Predicting Vase Life of Cut Lisianthus Based on Biomass-Related Characteristics Using AutoML
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Soil or Hydroponic Cultivation at Vegetative or Reproductive Period
2.3. Measurement of Vegetative Characteristics
2.4. Measurement of Reproductive Characteristics
2.5. Leaf Chemical Analysis of Cut Lisianthus
2.6. Study Groups
2.7. Statistical Analysis
3. Results
3.1. Vase Life
3.2. Vegetative Characteristics
SPAD Value
3.3. Reproductive Characteristics
Dry Weight
3.4. Chemical Components from Leaf Analysis in Vegetative Period
3.5. PCA
3.6. Regression Model for Predicting Vase Life Based on Biomass-Related Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohkawa, K.; Sasaki, E. Eustoma (Lisianthus)—Its past, present, and future. In International Symposium on Cut Flowers in the Tropics, ISHS Acta Horticulturae, Bogota; Fischer, G., Angarita, A., Eds.; ISHS: Brussels, Belgium, 1999; pp. 423–428. Available online: https://www.actahort.org/books/482/482_61.htm (accessed on 1 July 2024).
- Ichimura, K. Improvement of postharvest life in several cut flowers by the addition of sucrose. Jpn. Agricult. Res. Quart. 1998, 32, 275–280. [Google Scholar]
- Lakshmaiah, K.; Ganga, M.; Subramanian, S.; Santhi, R. Role of post-harvest treatments in improving vase life of lisianthus (Eustoma grandiflorum) variety Mariachi Blue. Int. J. Chem. Stud. 2019, 7, 247–249. [Google Scholar]
- Shimizu-Yumoto, H.; Ichimura, K. Postharvest physiology and technology of cut Eustoma flowers. Jpn. Soc. Hort. Sci. 2010, 79, 227–238. [Google Scholar] [CrossRef]
- Skutnik, E.; Łukaszewska, A.; Rabiza-Świder, J. Effects of postharvest treatments with nanosilver on senescence of cut lisianthus (Eustoma grandiflorum (Raf.) Shinn.) flowers. Agronomy 2021, 11, 215. [Google Scholar] [CrossRef]
- Bahrami, S.N.; Zakiwadeh, H.; Hamidoghli, Y. Salicylic acid retards petal senescence in cut lisianthus (Eustoma grandiflorum ‘Miarichi Grand White’) flowers. Hortic. Environ. Biotechnol. 2013, 54, 519–523. [Google Scholar] [CrossRef]
- Islam, N.; Patil, G.G.; Gislerød, H.R. Effects of pre- and postharvest conditions on vase life of Eustoma grandiflorum (Raf.) Shinn. Europ. J. Hort. Sci. 2003, 68, 272–278. [Google Scholar]
- Kamiab, F.; Fahreji, S.S.; Bahramabadi, E.Z. Antimicrobial and physiological effects of silver and silicon nanoparticles on vase life of lisianthus (Eustoma grandiflora cv. Echo) flowers. Int. J. Hortic. Sci. Technol. 2017, 4, 135–144. [Google Scholar]
- Liao, L.J.; Lin, Y.H.; Huang, K.L.; Chen, W.S. Vase life of Eustoma grandiflorum as affected by aluminum sulfate. Bot. Bull. Acad. Sinica 2001, 42, 35–38. [Google Scholar]
- Kwon, H.S.; Leporini, C.; Kim, S.; Heo, S. Prolonged vase life by salicylic acid treatment and prediction of vase life using petal color senescence of cut lisianthus. Postharvest Biol. Technol. 2024, 209, 112726. [Google Scholar] [CrossRef]
- Proietti, S.; Scariot, V.; De Pascale, S.; Paradiso, R. Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. Plants 2022, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Meng, L.; Tang, F.; Du, S.; Xu, Y.; Kuang, S.; Zhang, Y. Plant spacing effects on stem development and secondary growth in Nicotiana tabacum. Agronomy 2023, 13, 2142. [Google Scholar] [CrossRef]
- Naghshi Band Hasani, R.; Yousefi, S.; Zare Hagi, D. The effect of cut stem length treatment on vase life and water relations of roses (Rosa hybrida) cv. ‘Bingo White’. J. Ornam. Plants 2020, 10, 109–119. [Google Scholar]
