Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,688)

Search Parameters:
Keywords = foodborne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1798 KiB  
Article
Assessment of Photoactivated Chlorophyllin Production of Singlet Oxygen and Inactivation of Foodborne Pathogens
by Cristina Pablos, Javier Marugán, Rafael van Grieken, Jeremy W. J. Hamilton, Nigel G. Ternan and Patrick S. M. Dunlop
Catalysts 2024, 14(8), 507; https://doi.org/10.3390/catal14080507 - 6 Aug 2024
Viewed by 278
Abstract
Singlet oxygen (1O2) is known to have antibacterial activity; however, production can involve complex processes with expensive chemical precursors and/or significant energy input. Recent studies have confirmed the generation of 1O2 through the activation of photosensitizer molecules [...] Read more.
Singlet oxygen (1O2) is known to have antibacterial activity; however, production can involve complex processes with expensive chemical precursors and/or significant energy input. Recent studies have confirmed the generation of 1O2 through the activation of photosensitizer molecules (PSs) with visible light in the presence of oxygen. Given the increase in the incidence of foodborne diseases associated with cross-contamination in food-processing industries, which is becoming a major concern, food-safe additives, such as chlorophyllins, have been studied for their ability to act as PSs. The fluorescent probe Singlet Oxygen Sensor Green (SOSG®) was used to estimate 1O2 formation upon the irradiation of traditional PSs (rose bengal (RB), chlorin 6 (ce6)) and novel chlorophyllins, sodium magnesium (NaChl) and sodium copper (NaCuChl), with both simulated-solar and visible light. NaChl gave rise to a similar 1O2 production rate when compared to RB and ce6. Basic mixing was shown to introduce sufficient oxygen to the PS solutions, preventing the limitation of the 1O2 production rate. The NaChl-based inactivation of Gram-positive S. aureus and Gram-negative E. coli was demonstrated with a 5-log reduction with UV–Vis light. The NaChl-based inactivation of Gram-positive S. aureus was accomplished with a 2-log reduction after 105 min of visible-light irradiation and a 3-log reduction following 150 min of exposure from an initial viable bacterial concentration of 106 CFU mL−1. CHS-NaChl-based photosensitization under visible light enhanced Gram-negative E. coli inactivation and provided a strong bacteriostatic effect preventing E. coli proliferation. The difference in the ability of NaChl and CHS-NaChl complexes to inactivate Gram-positive and Gram-negative bacteria was confirmed to result from the cell wall structure, which impacted PS–bacteria attachment and therefore the production of localized singlet oxygen. Full article
(This article belongs to the Special Issue Photocatalysis towards a Sustainable Future)
Show Figures

Figure 1

13 pages, 6971 KiB  
Article
Antimicrobial Resistance and Genomic Characterization of Campylobacter jejuni and Campylobacter coli Isolated from Retail Chickens in Beijing, China
by Yao Bai, Jiaqi Ma, Fengqin Li, Baowei Yang, Xiu Ren, Yeru Wang, Yujie Hu, Yinping Dong, Wei Wang, Jing Zhang, Shaofei Yan and Shenghui Cui
Microorganisms 2024, 12(8), 1601; https://doi.org/10.3390/microorganisms12081601 - 6 Aug 2024
Viewed by 174
Abstract
Objective Campylobacter species are the main causes of foodborne illness worldwide, posing significant threats to public health. This study aimed to investigate the antibiotic resistance and genomic characterization of C. jejuni/C.coli from retail chickens in Beijing. Methods Antimicrobial susceptibility testing was [...] Read more.
Objective Campylobacter species are the main causes of foodborne illness worldwide, posing significant threats to public health. This study aimed to investigate the antibiotic resistance and genomic characterization of C. jejuni/C.coli from retail chickens in Beijing. Methods Antimicrobial susceptibility testing was conducted on 126 C. jejuni/C. coli isolated from retail chickens in Beijing, following CLSI protocols. Whole genomes of all isolates were sequenced using the Illumina platform. Results More C. coli (83.82%) showed multi-drug resistance than C. jejuni (8.62%). Genomic analysis demonstrated 42 sequence types (STs) and 12 clonal complexes (CCs), from which CC828 and CC52 were dominant. cdtA, cdtB and cdtC encoding cytotoxic protein were present spontaneously in most C. jejuni but not found in any C. coli isolates. The abundances of antibiotic resistance genes (ARGs) and virulence genes (VGs) in C. jejuni and C. coli were significantly different, with ARGs numbered in C. coli and VGs in C. jejuni. Conclusions High prevalence of multi-drug resistance C. coli and C. jejuni isolated from Beijing chickens were challenging clinical antibiotic usages in the treatment of Campylobacter infection. The surveillance of particular C. jejuni and C. coli STs correlated with higher resistance and virulence needs to be strengthened in the future. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics)
Show Figures

