Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,264)

Search Parameters:
Keywords = RNA-Seq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 16507 KiB  
Article
Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells
by Shohei Yamashita, Motoki Okamoto, Melanie Mendonca, Natsumi Fujiwara, Eiko Kitamura, Chang-Sheng Sam Chang, Susanne Brueckner, Satoru Shindo, Nanako Kuriki, Marion A. Cooley, Navi Gill Dhillon, Toshihisa Kawai, John D. Bartlett, Eric T. Everett and Maiko Suzuki
Int. J. Mol. Sci. 2024, 25(17), 9600; https://doi.org/10.3390/ijms25179600 - 4 Sep 2024
Abstract
Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression [...] Read more.
Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development. Full article
(This article belongs to the Special Issue Molecular Metabolism of Ameloblasts in Tooth Development)
Show Figures

Figure 1

13 pages, 8056 KiB  
Article
Transcriptomic Alterations in Spliceosome Components in Advanced Heart Failure: Status of Cardiac-Specific Alternative Splicing Factors
by Isaac Giménez-Escamilla, Lorena Pérez-Carrillo, Irene González-Torrent, Marta Delgado-Arija, Carlota Benedicto, Manuel Portolés, Estefanía Tarazón and Esther Roselló-Lletí
Int. J. Mol. Sci. 2024, 25(17), 9590; https://doi.org/10.3390/ijms25179590 - 4 Sep 2024
Abstract
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the [...] Read more.
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the spliceosome transcriptome in cardiac tissue (n = 36) from control subjects and HF patients (with ischaemic (ICM) and dilated (DCM) cardiomyopathies) using RNA-seq. We found greater deregulation of spliceosome machinery in ICM. Specifically, we showed widespread upregulation of the E and C complex components, highlighting an increase in SNRPD2 (FC = 1.35, p < 0.05) and DHX35 (FC = 1.34, p < 0.001) mRNA levels. In contrast, we observed generalised downregulation of the A complex and cardiac-specific AS factors, such as the multifunctional protein PCBP2 (FC = −1.29, p < 0.001) and the RNA binding proteins QKI (FC = −1.35, p < 0.01). In addition, we found a relationship between SNPRD2 (an E complex component) and the left ventricular mass index in ICM patients (r = 0.779; p < 0.01). On the other hand, we observed the specific underexpression of DDX46 (FC = −1.29), RBM17 (FC = −1.33), SDE2 (FC = −1.35) and RBFOX1 (FC = −1.33), p < 0.05, in DCM patients. Therefore, these aetiology-related alterations may indicate the differential involvement of the splicing process in the development of ICM and DCM. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Cardiomyopathy)
Show Figures

Figure 1

12 pages, 5675 KiB  
Article
Two Sugarcane Expansin Protein-Coding Genes Contribute to Stomatal Aperture Associated with Structural Resistance to Sugarcane Smut
by Zongling Liu, Zhuoxin Yu, Xiufang Li, Qin Cheng and Ru Li
J. Fungi 2024, 10(9), 631; https://doi.org/10.3390/jof10090631 - 3 Sep 2024
Viewed by 202
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for inducing sugarcane smut disease that results in significant reductions in sugarcane yield. Resistance mechanisms against sugarcane smut can be categorized into structural, biochemical, and physiological resistance. However, structural resistance has been relatively understudied. This study [...] Read more.
Sporisorium scitamineum is a biotrophic fungus responsible for inducing sugarcane smut disease that results in significant reductions in sugarcane yield. Resistance mechanisms against sugarcane smut can be categorized into structural, biochemical, and physiological resistance. However, structural resistance has been relatively understudied. This study found that sugarcane variety ZZ9 displayed structural resistance compared to variety GT42 when subjected to different inoculation methods for assessing resistance to smut disease. Furthermore, the stomatal aperture and density of smut-susceptible varieties (ROC22 and GT42) were significantly higher than those of smut-resistant varieties (ZZ1, ZZ6, and ZZ9). Notably, S. scitamineum was found to be capable of entering sugarcane through the stomata on buds. According to the RNA sequencing of the buds of GT42 and ZZ9, seven Expansin protein-encoding genes were identified, of which six were significantly upregulated in GT42. The two genes c111037.graph_c0 and c113583.graph_c0, belonging to the α-Expansin and β-Expansin families, respectively, were functionally characterized, revealing their role in increasing the stomatal aperture. Therefore, these two sugarcane Expansin protein-coding genes contribute to the stomatal aperture, implying their potential roles in structural resistance to sugarcane smut. Our findings deepen the understanding of the role of the stomata in structural resistance to sugarcane smut and highlight their potential in sugarcane breeding for disease resistance. Full article
(This article belongs to the Special Issue Genomics of Fungal Plant Pathogens, 3rd Edition)
Show Figures

