Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Antibiotics Use in Livestock Production
3. Livestock Industry as a Source of Antimicrobial Resistance
4. Outcomes of the Imprudent Use of Antibiotics in Livestock Production
5. Epidemiology of Salmonella
6. Emergence and Causes of Antibiotic Resistance by the Non-Typhoid Salmonella
7. Resistance to Current Antibiotics of Last Resort
8. Carbapenem Resistance
9. Colistin Resistance
10. Genomic Approaches in Monitoring the Dissemination of Antimicrobial Resistance
10.1. Pulse-Field Gel Electrophoresis
10.2. Multi-Locus Sequence Typing
10.3. Single Nucleotide Polymorphism Genotyping
11. Mobile Genetic Elements Characterization and Antimicrobial Resistance Monitoring
12. Genotyping of Food Animal Associated AMR Salmonella sp. in the Developing Countries
13. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meissner, H.; Scholtz, M.; Engelbrecht, F. Sustainability of the South African Livestock Sector towards 2050 Part 2: Challenges, changes and required implementations. S. Afr. J. Anim. Sci. 2013, 43, 289–319. [Google Scholar] [CrossRef] [Green Version]
- Scholtz, M.; van Ryssen, J.V.; Meissner, H.; Laker, M.C. A South African perspective on livestock production in relation to greenhouse gases and water usage. S. Afr. J. Anim. Sci. 2013, 43, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Ratwan, P.; Kumar, M.; Joshi, P.; Sharma, N.; Devi, P.; Deswal, S. Interventions and Package of Practices needed to Enhance Farmer’s Income through Livestock. Res. Rev. J. Dairy Sci. Technol. 2018, 6, 20–25. [Google Scholar]
- Luković, Z.; Škorput, D.; Karolyi, D. Pig Welfare at Different Production Systems. In Proceedings of the 11th International Symposium, Belgrade, Serbia, 11–13 October 2017. [Google Scholar]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014, 5, 334. [Google Scholar] [CrossRef] [Green Version]
- Moyane, J.; Jideani, A.; Aiyegoro, O. Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. Afr. J. Microbiol. Res. 2013, 7, 2990–2997. [Google Scholar]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Hase, K. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.J.; Kendall, M.M. Salmonella enterica serovar Typhimurium strategies for host adaptation. Front. Microbiol. 2017, 8, 1983. [Google Scholar] [CrossRef] [Green Version]
- Deris, J.B.; Kim, M.; Zhang, Z.; Okano, H.; Hermsen, R.; Groisman, A.; Hwa, T. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 2013, 342, 1237435. [Google Scholar] [CrossRef] [Green Version]
- Kibet, S.; Matiru, V.; Kibaba, P.; Mucheke, A.; Louis, H. Prevalence and antibiotic susceptibility patterns of Shigella and Salmonella causing Diarrhoea in children below 5 years at Thika level five district hospital. World News Nat. Sci. 2017, 11, 28–36. [Google Scholar]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Allcock, S.; Young, E.; Holmes, M.; Gurdasani, D.; Dougan, G.; Sandhu, M.; Solomon, L.; Török, M. Antimicrobial resistance in human populations: Challenges and opportunities. Glob. Health Epidemiol. Genom. 2017, 2, 2. [Google Scholar]
- Hennekinne, J.-A.; Herbin, S.; Firmesse, O.; Auvray, F. European food poisoning outbreaks involving meat and meat-based products. Procedia Food Sci. 2015, 5, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Ao, T.T.; Feasey, N.A.; Gordon, M.A.; Keddy, K.H.; Angulo, F.J.; Crump, J.A. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg. Infect. Dis. 2015, 21, 941. [Google Scholar] [CrossRef] [Green Version]