Figure 1

19 pages, 616 KiB  
Review
Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective
by Alejandro De Jesús Cortés-Sánchez, María Eugenia Jaramillo-Flores, Mayra Díaz-Ramírez, Luis Daniel Espinosa-Chaurand and Erika Torres-Ochoa
Viewed by 386
Abstract
Through fishing and aquaculture activities, humans have access to fish, which are a basic food source in the diet due to their nutritional value. Fish are widely distributed and commercialized worldwide in different products (e.g., whole fresh, filleted, sliced, frozen, dried, smoked, salted, [...] Read more.
Through fishing and aquaculture activities, humans have access to fish, which are a basic food source in the diet due to their nutritional value. Fish are widely distributed and commercialized worldwide in different products (e.g., whole fresh, filleted, sliced, frozen, dried, smoked, salted, and canned fish, among others). Because of their composition and nutritional value, fish are highly susceptible to spoilage and contamination, mainly by microorganisms, compromising their safety, shelf life, and availability; therefore, consuming fish can become a risk to public health. Foodborne diseases are considered important global public health problems because of their incidence, consequences, mortality, and negative economic impact on the population. Among the foods commonly associated with foodborne diseases are fish and fish products contaminated by various agents that are harmful to health throughout the food chain. Because of the constant growth of the population and the demand for greater quantities of food, the search for and development of technologies for the generation and availability of fresh, safe food with nutritional and sensorial qualities has increased. This is how biopreservation emerges, which, through the application of lactic acid bacteria and/or metabolites, is positioned as a sustainable, economic, and simple alternative for obtaining fish and fish products and making them available for human and/or animal consumption. Therefore, this work focuses on providing a basic and general perspective and information through the search, collection, and analysis of information in various databases, such as Google Scholar, SciELO, Redalyc, ScienceDirect, and/or institutional repositories, regarding fish production, nutritional properties, foodborne diseases, causal agents, and their associations with fish and fish products. Additionally, this study describes the biopreservation process through the use of lactic acid bacteria and/or metabolites to extend shelf life and promote the safety and nutritional and sensory qualities of fish and fish products intended for human and/or animal consumption. Full article
Show Figures

Figure 1

15 pages, 881 KiB  
Article
Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries
by Antonio Cobo, Alfonso Alejo-Armijo, Daniel Cruz, Joaquín Altarejos, Sofía Salido and Elena Ortega-Morente
Molecules 2024, 29(15), 3622; https://doi.org/10.3390/molecules29153622 - 31 Jul 2024
Viewed by 347
Abstract
A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and [...] Read more.
A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and antibiofilm activities against foodborne bacteria by analogs to A-type proanthocyanidins (PACs) with a nitro (NO2) group at carbon 6 of the A-ring. We report herein the synthesis of eight additional analogs with chloro and bromo atoms at the A-ring and the systematic study of their antimicrobial and antioxidant activities in order to evaluate their possible application as biocides or food preservatives, as well as to elucidate new structure–activity relationships. The results from this study show that halogenated analogs to natural A-type proanthocyanidins rise above the nitro derivatives previously reported in their antimicrobial activities. Gram-positive bacteria are the most sensitive to all the analogs and combinations assayed, showing MICs from 10 to 50 μg/mL in most cases, as well as reductions in biofilm formation and the disruption of preformed biofilms of at least 75%. Some structure–activity relationships previously described have also been corroborated. Analogs with just one OH group at the B-ring show better antimicrobial activities than those with two OH groups, and those analogs with two or three OH groups in the whole structure are more active than those with four OH groups. In addition, the analogs with two OH groups at the B-ring and chloro at the A-ring are the most effective when antibiofilm activities are studied, especially at low concentrations. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

