image Sensor
by Akito Inoue, Naoki Torazawa, Shota Yamada, Yuki Sugiura, Motonori Ishii, Yusuke Sakata, Taiki Kunikyo, Masaki Tamaru, Shigetaka Kasuga, Yusuke Yuasa, Hiromu Kitajima, Hiroshi Koshida, Tatsuya Kabe, Manabu Usuda, Masato Takemoto, Yugo Nose, Toru Okino, Takashi Shirono, Kentaro Nakanishi, Yutaka Hirose, Shinzo Koyama, Mitsuyoshi Mori, Masayuki Sawada, Akihiro Odagawa and Tsuyoshi Tanakaadd Show full author list remove Hide full author list
Sensors 2024, 24(16), 5414; https://doi.org/10.3390/s24165414 - 21 Aug 2024
Viewed by 416
Abstract
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light [...] Read more.
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light exposure. The “guard-ring-free” pixel design is established by resolving the tradeoff relationship between electric field concentration and pixel isolation. The effectiveness of the optimization strategy is validated both by simulation and experiment. To realize insensitivity to voltage and temperature variations, a global feedback resistor is shown to effectively suppress variations in device characteristics such as photon detection efficiency and dark count rate. An in-pixel overflow transistor is also introduced to enhance the resistance to strong illumination. The robustness of the fabricated VAPD-CIS is verified by characterization of 122 different chips and through a high-temperature and intense-light-illumination operation test with 5 chips, conducted at 125 °C for 1000 h subject to 940 nm light exposure equivalent to 10 kLux. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

17 pages, 2159 KiB  
Article
Halotolerant Microorganism-Based Soil Conditioner Application Improved the Soil Properties, Yield, Quality and Starch Characteristics of Hybrid Rice under Higher Saline Conditions
by Wenyu Jin, Lin Li, Guohui Ma and Zhongwei Wei
Plants 2024, 13(16), 2325; https://doi.org/10.3390/plants13162325 - 21 Aug 2024
Viewed by 424
Abstract
Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch [...] Read more.
Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch in hybrid rice under saline conditions. The experimental treatments were composed of two high-quality hybrid rice varieties, i.e., ‘Y Liangyou 957’ (YLY957) and Jing Liangyou 534 (JLY534), and two soil amendment treatments, i.e., the application of SC at control levels and 2250 kg hm−2, or ‘CK and SC’, respectively. The crop was subjected to a mixture of fresh and sea water (EC 11 dS/m). The results demonstrated that the application of SC significantly enhanced the rice yield under salt stress conditions owing to an increase in the number of grains per panicle. Furthermore, SC was found to be effective in improving the organic matter and soil nutrient content. Furthermore, the application of SC resulted in an improvement in antioxidant defense, higher leaf SPAD values, and greater crop biomass, as well as the translocation of photo-assimilates at the heading stage. The application of SC not only improved the milling and appearance quality but also enhanced the taste value of rice by increasing the amylose and reducing the protein content. Furthermore, the application of SC also decreased the indentations on the surfaces of starch granules and cracks on the edges of the granules. The rice varieties subjected to SC exhibited excellent pasting properties, characterized by reduced proportions of amylopectin short chains and a lower gelatinization temperature and enthalpy of gelatinization. Overall, these findings serve to reinforce the efficacy of soil conditioner as a valuable tool to improve rice productivity and sustainability with improved rice grain quality under saline conditions. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