- López-Guerrero, A.G.; Rodriguez-Hernandez, A.M.; Mounzer, O.; Zenteno-Savin, T.; Rivera-Cabrera, F.; Izquierdo-Oviedo, H.; Soriano-Melgar, L.D.A.A. Effect of oligosaccharins on the vase life of lisianthus (Eustoma grandiflorum Raf.) cv. ‘Mariachi blue’. J. Hortic. Sci. Biotechnol. 2020, 95, 316–324. [Google Scholar] [CrossRef]
- Janowska, B.; Andrzejak, R. Plant growth regulators for the cultivation and vase life of geophyte flowers and leaves. Agriculture 2023, 13, 855. [Google Scholar] [CrossRef]
- Piri, M.; Jabbarzadeh, Z. The effect of foliar application of salicylic acid, spermidine and sodium nitroprusside on some growth and flowering characteristics, photosynthetic pigments and vase life of lisianthus ‘Mariachi Blue’. J. Hortic. Sci. 2023, 36, 917–936. [Google Scholar]
- Canet, J.V.; Dobón, A.; Ibáñez, F.; Perales, L.; Tornero, P. Resistance and biomass in Arabidopsis: A new model for salicylic acid perception. Plant Biotechnol. J. 2010, 8, 126–141. [Google Scholar] [CrossRef]
- Gorni, P.H.; Pacheco, A.C.; Moro, A.L.; Silva, J.F.A.; Moreli, R.R.; Miranda, G.R.; Silva, R.M.G. Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Sci. Hortic. 2020, 270, e109436. [Google Scholar] [CrossRef]
- Ibrahim, M.; Omar, H.; Mohd Zain, N. Salicylic acid enhanced photosynthesis, secondary metabolites, antioxidant and lipoxygenase inhibitory activity (LOX) in Centella asiatica. Annu. Res. Rev. Biol. 2017, 17, 1–14. [Google Scholar] [CrossRef]
- Acero, L.H.; Tuy, F.S.; Virgino, J.S. Potassium aluminum sulfate solution on the vase life of sampaguita (Jasminum sambac) flowers. J. Med. Bioeng. 2016, 5, 33–36. [Google Scholar] [CrossRef]
- Jowkar, M.M.; Khalighi, A.; Kafi, M.; Hassanzadeh, N. Evaluation of aluminum sulfate as vase solution biocide on postharvest microbial and physiological properties of ‘Cherry Brandy’ rose. Acta Hortic. 2013, 1012, 615–626. [Google Scholar] [CrossRef]
- Kazemi, M. Effect of cobalt, silicon, acetylsalicylic acid and sucrose as novel agents to improve vase-life of Argyranthemum flowers. Trends Appl. Sci. Res. 2012, 7, 579–583. [Google Scholar] [CrossRef]
- Singh, A.K.; Sisodia, A.; Pal, A.K.; Barman, K. Effect of sucrose and aluminium sulphate on postharvest life of lilium cv. Monarch. J. Hill Agric. 2016, 7, 204–208. [Google Scholar] [CrossRef]
- Subbaramamma, P.; Bhaskar, V.V. Role of beneficial elements in post-harvest vase life of cut flowers. Pharma Innov. 2023, 12, 1242–1250. [Google Scholar]
- Mendoza-Villarreal, R.; Valdez-Aguilar, L.A.; Sandoval-Rangel, A.; Robledo-Torres, V.; Benavides-Mendoza, A. Tolerance of lisianthus to high ammonium levels in rockwool culture. J. Plant Nutr. 2015, 38, 73–82. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Senescence and postharvest physiology of cut flowers—Part 2. In Horticultural Reviews; John Wiley & Sons: New York, NY, USA, 1981; Volume 3, pp. 59–143. [Google Scholar]
- Takeno, K. Stress-induced flowering: The third category of flowering response. J. Exp. Bot. 2016, 67, 4925–4934. [Google Scholar] [CrossRef]
- Bradstreet, R.B. Kjeldahl method for organic nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- Cavell, A.J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 1955, 6, 479–480. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Fryda, T.; LeDell, E.; Gill, N.; Aiello, S.; Fu, A.; Candel, A.; Click, C.; Kraljevic, T.; Nykodym, T.; Aboyoun, P.; et al. H2O: R Interface for the ‘H2O’ Scalable Machine Learning Platform; R Package Version 3.40.0.4.; R Core Team: Vienna, Austria, 2023; Available online: https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/getting_started.html (accessed on 10 July 2024).