- Crump, J.A.; Heyderman, R.S. A perspective on invasive Salmonella disease in Africa. Clin. Infect. Dis. 2015, 61 (suppl. 4), S235–S240. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, R.; Im, J.; Lee, J.-S.; Jeon, H.J.; Mogeni, O.D.; Kim, J.H.; Rakotozandrindrainy, R.; Baker, S.; Marks, F. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines Immunother. 2019, 15, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Feasey, N.A.; Hadfield, J.; Keddy, K.H.; Dallman, T.J.; Jacobs, J.; Deng, X.; Wigley, P.; Barquist, L.; Langridge, G.C.; Feltwell, T. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat. Genet. 2016, 48, 1211–1217. [Google Scholar] [CrossRef] [Green Version]
- Gal-Mor, O.; Boyle, E.C.; Grassl, G.A. Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 2014, 5, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminov, R.I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 2009, 11, 2970–2988. [Google Scholar] [CrossRef] [PubMed]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S.; Hireche, S.; Bouaziz, O.; Rahal, K.; Rolain, J.-M. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef]
- Eguale, T.; Birungi, J.; Asrat, D.; Njahira, M.N.; Njuguna, J.; Gebreyes, W.A.; Gunn, J.S.; Djikeng, A.; Engidawork, E. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob. Resist. Infect. Control 2017, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pornsukarom, S.; van Vliet, A.H.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef]
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infect. Drug Resist. 2018, 11, 1907. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.M.; Owen, S.V.; Kaindama, L.; Rowe, W.P.; Lane, C.R.; Larkin, L.; Nair, S.; Jenkins, C.; de Pinna, E.M.; Feasey, N.A. Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa. Genome Med. 2017, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Parsons, B.N.; Humphrey, S.; Salisbury, A.M.; Mikoleit, J.; Hinton, J.C.; Gordon, M.A.; Wigley, P. Invasive non-typhoidal Salmonella Typhimurium ST313 are not host-restricted and have an invasive phenotype in experimentally infected chickens. PLoS Negl. Trop. Dis. 2013, 7, e2487. [Google Scholar] [CrossRef] [Green Version]
- Afema, J.A.; Byarugaba, D.K.; Shah, D.H.; Atukwase, E.; Nambi, M.; Sischo, W.M. Potential sources and transmission of Salmonella and antimicrobial resistance in Kampala, Uganda. PLoS ONE 2016, 11, e0152130. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Schmoger, S.; Jahn, S.; Helmuth, R.; Guerra, B. NDM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Corvallis isolated from a wild bird in Germany. J. Antimicrob. Chemother. 2013, 68, 2954–2956. [Google Scholar]
- Deng, W.; Quan, Y.; Yang, S.; Guo, L.; Zhang, X.; Liu, S.; Chen, S.; Zhou, K.; He, L.; Li, B. Antibiotic resistance in Salmonella from retail foods of animal origin and its association with disinfectant and heavy metal resistance. Microb. Drug Resist. 2018, 24, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Vilela, F.P.; Gomes, C.N.; Passaglia, J.; Rodrigues, D.P.; Costa, R.G.; Tiba Casas, M.R.; Fernandes, S.A.; Falcao, J.P.; Campioni, F. Genotypic resistance to quinolone and tetracycline in Salmonella Dublin strains isolated from humans and animals in Brazil. Microb. Drug Resist. 2019, 25, 143–151. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critically important antimicrobials for human medicine: Ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S521–S528. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195. [Google Scholar] [CrossRef]
