1.
|
Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector
/ Allaire, C. (Orsay, LAL) ; Benitez, J. (U. Iowa, Iowa City) ; Bomben, M. (Paris U., VI-VII) ; Calderini, G. (Paris U., VI-VII) ; Carulla, M. (Barcelona, Inst. Microelectron.) ; Cavallaro, E. (Barcelona, IFAE) ; Falou, A. (Orsay, LAL) ; Flores, D. (Barcelona, Inst. Microelectron.) ; Freeman, P. (UC, Santa Cruz, Inst. Part. Phys.) ; Galloway, Z. (UC, Santa Cruz, Inst. Part. Phys.) et al.
For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at |z| = 3.5 m and covering the region 2.4 < |{\eta}| < 4 to help reducing the effect of pile-up. The chosen sensors are arrays of 50 {\mu}m thin Low Gain Avalanche Detectors (LGAD). [...]
arXiv:1804.00622.-
2018-06-20 - 28 p.
- Published in : JINST 13 (2018) P06017
Fulltext: Allaire_2018_J._Inst._13_P06017 - PDF; 1804.00622 - PDF; arXiv:1804.00622 - PDF; Fulltext from Publisher: PDF;
|
|
2.
|
Beam test results of a 16 ps timing system based on ultra-fast silicon detectors
/ Cartiglia, N. (INFN, Turin) ; Staiano, A. (INFN, Turin) ; Sola, V. (INFN, Turin) ; Arcidiacono, R. (Turin U., Alessandria ; INFN, Turin) ; Cirio, R. (Turin U. ; INFN, Turin) ; Cenna, F. (Turin U. ; INFN, Turin) ; Ferrero, M. (Turin U. ; INFN, Turin) ; Monaco, V. (Turin U. ; INFN, Turin) ; Mulargia, R. (Turin U. ; INFN, Turin) ; Obertino, M. (Turin U. ; INFN, Turin) et al.
In this paper we report on the timing resolution of the first production of 50 micro-meter thick Ultra-Fast Silicon Detectors (UFSD) as obtained in a beam test with pions of 180 GeV/c momentum. UFSD are based on the Low-Gain Avalanche Detectors (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. [...]
arXiv:1608.08681.-
2017-04-01 - 6 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 850 (2017) 83-88
Fulltext: 10.1016_j.nima.2017.01.021 - PDF; arXiv:1608.08681_2 - PDF; Preprint: PDF; External link: Preprint
|
|
3.
|
Production and Integration of the ATLAS Insertable B-Layer
/ ATLAS IBL Collaboration
During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. [...]
arXiv:1803.00844; FERMILAB-PUB-18-826-V.-
2018-05-16 - 90 p.
- Published in : JINST 13 (2018) T05008
Fulltext: 1803.00844 - PDF; pdf - PDF; 915f919fb4ff01d19bc67dd5a6b9cd70 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
|
|
4.
|
Avoiding biases in binned fits
/ Gligorov, V.V. (Paris U., VI-VII) ; Hageboeck, S. (CERN) ; Nanut, T. (Ecole Polytechnique, Lausanne) ; Sciandra, A. (UC, Santa Cruz, Inst. Part. Phys.) ; Tou, D.Y. (Paris U., VI-VII)
Binned maximum likelihood fits are an attractive option when analysing large datasets, but require care when computing likelihoods of continuous PDFs in bins. For many years the widely used statistical modelling package RooFit evaluated probabilities at the bin centre, leading to significant biases for strongly curved probability density functions. [...]
arXiv:2104.13879.-
2021-08-04 - 14 p.
- Published in : JINST 16 (2021) T08004
Fulltext: 2104.13879 - PDF; document - PDF;
|
|
5.
|
Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications
/ Pellegrini, G. (Barcelona, Inst. Microelectron.) ; Baselga, M. (Barcelona, Inst. Microelectron.) ; Carulla, M. (Barcelona, Inst. Microelectron.) ; Fadeyev, V. (UC, Santa Cruz, Inst. Part. Phys.) ; Fernández-Martínez, P. (Barcelona, Inst. Microelectron.) ; Fernandez-Garcia, M. (Cantabria Inst. of Phys.) ; Flores, D. (Barcelona, Inst. Microelectron.) ; Galloway, Z. (UC, Santa Cruz, Inst. Part. Phys.) ; Gallrapp, C. (CERN) ; Hidalgo, S. (Barcelona, Inst. Microelectron.) et al.