15 pages, 1542 KiB  
Review
A Comprehensive Review Exploring the Protective Role of Specific Commensal Gut Bacteria against Salmonella
by Saloni Singh and Ok Kyung Koo
Pathogens 2024, 13(8), 642; https://doi.org/10.3390/pathogens13080642 - 31 Jul 2024
Viewed by 453
Abstract
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. [...] Read more.
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. This review focuses on the interactions between Salmonella and the key commensal bacteria such as E. coli, Lactobacillus, Clostridium, Akkermansia, and Bacteroides. The review highlights the role of these gut bacteria and their synergy in combating Salmonella through several mechanistic interactions. These include the production of siderophores, which compete with Salmonella for essential iron; the synthesis of short-chain fatty acids (SCFAs), which exert antimicrobial effects and modulate the gut environment; the secretion of bacteriocins, which directly inhibit Salmonella growth; and the modulation of cytokine responses, which influences the host’s immune reaction to infection. While much research has explored Salmonella, this review aims to better understand how specific gut bacteria engage with the pathogen, revealing distinct defense mechanisms tailored to each species and how their synergy may lead to enhanced protection against Salmonella. Furthermore, the combination of these commensal bacteria could offer promising avenues for bacteria-mediated therapy during Salmonella-induced gut infections in the future. Full article
Show Figures

Figure 1

25 pages, 4546 KiB  
Article
Genetic Diversity in Salmonella enterica in Outbreaks of Foodborne and Zoonotic Origin in the USA in 2006–2017
by Eija Trees, Heather A. Carleton, Jason P. Folster, Laura Gieraltowski, Kelley Hise, Molly Leeper, Thai-An Nguyen, Angela Poates, Ashley Sabol, Kaitlin A. Tagg, Beth Tolar, Michael Vasser, Hattie E. Webb, Matthew Wise and Rebecca L. Lindsey
Microorganisms 2024, 12(8), 1563; https://doi.org/10.3390/microorganisms12081563 - 31 Jul 2024
Viewed by 368
Abstract
Whole genome sequencing is replacing traditional laboratory surveillance methods as the primary tool to track and characterize clusters and outbreaks of the foodborne and zoonotic pathogen Salmonella enterica (S. enterica). In this study, 438 S. enterica isolates representing 35 serovars and [...] Read more.
Whole genome sequencing is replacing traditional laboratory surveillance methods as the primary tool to track and characterize clusters and outbreaks of the foodborne and zoonotic pathogen Salmonella enterica (S. enterica). In this study, 438 S. enterica isolates representing 35 serovars and 13 broad vehicle categories from one hundred epidemiologically confirmed outbreaks were evaluated for genetic variation to develop epidemiologically relevant interpretation guidelines for Salmonella disease cluster detection. The Illumina sequences were analyzed by core genome multi-locus sequence typing (cgMLST) and screened for antimicrobial resistance (AR) determinants and plasmids. Ninety-three of the one hundred outbreaks exhibited a close allele range (less than 10 allele differences with a subset closer than 5). The remaining seven outbreaks showed increased variation, of which three were considered polyclonal. A total of 16 and 28 outbreaks, respectively, showed variations in the AR and plasmid profiles. The serovars Newport and I 4,[5],12:i:-, as well as the zoonotic and poultry product vehicles, were overrepresented among the outbreaks, showing increased variation. A close allele range in cgMLST profiles can be considered a reliable proxy for epidemiological relatedness for the vast majority of S. enterica outbreak investigations. Variations associated with mobile elements happen relatively frequently during outbreaks and could be reflective of changing selective pressures. Full article
(This article belongs to the Special Issue Overview of Foodborne Pathogens and Antimicrobial Resistance)
Show Figures