21 pages, 2921 KiB  
Article
Correlation-Assisted Pixel Array for Direct Time of Flight
by Ayman Morsy and Maarten Kuijk
Sensors 2024, 24(16), 5380; https://doi.org/10.3390/s24165380 - 20 Aug 2024
Viewed by 375
Abstract
Time of flight is promising technology in machine vision and sensing, with an emerging need for low power consumption, a high image resolution, and reliable operation in high ambient light conditions. Therefore, we propose a novel direct time-of-flight pixel using the single-photon avalanche [...] Read more.
Time of flight is promising technology in machine vision and sensing, with an emerging need for low power consumption, a high image resolution, and reliable operation in high ambient light conditions. Therefore, we propose a novel direct time-of-flight pixel using the single-photon avalanche diode (SPAD) sensor, with an in-pixel averaging method to suppress ambient light and detect the laser pulse arrival time. The system utilizes two orthogonal sinusoidal signals applied to the pixel as inputs, which are synchronized with a pulsed laser source. The detected signal phase indicates the arrival time. To evaluate the proposed system’s potential, we developed analytical and statistical models for assessing the phase error and precision of the arrival time under varying ambient light levels. The pixel simulation showed that the phase precision is less than 1% of the detection range when the ambient-to-signal ratio is 120. A proof-of-concept pixel array prototype was fabricated and characterized to validate the system’s performance. The pixel consumed, on average, 40 μW of power in operation with ambient light. The results demonstrate that the system can operate effectively under varying ambient light conditions and its potential for customization based on specific application requirements. This paper concludes by discussing the system’s performance relative to the existing direct time-of-flight technologies, identifying their strengths and limitations. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technologies in Belgium 2023-2024)
Show Figures

Figure 1

17 pages, 1552 KiB  
Article
New Fertilisers with Innovative Chelates in Wheat Cultivation
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Agronomy 2024, 14(8), 1832; https://doi.org/10.3390/agronomy14081832 - 20 Aug 2024
Viewed by 480
Abstract
The aim of the study was to determine the effect of three new solid fertilisers (based on Salmag®) with innovative IDHA chelate additives (Cu, Mo and Fe) on the yield, yield (grain, straw), biometric characteristics and chemical composition (total N, Ca, [...] Read more.
The aim of the study was to determine the effect of three new solid fertilisers (based on Salmag®) with innovative IDHA chelate additives (Cu, Mo and Fe) on the yield, yield (grain, straw), biometric characteristics and chemical composition (total N, Ca, Mg and Cu, Mo, and Fe) of spring wheat and soil properties in the pot experiment. The nitrogen dose in all fertilised plots was 140 mg kg−1 of soil (60% before sowing, 40% at tillering). Before sowing, uniform fertilisation with phosphorus (60 mg kg−1 of soil) and potassium (60 mg kg−1 of soil) were also applied. At the stem elongation stage, nitrogen fertilisers, especially Salmag® with Cu, promoted an increase, and Salmag® with Mo and Fe promoted a decrease in leaf greenness at other growth stages of spring wheat. All nitrogen fertilisers had a positive effect on height (especially Salmag® and Salmag® with Mo) and yield (especially Salmag® with Cu and Mo) of spring wheat grain and straw. The effect on grain yield was stronger, while Salma with Fe was slightly weaker than pure Salmag®. All applied nitrogen fertilisers increased total N in grain and straw and Ca and Mg in spring wheat straw. Nitrogen fertilisers enriched with micronutrients generally had a weaker effect than Salmag® on the content of total N in grain (in contrast to straw) and Ca and Mg. The addition of Cu, Mo, and especially Fe chelates increased the content of chelated elements in spring wheat, especially in straw. The pH value of the soil after harvest of spring wheat was slightly higher after the application of Salmag® and lower in the soil fertilised with Salmag® with Mo and Salmag® with Fe than in the control. Salmag® and Salmag® with Cu showed a significant increase in soil Mg and all nitrogen fertilisers (especially Salmag® with Fe) in soil Ca content after spring wheat harvest. Salmag® with Cu caused the greatest increase in soil Cu content. The new fertilisers with Mo chelate and especially with Cu chelate showed a significant effect on yield formation and quality of spring wheat. Full article
Show Figures