Figure 1

34 pages, 13933 KiB  
Article
LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency
by Michael V. Zaragoza, Thuy-Anh Bui, Halida P. Widyastuti, Mehrsa Mehrabi, Zixuan Cang, Yutong Sha, Anna Grosberg and Qing Nie
Cells 2024, 13(17), 1479; https://doi.org/10.3390/cells13171479 - 3 Sep 2024
Viewed by 170
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins [...] Read more.
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Graphical abstract

20 pages, 3600 KiB  
Article
The Human Pathogen Mycobacterium tuberculosis and the Fish Pathogen Mycobacterium marinum Trigger a Core Set of Late Innate Immune Response Genes in Zebrafish Larvae
by Ron P. Dirks, Anita Ordas, Susanne Jong-Raadsen, Sebastiaan A. Brittijn, Mariëlle C. Haks, Christiaan V. Henkel, Katarina Oravcova, Peter I. Racz, Nynke Tuinhof-Koelma, Malgorzata I. Korzeniowska nee Wiweger, Stephen H. Gillespie, Annemarie H. Meijer, Tom H. M. Ottenhoff, Hans J. Jansen and Herman P. Spaink
Biology 2024, 13(9), 688; https://doi.org/10.3390/biology13090688 - 3 Sep 2024
Viewed by 228
Abstract
Zebrafish is a natural host of various Mycobacterium species and a surrogate model organism for tuberculosis research. Mycobacterium marinum is evolutionarily one of the closest non-tuberculous species related to M. tuberculosis and shares the majority of virulence genes. Although zebrafish is not a [...] Read more.
Zebrafish is a natural host of various Mycobacterium species and a surrogate model organism for tuberculosis research. Mycobacterium marinum is evolutionarily one of the closest non-tuberculous species related to M. tuberculosis and shares the majority of virulence genes. Although zebrafish is not a natural host of the human pathogen, we have previously demonstrated successful robotic infection of zebrafish embryos with M. tuberculosis and performed drug treatment of the infected larvae. In the present study, we examined for how long M. tuberculosis can be propagated in zebrafish larvae and tested a time series of infected larvae to study the transcriptional response via Illumina RNA deep sequencing (RNAseq). Bacterial aggregates carrying fluorescently labeled M. tuberculosis could be detected up to 9 days post-infection. The infected larvae showed a clear and specific transcriptional immune response with a high similarity to the inflammatory response of zebrafish larvae infected with the surrogate species M. marinum. We conclude that M. tuberculosis can be propagated in zebrafish larvae for at least one week after infection and provide further evidence that M. marinum is a good surrogate model for M. tuberculosis. The generated extensive transcriptome data sets will be of great use to add translational value to zebrafish as a model for infection of tuberculosis using the M. marinum infection system. In addition, we identify new marker genes such as dusp8 and CD180 that are induced by M. tuberculosis infection in zebrafish and in human macrophages at later stages of infection that can be further investigated. Full article
Show Figures

Figure 1

13 pages, 1771 KiB  
Brief Report
Identification of an Endogenous Strong Promoter in Burkholderia sp. JP2-270
by Jing Ke, Jiamin Shen, Haoran Wang, Xinxin Zhang, Yucong Wang, Guoqing Chen and Guozhong Feng
Microorganisms 2024, 12(9), 1818; https://doi.org/10.3390/microorganisms12091818 - 2 Sep 2024
Viewed by 220
Abstract
Burkholderia is the second largest source of natural product bacteria after Actinomyces and can produce many secondary metabolites including pyrrolnitrin (PRN). Natural products of microbial origin are usually found in trace amounts, so in metabolic engineering, promoter engineering is often used to regulate [...] Read more.
Burkholderia is the second largest source of natural product bacteria after Actinomyces and can produce many secondary metabolites including pyrrolnitrin (PRN). Natural products of microbial origin are usually found in trace amounts, so in metabolic engineering, promoter engineering is often used to regulate gene expression to increase yield. In this study, an endogenous strong promoter was identified based on RNA-seq to overexpress biosynthetic genes to increase the production of PRN. By analyzing the transcriptomic data of the antagonistic bacterium Burkholderia sp. JP2-270 in three different development periods, we screened 50 endogenous promoters with high transcriptional activity, nine of which were verified by an obvious fluorescent signal via fluorescence observation. Then, combined with RT-qPCR analysis, Php, the promoter of a hypothetical protein, was found to be significantly expressed in all three periods. In order to increase the suitability of endogenous promoters, the promoter Php was shortened at different lengths, and the results show that a sequence length of 173 bp was necessary for its activity. Moreover, this promoter was used to overexpress the PRN biosynthesis genes (prnA, prnB, prnC and prnD) in JP2-270, resulting in a successful increase in gene expression levels by 40–80 times. Only the overexpression of the prnB gene successfully increased PRN production to 1.46 times that of the wild type. Overall, the endogenous strong promoters screened in this study can improve gene expression and increase the production of secondary metabolites in JP2-270 and other strains. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