Figure 1

13 pages, 7103 KiB  
Article
Controllable Construction of Aptamer-Modified Fe3O4@SiO2-Au Core-Shell-Satellite Nanocomposites with Surface-Enhanced Raman Scattering and Photothermal Properties and Their Effective Capture, Detection, and Elimination of Staphylococcus aureus
by Yongdan Wang, Shengyi Wang, Yuhui Zou, Yuze Gao, Boya Ma, Yuhan Zhang, Huasong Dai, Jingmei Ma and Wenshi Zhao
Molecules 2024, 29(15), 3593; https://doi.org/10.3390/molecules29153593 - 30 Jul 2024
Viewed by 459
Abstract
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a [...] Read more.
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core–shell–satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment. Full article
(This article belongs to the Special Issue Advances in the Applications of Surface Enhanced Raman Scattering)
Show Figures

Graphical abstract

19 pages, 2920 KiB  
Article
Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin
by Zain Sanchez-Reinoso, Sarah Todeschini, Jacinthe Thibodeau, Laila Ben Said, Ismail Fliss, Laurent Bazinet and Sergey Mikhaylin
Foods 2024, 13(15), 2394; https://doi.org/10.3390/foods13152394 - 29 Jul 2024
Viewed by 423
Abstract
Listeria monocytogenes is a foodborne pathogen that represents a serious concern for ready-to-eat (RTE) meat products due to its persistence in production facilities. Among the different strategies for the control of this pathogen, the use of antimicrobial peptides derived from food by-products, such [...] Read more.
Listeria monocytogenes is a foodborne pathogen that represents a serious concern for ready-to-eat (RTE) meat products due to its persistence in production facilities. Among the different strategies for the control of this pathogen, the use of antimicrobial peptides derived from food by-products, such as slaughterhouse blood proteins, has emerged as a promising biocontrol strategy. This study evaluated for the first time the use of peptic hydrolysates of porcine hemoglobin as a biocontrol strategy of L. monocytogenes in RTE pork cooked ham. Pure porcine hemoglobin (Hb-P) and porcine cruor (P-Cru) were hydrolyzed using pepsin at different temperatures (37 °C for Hb-P and 23 °C for P-Cru) for 3 h. Then, the hydrolysates were characterized in terms of their degree of hydrolysis (DH), peptide population, color, and antimicrobial activity (in vitro and in situ) against three different serotypes of L. monocytogenes. Reducing the hydrolysis temperature of P-Cru by 14 °C resulted in a 2 percentage unit decrease in DH and some differences in the peptide composition. Nevertheless, the antimicrobial activity (in situ) was not significantly impacted, decreasing the viable count of L. monocytogenes by ~1-log and retarding their growth for 21 days at 4 °C. Although the color of the product was visibly altered, leading to more saturated reddish and yellowish tones and reduced brightness, the discoloration of the hydrolysates can be addressed. This biopreservation approach holds promise for other meat products and contributes to the circular economy concept of the meat industry by valorizing slaughterhouse blood and producing new antilisterial compounds. Full article
Show Figures