- Somboro, A.M.; Sekyere, J.O.; Amoako, D.G.; Essack, S.Y.; Bester, L.A. Diversity and proliferation of metallo-β-lactamases: A clarion call for clinically effective metallo-β-lactamase inhibitors. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capoor, M.R.; Nair, D.; Posti, J.; Singhal, S.; Deb, M.; Aggarwal, P.; Pillai, P. Minimum inhibitory concentration of carbapenems and tigecycline against Salmonella spp. J. Med. Microbiol. 2009, 58, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollenkopf, D.F.; Stull, J.W.; Mathys, D.A.; Bowman, A.S.; Feicht, S.M.; Grooters, S.V.; Daniels, J.B.; Wittum, T.E. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Potron, A.; Poirel, L.; Nordmann, P. Plasmid-mediated transfer of the bla NDM-1 gene in Gram-negative rods. FEMS Microbiol. Lett. 2011, 324, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Roschanski, N.; Hadziabdic, S.; Borowiak, M.; Malorny, B.; Tenhagen, B.-A.; Projahn, M.; Kaesbohrer, A.; Guenther, S.; Szabo, I.; Roesler, U. Detection of VIM-1-producing enterobacter cloacae and Salmonella enterica serovars Infantis and Goldcoast at a breeding pig farm in Germany in 2017 and their molecular relationship to former VIM-1-Producing S. infantis isolates in german livestock production. Msphere 2019, 4, e00089-19. [Google Scholar]
- Wang, J.; Li, X.; Li, J.; Hurley, D.; Bai, X.; Yu, Z.; Cao, Y.; Wall, E.; Fanning, S.; Bai, L. Complete genetic analysis of a Salmonella enterica serovar Indiana isolate accompanying four plasmids carrying mcr-1, ESBL and other resistance genes in China. Vet. Microbiol. 2017, 210, 142–146. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Liu, F.; Cheng, Y.; Su, J. Characterization of Salmonella enterica isolates from diseased poultry in northern China between 2014 and 2018. Pathogens 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgenhauer, L.; Ghosh, H.; Guerra, B.; Yao, Y.; Fritzenwanker, M.; Fischer, J.; Helmuth, R.; Imirzalioglu, C.; Chakraborty, T. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany. Vet. Microbiol. 2017, 200, 114–117. [Google Scholar] [CrossRef]
- Gao, Y.; Wen, J.; Wang, S.; Xu, X.; Zhan, Z.; Chen, Z.; Bai, J.; Qu, X.; Zhang, H.; Zhang, J. Plasmid-Encoded blaNDM-5 Gene That Confers High-Level Carbapenem Resistance in Salmonella Typhimurium of Pork Origin. Infect. Drug Resist. 2020, 13, 1485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, J.; Li, Q.; Tang, Y.; Wang, J.; Pan, Z.; Chen, X.; Jiao, X. First detection of NDM-5-positive Salmonella enterica serovar typhimurium isolated from retail pork in China. Microb. Drug Resist. 2020, 26, 434–437. [Google Scholar] [CrossRef]
- Li, R.; Xie, M.; Liu, L.; Huang, Y.; Wu, X.; Wang, Z.; Chan, E.W.C.; Chen, S. Characterisation of a cointegrate plasmid harbouring blaNDM-1 in a clinical Salmonella Lomita strain. Int. J. Antimicrob. Agents 2020, 55, 105817. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Liu, Y.-H.; Feng, Y. Towards understanding MCR-like colistin resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio 2019, 10, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17–00672. [Google Scholar] [CrossRef]
- Anjum, M.F.; Duggett, N.A.; AbuOun, M.; Randall, L.; Nunez-Garcia, J.; Ellis, R.J.; Rogers, J.; Horton, R.; Brena, C.; Williamson, S. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J. Antimicrob. Chemother. 2016, 71, 2306–2313. [Google Scholar] [CrossRef] [Green Version]
- Borowiak, M.; Hammerl, J.A.; Deneke, C.; Fischer, J.; Szabo, I.; Malorny, B. Characterization of mcr-5-harboring Salmonella enterica subsp. enterica serovar Typhimurium isolates from animal and food origin in Germany. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carfora, V.; Alba, P.; Leekitcharoenphon, P.; Ballarò, D.; Cordaro, G.; Di Matteo, P.; Donati, V.; Ianzano, A.; Iurescia, M.; Stravino, F. Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant Salmonella Infantis in broiler chicken industry, Italy (2016–2017). Front. Microbiol. 2018, 9, 1880. [Google Scholar] [CrossRef] [PubMed]