- Lares, B. Lares: Analytics & Machine Learning Sidekick; R Package Version 5.2.2; R Core Team: Vienna, Austria, 2023; Available online: https://laresbernardo.github.io/lares/ (accessed on 10 July 2024).
- Zhang, R.; Yang, P.; Liu, S.; Wang, C.; Liu, J. Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sens. 2022, 14, 5144. [Google Scholar] [CrossRef]
- Almeida, J.M.D.; Calaboni, C.; Rodrigues, P.H.V. Pigments in flower stems of lisianthus under different photoselective shade nets. Ornam. Hortic. 2021, 27, 535–543. [Google Scholar] [CrossRef]
- Gao, L.; Yang, H.; Liu, H.; Yang, J.; Hu, Y. Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii. Front. Plant Sci. 2016, 6, 1205. [Google Scholar] [CrossRef] [PubMed]
- Iwashina, T. Contribution to flower colors of flavonoids including anthocyanins: A review. Nat. Prod. Commun. 2015, 10, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef]
- Takeda, K. Blue metal complex pigments involved in blue flower color. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2006, 82, 142–154. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, A.K. Development of a cut rose longevity prediction model using thermography and machine learning. Hortic. Sci. Technol. 2020, 31, 675–685. [Google Scholar] [CrossRef]
- In, B.C.; Inamoto, K.; Doi, M.; Park, S.A. Using thermography to estimate leaf transpiration rates in cut roses for the development of vase life prediction models. Hortic. Environ. Biotechnol. 2016, 57, 53–60. [Google Scholar] [CrossRef]
- Kim, Y.T.; Ha, S.T.T.; In, B.C. Development of a longevity prediction model for cut roses using hyperspectral imaging and a convolutional neural network. Front. Plant Sci. 2024, 14, 1296473. [Google Scholar] [CrossRef] [PubMed]
AG | BP | CP | KW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | A | B | A × B | A | B | A × B | A | B | A × B | A | B | A × B |
Stem diameter | 0.024 * | 0.810 | 0.616 | 0.001 ** | 0.571 | 0.017 * | 0.021 * | 0.043* | <0.001 *** | 0.019 * | 0.469 | 0.725 |
Stem node | <0.001 *** | 0.039 * | 0.223 | 0.002 ** | 0.993 | 0.504 | 0.007 ** | 0.202 | 0.668 | 0.001 ** | 0.078 | 0.095 |
Stem length | <0.001 *** | 0.352 | 0.599 | 0.036 * | 0.279 | 0.420 | <0.001 *** | 0.048 * | 0.316 | <0.001 *** | 0.209 | 0.618 |
Stem bush | <0.001 *** | 0.054 | 0.397 | <0.001 *** | 0.962 | 0.026 * | <0.001 *** | 0.039 * | 0.202 | <0.001 *** | 0.118 | 0.092 |
Flowering day | 0.018 * | 0.040 * | 0.187 | 0.215 | 0.001 ** | 0.047 * | <0.001 *** | <0.001 *** | 0.165 | 0.124 | 0.042 * | 0.104 |
SPAD | <0.001 *** | 0.057 | 0.410 | <0.001 *** | 0.007 ** | 0.615 | <0.001 *** | <0.001 *** | 0.001 ** | <0.001 *** | 0.007 ** | 0.739 |
Nitrogen | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Phosphorus | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Potassium | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Calcium | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.275 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Magnesium | <0.001*** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.055 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Fresh weight | <0.001 *** | 0.352 | 0.352 | <0.001 *** | 0.807 | 0.463 | <0.001 *** | 0.104 | 0.458 | 0.292 | 0.871 | 0.23 |