Figure 1

13 pages, 615 KiB  
Review
A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East
by Mohamed-Yousif Ibrahim Mohamed, Glindya Bhagya Lakshmi, Hamidreza Sodagari and Ihab Habib
Vet. Sci. 2024, 11(8), 344; https://doi.org/10.3390/vetsci11080344 - 29 Jul 2024
Viewed by 690
Abstract
The purpose of this review was to investigatethe microbial and chemical safety of camel meat and the zoonotic diseases associated with camels in the Middle East over the past decade, emphasizing the crucial role of a One Health approach. By systematically analyzing recent [...] Read more.
The purpose of this review was to investigatethe microbial and chemical safety of camel meat and the zoonotic diseases associated with camels in the Middle East over the past decade, emphasizing the crucial role of a One Health approach. By systematically analyzing recent studies (in the past decade, from 2014), we assessed pathogen prevalence, contamination with heavy metals and pesticide residues, and the impact of zoonotic diseases like Middle East respiratory syndrome coronavirus (MERS-CoV). The findings revealed significant variability in pathogen prevalence, with the frequent detection of traditional foodborne pathogens (e.g., Salmonella and E. coli O157), as well as antibiotic-resistant strains like methicillin-resistant and vancomycin-resistant Staphylococcus aureus and extended-spectrum β-lactamase (ESBL)-producing E. coli, underscoring the need for stringent antibiotic use policies and robust food safety measures. Additionally, the review highlighted substantial contamination of camel meat with heavy metals and pesticide residues, posing significant public health concerns that necessitate stringent regulatory measures and regular monitoring. The persistent occurrence of zoonotic diseases, particularly MERS-CoV, along with other threats like trypanosomiasis, brucellosis, and Clostridium perfringens, emphasizes the importance of strengthening ongoing surveillance. Enhancing investment in diagnostic infrastructures, training programs, and planning capabilities is crucial to address these issues at the camel–human interface in the Middle East. Adopting a One Health perspective is vital to ensuring the safety and quality of camel meat and managing zoonotic risks effectively to ultimately safeguard public health and promote sustainable livestock practices. Full article
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
First Data on WGS-Based Typing and Antimicrobial Resistance of Human Salmonella Enteritidis Isolates in Greece
by Michalis Polemis, Theologia Sideroglou, Anthi Chrysostomou and Georgia D. Mandilara
Antibiotics 2024, 13(8), 708; https://doi.org/10.3390/antibiotics13080708 - 29 Jul 2024
Viewed by 342
Abstract
Salmonella enterica subsp. enterica serotype Enteritidis (S. Enteritidis) is one of the major causes of foodborne infections and is responsible for many national and multi-country foodborne outbreaks worldwide. In Greece, human salmonellosis is a mandatory notifiable disease, with laboratory surveillance being on [...] Read more.
Salmonella enterica subsp. enterica serotype Enteritidis (S. Enteritidis) is one of the major causes of foodborne infections and is responsible for many national and multi-country foodborne outbreaks worldwide. In Greece, human salmonellosis is a mandatory notifiable disease, with laboratory surveillance being on a voluntary basis. This study aims to provide the first insights into the genetic characteristics and antimicrobial resistance profiles of 47 S. Enteritidis human isolates using whole-genome sequencing (WGS) technology. The S. Enteritidis population was mainly resistant to fluoroquinolones due to gyrA point mutations, whereas one isolate presented a multi-resistant plasmid-mediated phenotype. ST11 was the most frequent sequence type, and phylogenetic analysis through the cgMLST and SNP methods revealed considerable genetic diversity. Regarding virulence factors, 8 out of the 24 known SPIs and C63PI were detected. Due to the observed variability between countries, it is of utmost importance to record the circulating S. Enteritidis strains’ structure and genomic epidemiology at the national level. WGS is a valuable tool that is revolutionizing our approach to Salmonella by providing a deeper understanding of these pathogens and their impact on human health. Full article
Show Figures