- Chiou, C.-S.; Chen, Y.-T.; Wang, Y.-W.; Liu, Y.-Y.; Kuo, H.-C.; Tu, Y.-H.; Lin, A.-C.; Liao, Y.-S.; Hong, Y.-P. Dissemination of mcr-1-carrying plasmids among colistin-resistant Salmonella strains from humans and food-producing animals in Taiwan. Antimicrob. Agents Chemother. 2017, 61, e00338-17. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Godbole, G.; Ashton, P.; Larkin, L.; Dallman, T.; Day, M.; Day, M.; Muller-Pebody, B.; Ellington, M.J.; de Pinna, E. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J. Antimicrob. Chemother. 2016, 71, 2300–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-P.; Fang, L.-X.; Song, J.-Q.; Xia, J.; Huo, W.; Fang, J.-T.; Liao, X.-P.; Liu, Y.-H.; Feng, Y.; Sun, J. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Gomes, V.T.; Moreira, J.; de Oliveira, C.H.; Peres, B.P.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Moreno, A.M. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 2019, 93, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, Z.; Baloch, Z.; Hu, Y.; Xu, J.; Zhang, W.; Fanning, S.; Li, F. Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China. Microbiol. Res. 2017, 204, 48–54. [Google Scholar] [CrossRef]
- Yi, L.; Wang, J.; Gao, Y.; Liu, Y.; Doi, Y.; Wu, R.; Zeng, Z.; Liang, Z.; Liu, J.-H. mcr-1− Harboring Salmonella enterica serovar Typhimurium sequence type 34 in pigs, China. Emerg. Infect. Dis. 2017, 23, 291. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Cristino, L.; Peixe, L.; Antunes, P. mcr-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1, 4,[5], 12: I:-and S. Rissen clones in Portugal, 2011 to 2015. Eurosurveillance 2016, 21, 30270. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Carretto, E.; Brovarone, F.; Sarti, M.; Villa, L. Comparative analysis of an mcr-4 Salmonella enterica subsp. enterica monophasic variant of human and animal origin. J. Antimicrob. Chemother. 2018, 73, 3332–3335. [Google Scholar] [CrossRef]
- Litrup, E.; Kiil, K.; Hammerum, A.M.; Roer, L.; Nielsen, E.M.; Torpdahl, M. Plasmid-borne colistin resistance gene mcr-3 in Salmonella isolates from human infections, Denmark, 2009–2017. Eurosurveillance 2017, 22, 30587. [Google Scholar] [CrossRef] [PubMed]
- Carretto, E.; Brovarone, F.; Nardini, P.; Russello, G.; Barbarini, D.; Pongolini, S.; Gagliotti, C.; Carattoli, A.; Sarti, M. Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Eurosurveillance 2018, 23, 17-00821. [Google Scholar] [CrossRef] [Green Version]
- Rau, R.B.; de Lima-Morales, D.; Wink, P.L.; Ribeiro, A.R.; Barth, A.L. Salmonella entericamcr-1 positive from food in Brazil: Detection and characterization. Foodborne Pathog. Dis. 2020, 17, 202–208. [Google Scholar] [CrossRef]
- Lu, X.; Zeng, M.; Xu, J.; Zhou, H.; Gu, B.; Li, Z.; Jin, H.; Wang, X.; Zhang, W.; Hu, Y. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. EBioMedicine 2019, 42, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Monte, D.F.; Nelson, V.; Cerdeira, L.; Keelara, S.; Greene, S.; Griffin, D.; Rath, S.; Hall, R.; Page, N.; Fedorka-Cray, P.J. Multidrug-and colistin-resistant Salmonella enterica 4,[5], 12: I:-sequence type 34 carrying the mcr-3.1 gene on the IncHI2 plasmid recovered from a human. J. Med. Microbiol. 2019, 68, 986. [Google Scholar] [CrossRef]
- Elbediwi, M.; Wu, B.; Pan, H.; Jiang, Z.; Biswas, S.; Li, Y.; Yue, M. Genomic characterization of mcr-1-carrying Salmonella enterica serovar 4,[5], 12: I:-ST 34 Clone Isolated From Pigs in China. Front. Bioeng. Biotechnol. 2020, 8, 663. [Google Scholar] [CrossRef] [PubMed]
- Kozyreva, V.K.; Crandall, J.; Sabol, A.; Poe, A.; Zhang, P.; Concepción-Acevedo, J.; Schroeder, M.N.; Wagner, D.; Higa, J.; Trees, E. Laboratory investigation of Salmonella enterica serovar Poona outbreak in California: Comparison of pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) results. PLoS Curr. 2016, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- CDC. Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157: H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017.