17 pages, 7834 KiB  
Article
Genome-Wide Identification and Analysis of the Aux/IAA Gene Family in Rosa hybrida—“The Fairy”: Evidence for the Role of RhIAA25 in Adventitious Root Development
by Wuhua Zhang, Yifei Zhang, Minge Huangfu, Yingdong Fan, Jinzhu Zhang, Tao Yang, Daidi Che and Jie Dong
Agronomy 2024, 14(9), 2005; https://doi.org/10.3390/agronomy14092005 - 2 Sep 2024
Viewed by 249
Abstract
Propagation of cuttings is the primary method of rose multiplication. Aux/IAA, early response genes to auxin, play an important role in regulating the process of adventitious root formation in plants. However, systematic research on the identification of RhAux/IAA [...] Read more.
Propagation of cuttings is the primary method of rose multiplication. Aux/IAA, early response genes to auxin, play an important role in regulating the process of adventitious root formation in plants. However, systematic research on the identification of RhAux/IAA genes and their role in adventitious root formation in roses is lacking. In this study, 34 RhAux/IAA genes were identified by screening the rose genome, distributed on seven chromosomes, and classified into three clades based on the evolutionary tree. An analysis of the cis-acting elements in the promoters of RhAux/IAA genes revealed the presence of numerous elements related to plant hormones, the light signal response, the growth and development of plants, and abiotic stress. RNA-seq analysis identified a key RhIAA25 gene that may play an important role in the generation of adventitious roots in roses. Subcellular localization, yeast self-activation, and tissue-specific expression experiments indicated that RhIAA25 encoded a nuclear protein, had no yeast self-activated activity, and was highly expressed in the stem. The overexpression of RhIAA25 promoted the elongation of the primary root in Arabidopsis but inhibited adventitious root formation. This study systematically identified and analyzed the RhAux/IAA gene family and identified a key gene, RhIAA25, that regulates adventitious root generation in roses. This study offers a valuable genetic resource for investigating the regulatory mechanism of adventitious root formation in roses. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 8614 KiB  
Article
CSF1R Ligands Expressed by Murine Gliomas Promote M-MDSCs to Suppress CD8+ T Cells in a NOS-Dependent Manner
by Gregory P. Takacs, Julia S. Garcia, Caitlyn A. Hodges, Christian J. Kreiger, Alexandra Sherman and Jeffrey K. Harrison
Cancers 2024, 16(17), 3055; https://doi.org/10.3390/cancers16173055 - 1 Sep 2024
Viewed by 406
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that [...] Read more.
Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a subset of myeloid cells, expressing monocytic (M)-MDSC markers and dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate the TME. This study evaluated the mechanism of CCR2+/CX3CR1+ M-MDSC differentiation and T cell suppressive function in murine glioma models. We determined that bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Glioma-secreted CSF1R ligands M-CSF and IL-34 were identified as key drivers of M-MDSC differentiation while adenosine and iNOS pathways were implicated in the M-MDSC suppression of T cells. Mining a human GBM spatial RNAseq database revealed a variety of different pathways that M-MDSCs utilize to exert their suppressive function that is driven by complex niches within the microenvironment. These data provide a more comprehensive understanding of the mechanism of M-MDSCs in glioblastoma. Full article
Show Figures