Figure 1

23 pages, 929 KiB  
Article
Impact of Veterinary Feed Directive Rules Changes on the Prevalence of Antibiotic Resistance Bacteria Isolated from Cecal Samples of Food-Producing Animals at US Slaughterhouses
by Shamim Sarkar and Chika C. Okafor
Pathogens 2024, 13(8), 631; https://doi.org/10.3390/pathogens13080631 - 28 Jul 2024
Viewed by 368
Abstract
This study examined the impact of the 2017 Veterinary Feed Directive (VFD) rule changes on the prevalence of tetracycline-resistant and erythromycin-resistant bacteria (Salmonella spp., Campylobacter spp., and Escherichia coli) in cecal samples of food animals (cattle, swine, chicken, and turkey) at [...] Read more.
This study examined the impact of the 2017 Veterinary Feed Directive (VFD) rule changes on the prevalence of tetracycline-resistant and erythromycin-resistant bacteria (Salmonella spp., Campylobacter spp., and Escherichia coli) in cecal samples of food animals (cattle, swine, chicken, and turkey) at US slaughterhouses. Multivariable logistic regression was used to analyze 2013–2019 cecal samples of food-producing animals surveillance data from the National Antimicrobial Resistance Monitoring System (NARMS) in the U.S. The variables included year (used to evaluate VFD rule changes), host, and quarter of year. The analysis of surveillance data showed that the VFD rule changes have varying effects on tetracycline-resistant and erythromycin-resistant bacteria in food animals. For example, the odds of detecting tetracycline-resistant Salmonella spp. decreased in cattle but increased in chickens following the implementation of the VFD rule changes. Similarly, the odds of detecting tetracycline-resistant Escherichia coli decreased in chickens but increased in swine after the VFD rule changes. The odds of detecting erythromycin-resistant Campylobacter spp. increased in cattle but decreased in chickens after the VFD rule changes. In conclusion, the implementation of VFD rule changes has been beneficial in reducing the odds of detecting tetracycline-resistant Escherichia coli and erythromycin-resistant Campylobacter spp. in chickens, as well as tetracycline-resistant Salmonella spp. in cattle at US slaughterhouses. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

18 pages, 7178 KiB  
Article
Multidrug-Resistance of Vibrio Species in Bivalve Mollusks from Southern Thailand: Isolation, Identification, Pathogenicity, and Their Sensitivity toward Chitooligosaccharide-Epigallocatechin-3-Gallate Conjugate
by Mruganxi Harshad Sharma, Suriya Palamae, Mingkwan Yingkajorn, Soottawat Benjakul, Avtar Singh and Jirayu Buatong
Foods 2024, 13(15), 2375; https://doi.org/10.3390/foods13152375 - 27 Jul 2024
Viewed by 352
Abstract
Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams [...] Read more.
Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and green mussels (4 isolates) showed positive β–hemolysis. Based on the biofilm formation index (BFI) of β–hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity, with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85, BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid, ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole. A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial activity of chitooligosaccharide–epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-EGCG conjugate were in the range of 64–128 µg/mL. The antimicrobial activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent for controlling Vibrio in mollusks. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 11398 KiB  
Article
Wild Vitis Species as Stilbenes Sources: Cane Extracts and Their Antibacterial Activity against Listeria monocytogenes
by Okba Hatem, Anita Steinbach, György Schneider, Franco Röckel and László Kőrösi
Molecules 2024, 29(15), 3518; https://doi.org/10.3390/molecules29153518 - 26 Jul 2024
Viewed by 471
Abstract
Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this [...] Read more.
Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this work, high-performance liquid chromatography was used to analyze the stilbenoid profile of various wild Vitis species, including V. amurensis, V. davidii, V. pentagona, and V. romanetii, selected from the gene bank for grapes at the University of Pécs, Hungary. We found that the stilbene profile of cane extracts is strongly genotype-dependent, showing the predominant presence of ε-viniferin with a wide concentration range ≈ 320–3870 µg/g dry weight. A novel yet simple and efficient extraction procedure was developed and applied for the first time on grape canes, resulting in ε-viniferin-rich crude extracts that were tested against Listeria monocytogenes, an important foodborne pathogen. After 24 h exposure, V. pentagona and V. amurensis crude extracts completely eliminated the bacteria at a minimum bactericidal concentration of 42.3 µg/mL and 39.2 µg/mL of ε-viniferin, respectively. On the other hand, V. romanetii extract with 7.8 µg/mL of ε-viniferin resulted in 4 log reduction in the viable bacterial cells, while V. davidii extract with 1.4 µg/mL of ε-viniferin did not show significant antibacterial activity. These findings indicate that the ε-viniferin content was directly responsible for the antibacterial effect of cane extract. However, pure ε-viniferin (purity > 95%) required a higher concentration (188 µg/mL) to eradicate the bacteria under the same conditions, suggesting the presence of other antibacterial compounds in the cane extracts. Investigating the onset time of the bactericidal action was conducted through a kinetic experiment, and results showed that the reduction in living bacterial number started after 2 h; however, the bactericidal action demanded 24 h of exposure. Our results revealed that the canes of V. pentagona and V. amurensis species are a crucial bio-source of an important stilbene with antimicrobial activity and health benefits. Full article
Show Figures