- Campioni, F.; Pitondo-Silva, A.; Bergamini, A.M.; Falcão, J.P. Comparison of four molecular methods to type Salmonella Enteritidis strains. APMIS 2015, 123, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, M.L.; Shi, C.; Switt, A.I.M.; Den Bakker, H.C.; Wiedmann, M. Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction. J. Clin. Microbiol. 2013, 51, 1786–1797. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; Usongo, V.; Berry, C.; Tremblay, D.M.; Moineau, S.; Yousfi, K.; Doualla-Bell, F.; Fournier, E.; Nadon, C.; Goodridge, L. Comparison of advanced whole genome sequence-based methods to distinguish strains of Salmonella enterica serovar Heidelberg involved in foodborne outbreaks in Québec. Food Microbiol. 2018, 73, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Tewolde, R.; Dallman, T.; Schaefer, U.; Sheppard, C.L.; Ashton, P.; Pichon, B.; Ellington, M.; Swift, C.; Green, J.; Underwood, A. MOST: A modified MLST typing tool based on short read sequencing. PeerJ 2016, 4, e2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, M.; Kaur, S.; Wang, Q.; Hennessy, D.; Luo, L.; Octavia, S.; Tanaka, M.M.; Sintchenko, V.; Lan, R. Multilevel genome typing: Genomics-guided scalable resolution typing of microbial pathogens. Eurosurveillance 2020, 25, 1900519. [Google Scholar] [CrossRef] [PubMed]
- Pethplerdprao, P.; Supa-amornkul, S.; Panvisavas, N.; Chaturongakul, S. Salmonella enterica multilocus sequence typing and its correlation with serotypes. Food Biotechnol. 2017, 31, 73–79. [Google Scholar] [CrossRef]
- Barua, H.; Biswas, P.K.; Talukder, K.A.; Olsen, K.E.; Christensen, J.P. Poultry as a possible source of non-typhoidal Salmonella enterica serovars in humans in Bangladesh. Vet. Microbiol. 2014, 168, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sudhanthirakodi, S.; Chowdhury, G.; Joshi, S.; Anandan, S.; Ray, U.; Mukhopadhyay, A.; Dutta, S. Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium clinical and environmental isolates from India. PLoS ONE 2018, 13, e0207954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, G.-Q.; Abdullah, K.G.; Wang, Q.K. The TaqMan method for SNP genotyping. In Single Nucleotide Polymorphisms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 293–306. [Google Scholar]
- Hayford, A.E.; Brown, E.W.; Zhao, S.; Mammel, M.K.; Gangiredla, J.; Abbott, J.W.; Friedman, S.L.; Ayers, S.L.; Lewis, J.L.; Lacher, D.W. Genetic and resistance phenotypic subtyping of Salmonella Saintpaul isolates from various food sources and humans: Phylogenetic concordance in combinatory analyses. Infect. Genet. Evol. 2015, 36, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Ksibi, B.; Ktari, S.; Othman, H.; Ghedira, K.; Maalej, S.; Mnif, B.; salah Abbassi, M.; Fabre, L.; Rhimi, F.; Le Hello, S. Comparison of conventional molecular and whole-genome sequencing methods for subtyping Salmonella enterica serovar Enteritidis strains from Tunisia. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 597–606. [Google Scholar] [CrossRef]
- Ogunremi, D.; Kelly, H.; Dupras, A.A.; Belanger, S.; Devenish, J. Development of a new molecular subtyping tool for Salmonella enterica serovar Enteritidis based on single nucleotide polymorphism genotyping using PCR. J. Clin. Microbiol. 2014, 52, 4275–4285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Trost, E.; Bender, J.; Fuchs, S.; Malorny, B.; Rabsch, W.; Prager, R.; Tietze, E.; Flieger, A. Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany. Food Microbiol. 2018, 71, 46–54. [Google Scholar] [CrossRef]