Figure 1

25 pages, 4674 KiB  
Article
Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1
by Javier Bonastre-Férez, Karen Giménez-Orenga, Francisco Javier Falaguera-Vera, María Garcia-Escudero and Elisa Oltra
Int. J. Mol. Sci. 2024, 25(17), 9523; https://doi.org/10.3390/ijms25179523 - 1 Sep 2024
Viewed by 316
Abstract
Fibromyalgia (FM), classified by ICD-11 with code MG30.0, is a chronic debilitating disease characterized by widespread pain, fatigue, cognitive impairment, sleep, and intestinal alterations, among others. FM affects a large proportion of the worldwide population, with increased prevalence among women. The lack of [...] Read more.
Fibromyalgia (FM), classified by ICD-11 with code MG30.0, is a chronic debilitating disease characterized by widespread pain, fatigue, cognitive impairment, sleep, and intestinal alterations, among others. FM affects a large proportion of the worldwide population, with increased prevalence among women. The lack of understanding of its etiology and pathophysiology hampers the development of effective treatments. Our group had developed a manual therapy (MT) pressure-controlled custom manual protocol on FM showing hyperalgesia/allodynia, fatigue, and patient’s quality of life benefits in a cohort of 38 FM cases (NCT04174300). With the aim of understanding the therapeutic molecular mechanisms triggered by MT, this study interrogated Peripheral Blood Mononuclear Cell (PBMC) transcriptomes from FM participants in this clinical trial using whole RNA sequencing (RNAseq) and reverse transcription followed by quantitative Polymerase Chain Reaction (RT-qPCR) technologies. The results show that the salt-induced kinase SIK1 gene was consistently downregulated by MT in FM, correlating with improvement of patient symptoms. In addition, this study compared the findings in a non-FM control cohort subjected to the same MT protocol, evidencing that those changes in SIK1 expression with MT only occurred in individuals with FM. This positions SIK1 as a potential biomarker to monitor response to MT and as a therapeutic target of FM, which will be further explored by continuation studies. Full article
Show Figures

Figure 1

21 pages, 10105 KiB  
Article
Antennal Transcriptome Screening and Identification of Chemosensory Proteins in the Double-Spine European Spruce Bark Beetle, Ips duplicatus (Coleoptera: Scolytinae)
by Jibin Johny, Ewald Große-Wilde, Blanka Kalinová and Amit Roy
Int. J. Mol. Sci. 2024, 25(17), 9513; https://doi.org/10.3390/ijms25179513 - 1 Sep 2024
Viewed by 519
Abstract
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led [...] Read more.
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects. Full article
(This article belongs to the Special Issue Molecular Mechanisms Subserving Taste and Olfaction Systems)
Show Figures

Figure 1

13 pages, 4148 KiB  
Article
Transcriptomic Profiling Reveals That the Differentially Expressed PtNAC9 Transcription Factor Stimulates the Salicylic Acid Pathway to Enhance the Defense Response against Bursaphelenchus xylophilus in Pines
by Tong-Yue Wen, Xin-Yu Wang, Xiao-Qin Wu and Jian-Ren Ye
Forests 2024, 15(9), 1538; https://doi.org/10.3390/f15091538 - 1 Sep 2024
Viewed by 307
Abstract
Pinus, a conifer, dominates the world’s forest ecosystems. But it is seriously infected with pine wood nematode (PWN). Transcription factors (TFs) are key regulators in regulating plant resistance. However, the molecular mechanism of TFs remains thus far unresolved in P. thunbergii inoculated [...] Read more.
Pinus, a conifer, dominates the world’s forest ecosystems. But it is seriously infected with pine wood nematode (PWN). Transcription factors (TFs) are key regulators in regulating plant resistance. However, the molecular mechanism of TFs remains thus far unresolved in P. thunbergii inoculated with Bursaphelenchus xylophilus. Here, we used RNA-seq technology to identify differentially expressed TFs in resistant and susceptible pines. The results show that a total of 186 differentially expressed transcription factors (DETFs), including 99 upregulated and 87 downregulated genes were identified. Gene ontology (GO) enrichment showed that the highly enriched differentially expressed TFs were responsible for secondary biosynthetic processes. According to KEGG pathway analysis, the differentially expressed TFs were related to chaperones and folding catalysts, phenylpropanoid biosynthesis, and protein processing in the endoplasmic reticulum. Many TFs such as NAC, LBD, MYB, bHLH, and WRKY were determined to be quite abundant in the DETFs. Moreover, the NAC transcription factor PtNAC9 was upregulated in PWN-resistant and susceptible P. thunbergii and especially distinctly upregulated in resistant pines. By purifying recombinant PtNAC9 protein in vitro, we found that overexpression of PtNAC9 at the early stage of B. xylophilus infection could reduce the degree of disease. We also demonstrated the content of salicylic acid (SA) and the related genes were increased in the PtNAC9 protein-treated plants. These results could be helpful in enhancing our understanding of the resistance mechanism underlying different resistant pine. Full article
(This article belongs to the Special Issue Forest Tree Diseases Genomics: Growing Resources and Applications)
Show Figures