Dry weight | <0.001 *** | 0.749 | 0.810 | <0.001 *** | 0.555 | 0.783 | <0.001 *** | 0.007 ** | <0.001 *** | <0.001 *** | 0.351 | 0.223 |
Weight difference | <0.001 *** | 0.024 * | 0.247 | <0.001 *** | 0.439 | 0.393 | 0.002 ** | 0.007 ** | 0.115 | <0.001 *** | 0.505 | 0.306 |
Petals | 0.616 | 0.625 | 0.893 | <0.001 *** | 0.381 | 0.051 | <0.001 *** | 0.48 | 0.345 | 0.739 | <0.001 *** | 0.464 |
Petal size | <0.001 *** | 0.424 | <0.001 *** | <0.001 *** | <0.001 *** | 0.504 | <0.001 *** | 0.304 | 0.234 | <0.001 *** | 0.061 | 0.004 ** |
Characteristic | AG | BP | CP | KW | p-Value |
---|---|---|---|---|---|
Stem diameter | 3.68 (0.46) | 4.40 (0.60) | 4.38 (0.50) | 4.33 (0.53) | <0.001 *** |
Stem node | 8.12 (0.87) | 5.93 (0.62) | 7.77 (0.76) | 6.96 (0.60) | <0.001 *** |
Stem length | 50.65 (6.17) | 53.25 (7.21) | 56.15 (6.66) | 56.81 (8.06) | <0.001 *** |
Stem bush | 3.80 (1.22) | 4.20 (1.25) | 3.78 (0.96) | 3.57 (0.89) | 0.007 ** |
Flowering day | 63.14 (5.64) | 64.81 (6.11) | 62.96 (4.19) | 65.59 (5.26) | 0.002 ** |
SPAD | 99.97 (17.43) | 118.16 (18.26) | 97.86 (17.27) | 121.80 (21.42) | <0.001 *** |
Nitrogen | 1.03 (0.28) | 1.07 (0.17) | 1.08 (0.28) | 1.19 (0.39) | 0.003 ** |
Phosphorus | 0.75 (0.62) | 0.72 (0.52) | 0.81 (0.63) | 0.83 (0.66) | 0.212 |
Potassium | 3.06 (0.32) | 2.52 (0.20) | 2.63 (0.19) | 2.17 (0.26) | <0.001 *** |
Calcium | 0.16 (0.02) | 0.34 (0.05) | 0.23 (0.03) | 0.22 (0.04) | <0.001 *** |
Magnesium | 0.50 (0.10) | 0.72 (0.17) | 0.50 (0.08) | 0.45 (0.08) | <0.001 *** |
Fresh weight | 2.39 (0.44) | 2.62 (0.66) | 3.19 (0.56) | 3.62 (0.66) | <0.001 *** |
Dry weight | 0.97 (0.54) | 0.87 (0.39) | 1.01 (0.47) | 1.16 (0.86) | 0.691 |
Weight difference | 1.43 (0.48) | 1.75 (0.59) | 2.17 (0.57) | 2.47 (1.04) | <0.001 *** |
Petal number | 10.73 (1.22) | 11.35 (2.20) | 12.27 (1.93) | 12.35 (2.35) | <0.001 *** |
Petal size | 49.19 (5.46) | 45.22 (3.37) | 53.59 (4.55) | 45.28 (4.21) | <0.001 *** |
Characteristic | AG | BP | CP | KW |
---|---|---|---|---|
Stem diameter | − | − | − | + |
Stem node | − | + | + | + |
Stem length | − | − | − | − ** |
Stem bush | − | − | + | + * |
Flowering day | + * | + * | + | + |
SPAD | − | + *** | + * | + |
Nitrogen | + | + | − | + |
Phosphorus | + | + * | + *** | + |
Potassium | − | − | + | − ** |
Calcium | + | + | + | − |
Magnesium | + | + *** | + *** | − |
Fresh weight | + *** | + | + | + |
Dry weight | + ** | + *** | + *** | + *** |
Weight difference | − | − | − | − *** |
Petal number | + * | − | + | + |
Petal size | + | + *** | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.S.; Heo, S. Predicting Vase Life of Cut Lisianthus Based on Biomass-Related Characteristics Using AutoML. Agriculture 2024, 14, 1543. https://doi.org/10.3390/agriculture14091543
Kwon HS, Heo S. Predicting Vase Life of Cut Lisianthus Based on Biomass-Related Characteristics Using AutoML. Agriculture. 2024; 14(9):1543. https://doi.org/10.3390/agriculture14091543
Chicago/Turabian StyleKwon, Hye Sook, and Seong Heo. 2024. "Predicting Vase Life of Cut Lisianthus Based on Biomass-Related Characteristics Using AutoML" Agriculture 14, no. 9: 1543. https://doi.org/10.3390/agriculture14091543