- Rantsiou, K.; Kathariou, S.; Winkler, A.; Skandamis, P.; Saint-Cyr, M.J.; Rouzeau-Szynalski, K.; Amézquita, A. Next generation microbiological risk assessment: Opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. Int. J. Food Microbiol. 2018, 287, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Zhang, J.; Gu, Z.; Li, R.; Chan, E.W.-C.; Yan, M.; Wu, C.; Xu, X.; Chen, S. Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Baloch, Z.; Peng, Z.; Hu, Y.; Xu, J.; Fanning, S.; Li, F. Genomic characterization of a large plasmid containing a bla NDM-1 gene carried on Salmonella enterica serovar Indiana C629 isolate from China. BMC Infect. Dis. 2017, 17, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.; Fox, E.M.; Fegan, N.; Kurtböke, D.Í. Comparative genomics and phenotypic investigations into antibiotic, heavy metal, and disinfectant susceptibilities of Salmonella enterica strains isolated in Australia. Front. Microbiol. 2019, 10, 1620. [Google Scholar] [CrossRef] [Green Version]
- Arai, N.; Sekizuka, T.; Tamamura, Y.; Kusumoto, M.; Hinenoya, A.; Yamasaki, S.; Iwata, T.; Watanabe-Yanai, A.; Kuroda, M.; Akiba, M. Salmonella genomic island 3 is an integrative and conjugative element and contributes to copper and arsenic tolerance of Salmonella enterica. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Billman-Jacobe, H.; Liu, Y.; Haites, R.; Weaver, T.; Robinson, L.; Marenda, M.; Dyall-Smith, M. pSTM6-275, a conjugative IncHI2 plasmid of Salmonella enterica that confers antibiotic and heavy-metal resistance under changing physiological conditions. Antimicrob. Agents Chemother. 2018, 62, e02357-17. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Deng, W.; Liu, S.; Yu, X.; Mustafa, G.R.; Chen, S.; He, L.; Ao, X.; Yang, Y.; Zhou, K. Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. J. Glob. Antimicrob. Resist. 2020, 21, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.G.; Rosario, D.K.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fashae, K.; Leekitcharoenphon, P.; Hendriksen, R.S. Phenotypic and genotypic comparison of Salmonellae from diarrhoeic and healthy humans and cattle, Nigeria. Zoonoses Public Health 2018, 65, e185–e195. [Google Scholar] [CrossRef] [PubMed]
- Odoch, T.; Sekse, C.; L’Abee-Lund, T.M.; Høgberg Hansen, H.C.; Kankya, C.; Wasteson, Y. Diversity and antimicrobial resistance genotypes in non-typhoidal Salmonella isolates from poultry farms in Uganda. Int. J. Environ. Res. Public Health 2018, 15, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murgia, M.; Bouchrif, B.; Timinouni, M.; Al-Qahtani, A.; Al-Ahdal, M.N.; Cappuccinelli, P.; Rubino, S.; Paglietti, B. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco. Int. J. Food Microbiol. 2015, 215, 31–39. [Google Scholar] [CrossRef]
- El Zowalaty, M.E.; Hickman, R.A.; Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, A.E.; Järhult, J.D. Genome sequences of two Salmonella enterica strains (MEZSAL74 and MEZSAL81) harbouring multiple antimicrobial resistance genes isolated from livestock in South Africa. J. Glob. Antimicrob. Resist. 2020, 21, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.P.; Leibler, J.H.; Price, L.B.; Otte, J.M.; Pfeiffer, D.U.; Tiensin, T.; Silbergeld, E.K. The animal-human interface and infectious disease in industrial food animal production: Rethinking biosecurity and biocontainment. Public Health Rep. 2008, 123, 282–299. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, R.R.; Li, S. Antimicrobial resistance in livestock: Advances and alternatives to antibiotics. Anim. Front. 2018, 8, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Salmonella Serovar | Host | Plasmid Description | Location | Reference |