Figure 1

20 pages, 10755 KiB  
Article
Light Quality Influence on Growth Performance and Physiological Activity of Coleus Cultivars
by Byoung Gyoo Park, Jae Hwan Lee, Eun Ji Shin, Eun A Kim and Sang Yong Nam
Int. J. Plant Biol. 2024, 15(3), 807-826; https://doi.org/10.3390/ijpb15030058 - 19 Aug 2024
Viewed by 616
Abstract
This study investigates the influence of different light qualities, including red, green, blue, purple, and white lights, on the growth, physiological activity, and ornamental characteristics of two Coleus cultivars. Emphasizing the importance of leveraging phenotypic plasticity in plants within controlled environments, using light [...] Read more.
This study investigates the influence of different light qualities, including red, green, blue, purple, and white lights, on the growth, physiological activity, and ornamental characteristics of two Coleus cultivars. Emphasizing the importance of leveraging phenotypic plasticity in plants within controlled environments, using light quality is a practice prevalent in the ornamental industry. The research explores the varied responses of two Coleus cultivars to distinct light spectra. The key findings reveal the efficacy of red light in enhancing shoot and leaf parameters in C. ‘Highway Ruby’, while red and green light exhibit comparable effects on shoot width and leaf dimensions in C. ‘Wizard Jade’. White light-emitting diodes (LEDs), particularly with color temperatures of 4100 K and 6500 K, promote root length growth in the respective cultivars. Moreover, chlorophyll content and remote sensing vegetation indices, including chlorophyll content (SPAD units), the normalized difference vegetation index (NDVI), the modified chlorophyll absorption ratio index (MCARI), and the photochemical reflectance index (PRI), along with the chlorophyll fluorescence, were significantly affected by light qualities, with distinct responses observed between the cultivars. In summary, this study highlights the transformative potential of LED technology in optimizing the growth and ornamental quality of foliage plants like Coleus, setting a benchmark for light quality conditions. By leveraging LED technology, producers and nursery growers access enhanced energy efficiency and unparalleled versatility, paving the way for significant advancements in plant growth, color intensity, and two-tone variations. This presents a distinct advantage over conventional production methods, offering a more sustainable and economically viable approach for increased plant reproduction and growth development. Likewise, the specific benefits derived from this study provide invaluable insights, enabling growers to strategically develop ornamental varieties that thrive under optimized light conditions and exhibit heightened visual appeal and market desirability. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

16 pages, 2277 KiB  
Article
Use of Conyza canadensis L. Extracts as Biostimulant in Cyclamen persicum Mill.
by Eunice R. Batista, Andre May, Sergio O. Procópio, Marcia R. Assalin, Helio D. Quevedo, Nicole Binhardi and Sonia C. N. Queiroz
AgriEngineering 2024, 6(3), 2926-2940; https://doi.org/10.3390/agriengineering6030168 - 16 Aug 2024
Viewed by 552
Abstract
Cyclamen (Cyclamen persicum Mill.) is an ornamental plant that is highly susceptible to pathogens, requiring high amounts of phytosanitary products. Therefore, the development of more sustainable alternatives has been required. The present study aimed to analyze the effect of C. canadensis root [...] Read more.
Cyclamen (Cyclamen persicum Mill.) is an ornamental plant that is highly susceptible to pathogens, requiring high amounts of phytosanitary products. Therefore, the development of more sustainable alternatives has been required. The present study aimed to analyze the effect of C. canadensis root extract (aqueous and with dichloromethane) applied via foliar or soil, in C. persicum, on gas exchange and the SPAD index and on the biomass of cyclamen. The aqueous extract treatment increased net CO2 assimilation, the transpiration rates, and instantaneous carboxylation efficiency. The water use efficiency values were reduced in the treatments with both extracts. The greatest increases in the SPAD index were provided by the aqueous extract. The cyclamens that received the aqueous extract applied in soil or the dichloromethane extract applied in leaves showed an increase in total biomass and number of leaves. To identify the compounds present in the extracts, CG-MS and LC-MS/MS analyses were performed. The positive effects obtained indicated a high biostimulant effect of C. Canadensis. Thus, the root extracts of C. Canadensis, particularly the aqueous extracts, have the potential to be used to reduce the use of mineral fertilizers and pesticides, promoting agroecological practices and contributing to sustainable agriculture. Full article
Show Figures

Figure 1

Back to TopTop