Figure 1

8 pages, 493 KiB  
Article
Genomic Characterization of Selected Escherichia coli Strains from Catfish (Clarias gariepinus) in Nigeria
by Chibuzo Linda Ekwuazi, Frank C. Ogbo, Anna Stöger, Werner Ruppitsch and Adriana Cabal Rosel
Appl. Microbiol. 2024, 4(3), 1142-1149; https://doi.org/10.3390/applmicrobiol4030077 - 24 Jul 2024
Viewed by 282
Abstract
According to a report by the World Health Organization (WHO), each year, over 550 million individuals worldwide suffer from and 230,000 die from diarrheal illnesses, which accounts for more than half of the global foodborne disease burden. Among them, children face a heightened [...] Read more.
According to a report by the World Health Organization (WHO), each year, over 550 million individuals worldwide suffer from and 230,000 die from diarrheal illnesses, which accounts for more than half of the global foodborne disease burden. Among them, children face a heightened vulnerability, with approximately 220 million falling ill and 96,000 succumbing to these diseases annually. This work aimed to study the genomic characterization of selected E. coli strains from catfish (Clarias (C.) gariepinus) caught from the Onitsha North axis of the River Niger in Anambra state, Nigeria. A total of 50 fish were randomly purchased from different fishermen over a period of four months. Samples that comprised six different organs (skin, flesh, gills, gonads, guts, and liver) were screened for E. coli strains using cultural and biochemical methods. Multilocus sequence typing (MLST) and core genome (cg)MLST were performed using Ridom SeqSphere+ software. The aerobic plate count (APC) and coliform count ranged from 0.5 × 104 to 3.7 × 104 cfu/g and 0 to 3.0 × 104 cfu/g, respectively. Whole-genome sequencing (WGS) confirmed the presence of E. coli and Klebsiella quasipneumoniae isolates in our samples. We could identify only two serotypes (O102:H7 and O40:H4) of E. coli. Antimicrobial resistance genes (ARGs) and point mutations that conferred antibiotic resistance were extracted from the genome assemblies. Good hygiene is recommended to avoid the cross-contamination of raw C. gariepinus with ready-to-eat food. Full article
Show Figures

Figure 1

22 pages, 3560 KiB  
Article
Phytochemical Analysis and Antioxidant and Antifungal Activities of Powders, Methanol Extracts, and Essential Oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth.
by Noui Hendel, Djamel Sarri, Madani Sarri, Edoardo Napoli, Antonio Palumbo Piccionello and Giuseppe Ruberto
Int. J. Mol. Sci. 2024, 25(14), 7989; https://doi.org/10.3390/ijms25147989 - 22 Jul 2024
Viewed by 525
Abstract
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), [...] Read more.
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M’sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), β-pinene (7.73), β-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), β-carotene/linoleic acid (IC50 = 39.01 ± 2.16 μg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 μL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 μL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area. Full article
Show Figures

Figure 1

Back to TopTop