This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. [...]
arXiv:1511.07175.-
2016-09-21 - 5 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 831 (2016) 24–28
Elsevier Open Access article: PDF; Fulltext: 10.1016_j.nima.2016.05.066 - PDF; arXiv:1511.07175 - PDF; External link: Preprint
In : 10th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors, Xi'an, China, 25 - 29 Sep 2015, pp.24-28
|
|
6.
|
Radiation campaign of HPK prototype LGAD sensors for the High-Granularity Timing Detector (HGTD)Radiation Campaign of HPK Prototype LGAD sensors for the High-Granularity Timing Detector (HGTD)
/ Shi, X. (Beijing, Inst. High Energy Phys.) ; Ayoub, M.K. (Beijing, Inst. High Energy Phys.) ; da Costa, J. Barreiro Guimarães (Beijing, Inst. High Energy Phys.) ; Cui, H. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Kiuchi, R. (Beijing, Inst. High Energy Phys.) ; Fan, Y. (Beijing, Inst. High Energy Phys.) ; Han, S. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Huang, Y. (Beijing, Inst. High Energy Phys.) ; Jing, M. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) ; Liang, Z. (Beijing, Inst. High Energy Phys.) et al.
We report on the results of a radiation campaign with neutrons and protons of Low Gain Avalanche Detectors (LGAD) produced by Hamamatsu (HPK) as prototypes for the High-Granularity Timing Detector (HGTD) in ATLAS. Sensors with an active thickness of 50~$\mu$m were irradiated in steps of roughly 2$\times$ up to a fluence of $3\times10^{15}~\mathrm{n_{eq}cm^{-2}}$. [...]
arXiv:2004.13895.-
2020-11-01 - 15 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 979 (2020) 164382
Fulltext: PDF;
In : 12th international "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD), Hiroshima, Japan, 14 - 18 Dec 2019, pp.164382
|
|
7.
|
10.1093/ptep/ptaa104
|
8.
|
ATLAS ITk strip sensor quality control procedures and testing site qualification
/ Mikestikova, M (Prague, Inst. Phys. ; Charles U.) ; Affolder, A (UC, Santa Cruz ; UC, Santa Cruz, Inst. Part. Phys.) ; Affolder, K (UC, Santa Cruz ; UC, Santa Cruz, Inst. Part. Phys.) ; Beaupre, S (Simon Fraser U. ; TRIUMF) ; Beck, G A (Queen Mary, U. of London) ; Bernabeu, J (Valencia U., IFIC) ; Bevan, A J (Queen Mary, U. of London) ; Dawson, I (Queen Mary, U. of London) ; Dowling, A (UC, Santa Cruz ; UC, Santa Cruz, Inst. Part. Phys.) ; Fadeyev, V (UC, Santa Cruz ; UC, Santa Cruz, Inst. Part. Phys.) et al.
The high-luminosity upgrade of the Large Hadron Collider, scheduled to become operational in 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker. Radiation hard n$^{+}$-in-p micro-strip silicon sensors were developed by the ATLAS Inner Tracker strip collaboration and are produced by Hamamatsu Photonics K.K. [...]
2022 - 13 p.
- Published in : JINST 17 (2022) C12013
In : 23rd International Workshop for Radiation Imaging Detectors, Riva Del Garda, It, 26 - 30 Jun 2022, pp.C12013
|
|
9.
|
Search for single top-quark production via flavour changing neutral currents at 8 TeV with the ATLAS detector
/ ATLAS Collaboration
A search for single top-quark production via flavour changing neutral current processes from gluon plus up- or charm--quark initial states in proton--proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of $8\;\mbox{TeV}$ and corresponding to an integrated luminosity of $20.3\;\mbox{fb}^{-1}$ are used. [...]
arXiv:1509.00294; CERN-PH-EP-2015-172; CERN-PH-EP-2015-172.-
Geneva : CERN, 2016-01-29 - 30 p.
Article from SCOAP3: PDF; Fulltext: arXiv:1509.00294 - PDF; Erratum - PDF;
|
|
10.
|
Layout and Performance of HPK Prototype LGAD Sensors for the High-Granularity Timing Detector
/ Yang, X. (CUST, SKLPDE) ; Alderweireldt, S. (CERN) ; Atanov, N. (BITP, Kiev ; Dubna, JINR) ; Ayoub, M.K. (Beijing, Inst. High Energy Phys.) ; Barreiro Guimarães da Costa, J. (Beijing, Inst. High Energy Phys.) ; Castillo García, L. (Barcelona, IFAE) ; Chen, H. (CUST, SKLPDE) ; Christie, S. (UC, Santa Cruz, Inst. Part. Phys.) ; Cindro, V. (Stefan Inst., Ljubljana) ; Cui, H. (Beijing, Inst. High Energy Phys. ; Beijing, GUCAS) et al.
The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology will cover the pseudo-rapidity region of $2.4<|\eta|<4.0$ with two end caps on each side and a total area of 6.4 $m^2$. [...]
arXiv:2003.14071.-
2020-11-11 - 17 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 980 (2020) 164379
Fulltext: PDF;
In : 12th international "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD), Hiroshima, Japan, 14 - 18 Dec 2019, pp.164379
|
|