Figure 1

24 pages, 22049 KiB  
Article
Deciphering Dormant Cells of Lung Adenocarcinoma: Prognostic Insights from O-glycosylation-Related Tumor Dormancy Genes Using Machine Learning
by Chenfei Dong, Yang Liu, Suli Chong, Jiayue Zeng, Ziming Bian, Xiaoming Chen and Sairong Fan
Int. J. Mol. Sci. 2024, 25(17), 9502; https://doi.org/10.3390/ijms25179502 - 31 Aug 2024
Viewed by 411
Abstract
Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy and evasion of immune cell destruction. Using single-cell RNA sequencing [...] Read more.
Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy and evasion of immune cell destruction. Using single-cell RNA sequencing (scRNA-seq) data from LUAD patients, we categorized the cells into two subclusters: dormant and active cells. Utilizing high-density Weighted Gene Co-expression Network Analysis (hdWGCNA) and pseudo-time cell trajectory, aberrant expression of genes involved in protein O-glycosylation was detected in dormant cells, suggesting a crucial role for O-glycosylation in maintaining the dormant state. Intercellular communication analysis highlighted the interaction between fibroblasts and dormant cells, where the Insulin-like Growth Factor (IGF) signaling pathway regulated by O-glycosylation was crucial. By employing Gene Set Variation Analysis (GSVA) and machine learning, a risk score model was developed using hub genes, which showed high accuracy in determining LUAD prognosis. The model also demonstrated robust performance on the training dataset and excellent predictive capability, providing a reliable basis for predicting patient clinical outcomes. The group with a higher risk score exhibited a propensity for adverse outcomes in the tumor microenvironment (TME) and tumor mutational burden (TMB). Additionally, the 50% inhibitory concentration (IC50) values for chemotherapy exhibited significant variations among the different risk groups. In vitro experiments demonstrated that EFNB2, PTTG1IP, and TNFRSF11A were upregulated in dormant tumor cells, which also contributed greatly to the diagnosis of LUAD. In conclusion, this study highlighted the crucial role of O-glycosylation in the dormancy state of LUAD tumors and developed a predictive model for the prognosis of LUAD patients. Full article
(This article belongs to the Special Issue Biomarkers of Tumor Progression, Prognosis and Therapy: 2nd Edition)
Show Figures