---|---|---|---|---|
Infantis | Pig | blaVIM-1 carrying IncHI2 type | Germany | [44,47] |
Typhimurium | Pork | blaNDM-5 carrying IncX3 type | China | [48,49] |
Lomita | Human | blaNDM-1 carrying IncX3 type | China | [50] |
Indiana | Chicken carcass | blaNDM-1 carrying plasmid | China | [45] |
Corvallis | Wild bird | blaNDM-1 carrying IncA/C type | Germany | [33] |
Salmonella Serovar | Host Species | Plasmid Identified | Location | Reference |
---|---|---|---|---|
Typhimurium | Pig | mcr-1 carrying like pHNSHP45 (IncI2) | Great Britain | [56] |
Typhimurium | Pig and meat | mcr-5 carrying IncX1 and ColE plasmids | Germany | [57] |
Infantis | Broilers and broiler meat | mcr-1 carrying IncX4 | Italy | [58] |
Typhimurium | Chicken, pig, humans | mcr-1 carrying IncI2 type plasmid | Taiwan | [59] |
Typhimurium | human | mcr-1 carrying IncX4, IncI2, and IncHI2 | England and Wales | [60] |
Typhimurium | Pig, chicken | mcr-1 carrying IncI2 and IncHI2 type | China | [61] |
Schwarzengrund | Poultry meat | mcr-1 carrying IncX4 | Brazil | [62] |
Indiana | Poultry | mcr-1 carrying IncI2 type | China | [63] |
Typhimurium | Pig | mcr-1 carrying IncHI2 like plasmid | China | [64] |
Rissen and Typhimurium 1,4,[5],12:i− | Pig | mcr-1 carrying IncX4 and IncHI2 | Portugal | [65] |
Typhimurium | Pig | mcr-4 carrying non-conjugative colE plasmid | Italy | [66] |
Typhimurium | human | mcr-3 carrying IncHI2 | Denmark | [67] |
Typhimurium | human | mcr-4 carrying ColE-like plasmid | Italy | [66,68] |
Typhimurium and Saintpaul | food | mcr-1 carrying IncX4 | Brazil | [69] |
Typhimurium | human | mcr-1 carrying IncHI2, IncI2 and IncX4 plasmids | China | [70] |
Typhimurium | human | mcr-3 carrying IncHI2 | United States | [71] |
Typhimurium | Pig | mcr-1 carrying IncHI2 | China | [72] |
Source | Salmonella Serovars Detected | Genotyping Approach | Resistance to Antibiotics or Resistance Genes Detected | Geographic Area | Reference |
---|---|---|---|---|---|
Poultry | Newport, Heidelberg, Aberdeen, Hadar, Zanzibar, Bolton, Enteritidis, Mbandaka, Typhimurium | PFGE PCR | blaTEM-1, cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII | Uganda | [98] |
Ruminants, pigs, poultry, environmental and wastewater from farms and humans | Enteritidis, Haifa, Heidelberg, Kentucky, Newport, Senftenberg, Stanleyville, Typhimurium, Virchow | MLVA PFGE | ampicillin; amoxicillin/clavulanic acid; chloramphenicol; kanamycin; streptomycin; sufisoxazole; trimethoprim/sulfamethoxazole; tetracycline; ciprofloxacin; nalidixic acid | Uganda | [32] |
Cattle and human | Colindale, Corvalis, Kentucky and other rare serovars | WGS-SNP typing MLST | blaTEM-1B, aac(3)-Id, aadA7, strA, strB and tetA | Nigeria | [97] |
Food (including beef, poultry) | Infantis, Mbandaka, Bredeney, Blockley, Typhimurium, Indiana, Hadar, Anatum, Enteritidis, Altona, Senftenberg, Kentucky, Cerro | PFGE MLST and PCR | aadA2, strA, sul1, sul2, floR, blaTEM-1, blaPSE-1, tetA and tetG | Morocco | [99] |
Livestock (cow and chicken) | Salmonella enterica strains MEZSAL74 and MEZSAL81 | WGS, MLST, PCR | Aminoglycosides, fluoroquinolones | South Africa | [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals 2021, 11, 872. https://doi.org/10.3390/ani11030872
Mthembu TP, Zishiri OT, El Zowalaty ME. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals. 2021; 11(3):872. https://doi.org/10.3390/ani11030872
Chicago/Turabian StyleMthembu, Thobeka P., Oliver T. Zishiri, and Mohamed E. El Zowalaty. 2021. "Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species" Animals 11, no. 3: 872. https://doi.org/10.3390/ani11030872