Figure 1

19 pages, 23688 KiB  
Article
Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep
by Jiaqi Fu, Xinyu Zhang, Dan Wang, Wenqing Liu, Caihong Zhang, Wei Wang, Wei Fan, Lichun Zhang and Fuliang Sun
Curr. Issues Mol. Biol. 2024, 46(9), 9588-9606; https://doi.org/10.3390/cimb46090570 - 31 Aug 2024
Viewed by 212
Abstract
Wool quality and yield are two important economic livestock traits. However, there are relatively few molecular studies on lncRNA for improving sheep wool, so these require further exploration. In this study, we examined skin tissue from the upper scapula of Super Merino (SM) [...] Read more.
Wool quality and yield are two important economic livestock traits. However, there are relatively few molecular studies on lncRNA for improving sheep wool, so these require further exploration. In this study, we examined skin tissue from the upper scapula of Super Merino (SM) and Small-Tailed Han (STH) sheep during the growing period. The apparent difference was verified via histological examination. High-throughput RNA sequencing identified differentially expressed (DE) long non-coding (lncRNAs) and messenger RNAs (mRNAs). The target gene of DE lncRNA and DE genes were enrichment analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify randomly selected DE lncRNAs and mRNAs. Finally, the DE, RAC2, WNT11, and FZD2 genes, which were enriched in the Wnt signaling pathway, were detected via immunohistochemistry. The results showed that a total of 20,888 lncRNAs and 31,579 mRNAs were identified in the skin tissues of the two sheep species. Among these, 56 lncRNAs and 616 mRNAs were differentially expressed. Through qRT-PCR, the trends in the randomly selected DE genes’ expression were confirmed to be aligned with the RNA-seq results. GO and KEGG enrichment analysis showed that DE lncRNA target genes were enriched in GO terms as represented by epidermal and skin development and keratin filature and in KEGG terms as represented by PI3K-Akt, Ras, MAPK, and Wnt signaling pathways, which were related to hair follicle growth and development. Finally, immunohistochemistry staining results indicated that RAC2, WNT11, and FZD2 were expressed in dermal papilla (DP). The lncRNAs MSTRG.9225.1 and MSTRG.98769.1 may indirectly participate in the regulation of hair follicle growth, development, and fiber traits by regulating their respective target genes, LOC114113396(KRTAP15-1), FGF1, and IGF1. In addition, MSTRG.84658.1 may regulate the Wnt signaling pathway involved in the development of sheep hair follicles by targeting RAC2. This study provides a theoretical reference for improving sheep breeding in the future and lays a foundation for further research on the effects of MSTRG.84658.1 and the target gene RAC2 on dermal papilla cells (DPC). Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 1859 KiB  
Review
Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research
by Lingyan Xiang, Jie Rao, Jingping Yuan, Ting Xie and Honglin Yan
Int. J. Mol. Sci. 2024, 25(17), 9482; https://doi.org/10.3390/ijms25179482 - 31 Aug 2024
Viewed by 468
Abstract
Breast cancer is the most prevalent malignant tumor among women with high heterogeneity. Traditional techniques frequently struggle to comprehensively capture the intricacy and variety of cellular states and interactions within breast cancer. As global precision medicine rapidly advances, single-cell RNA sequencing (scRNA-seq) has [...] Read more.
Breast cancer is the most prevalent malignant tumor among women with high heterogeneity. Traditional techniques frequently struggle to comprehensively capture the intricacy and variety of cellular states and interactions within breast cancer. As global precision medicine rapidly advances, single-cell RNA sequencing (scRNA-seq) has become a highly effective technique, revolutionizing breast cancer research by offering unprecedented insights into the cellular heterogeneity and complexity of breast cancer. This cutting-edge technology facilitates the analysis of gene expression profiles at the single-cell level, uncovering diverse cell types and states within the tumor microenvironment. By dissecting the cellular composition and transcriptional signatures of breast cancer cells, scRNA-seq provides new perspectives for understanding the mechanisms behind tumor therapy, drug resistance and metastasis in breast cancer. In this review, we summarized the working principle and workflow of scRNA-seq and emphasized the major applications and discoveries of scRNA-seq in breast cancer research, highlighting its impact on our comprehension of breast cancer biology and its potential for guiding personalized treatment strategies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 4529 KiB  
Article
Transcription Factor VlbZIP14 Inhibits Postharvest Grape Berry Abscission by Directly Activating VlCOMT and Promoting Lignin Biosynthesis
by Peng Yu, Songqi Li, Yadan Sun, Xiangxuan Meng, Qiaofang Shi, Xiaochun Zhao and Yihe Yu
Int. J. Mol. Sci. 2024, 25(17), 9479; https://doi.org/10.3390/ijms25179479 - 31 Aug 2024
Viewed by 244
Abstract
Sulfur dioxide (SO2) is the most effective preservative for table grapes as it reduces the respiratory intensity of berries and inhibits mold growth. However, excessive SO2 causes berry abscission during storage, resulting in an economic loss postharvest. In this study, [...] Read more.
Sulfur dioxide (SO2) is the most effective preservative for table grapes as it reduces the respiratory intensity of berries and inhibits mold growth. However, excessive SO2 causes berry abscission during storage, resulting in an economic loss postharvest. In this study, grapes were exogenously treated with SO2, SO2 + 1.5% chitosan, SO2 + 1.5% eugenol, and SO2 + eugenol-loaded chitosan nanoparticles (SN). In comparison to SO2 treatment, SN treatment reduced the berries’ abscission rate by 74% while maintaining the quality of the berries. Among the treatments, SN treatment most effectively inhibited berry abscission and maintained berry quality. RNA-sequencing (RNA-seq) revealed that SN treatment promoted the expression of genes related to cell wall metabolism. Among these genes, VlCOMT was detected as the central gene, playing a key role in mediating the effects of SN. Dual luciferase and yeast one-hybrid (Y1H) assays demonstrated that VlbZIP14 directly activated VlCOMT by binding to the G-box motif in the latter’s promoter, which then participated in lignin synthesis. Our results provide key insights into the molecular mechanisms underlying the SN-mediated inhibition of berry abscission and could be used to improve the commercial value of SO2-treated postharvest table grapes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop