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Abstract: Binned maximum likelihood fits are an attractive option when analysing large datasets,
but require care when computing likelihoods of continuous PDFs in bins. For many years the
widely used statistical modelling package RooFit evaluated probabilities at the bin centre, leading
to significant biases for strongly curved probability density functions. We demonstrate the biases
with real-world examples, and introduce a PDF class to RooFit that removes these biases. The
physics and computation performance of this new class are discussed.
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1 Introduction

RooFit [1, 2] is a C++ package for statistical modelling distributed with Root [3, 4]. RooFit’s
development started in the year 2000 within the BaBar collaboration. Since then, RooFit has been
a reliable tool for many experiments in high-energy physics (HEP) at 𝐵 factories and the Large
Hadron Collider. With RooFit, users can define likelihood models using observables, parameters,
functions and PDFs1, which can be fitted to data, plotted or used for statistical tests.
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Figure 1: Error of estimating the probability
in a bin by evaluating a PDF at the bin centre.

As HEP datasets become progressively larger, it
becomes increasingly important to reduce the com-
putation time of data analysis tasks such as fits. At
the same time, the higher statistics allow for mea-
surements with higher precision. These demands of
speed and accuracy can come into conflict. In this
paper, we address the long-standing problem of a
bias in RooFit’s binned likelihood fits, while main-
taining much of their speed advantage over unbinned
likelihood fits.

These biases arise since in binned fits, RooFit
samples probability densities at only one point in a
bin, the bin centre. It is assumed that this is a decent approximation for the probability of the entire
bin. When distributions are strongly curved, though, this is inaccurate. Figure 1 illustrates the
error of this approximation with a Gaussian distribution. For the shown bin, the probability to the
left of the bin centre is overestimated by the surface shaded in red. To the right of the bin centre,

1Probability Density Functions
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it is underestimated by the surface shaded in green. If the PDF was linear in the bin, these two
surfaces would have equal size. However, if the PDF has a non-vanishing second derivative, the
compensation is insufficient. In the marked bin, the probability is overestimated.

Although well known, removing this bias was considered too invasive for RooFit. Users
were encouraged to use more bins to reduce biases, which is not always possible, though. We
present here the first rigorous solution, extending RooFit with a new PDF class, which transforms
a continuous into a binned PDF. This leaves likelihood and 𝜒2 calculation functions, as well as
plotting routines, unaffected, but eliminates the bias. We demonstrate the biases with real-world
examples, and discuss the physics and computation performance using this PDF class. The new
PDF is available in Root since version 6.24.

2 Integrating continuous PDFs for unbiased binned fits

To eliminate biases in binned fits, the PDF class “RooBinSamplingPdf” [5, 6] was added to
RooFit. It transforms continuous PDFs into binned PDFs by integrating the former in each bin and
dividing the result by the bin width. The resulting PDF is constant in each bin, and evaluates to
the average probability density in a bin (instead of the probability density at the bin centre). This
allows for fitting continuous PDFs to binned data, or for adding binned and continuous PDFs to
create sum models.

To integrate the original PDF, Root’s IntegratorOneDim is used. Internally, this uses
the adaptive Gauss-Kronrod [7] integrator with a 21-point rule from the GSL [8].2 For smooth
functions, this means that 21 times more function evaluations are required compared to using a
simple binned PDF. If the adaptive algorithm has to subdivide single bins to improve the integration
accuracy, the computational overhead increases to a bit more than 21-fold, but this happens only
in bins where the original PDF is not smooth. Nevertheless, since binned fits are usually orders of
magnitudes faster than running an unbinned fit, see section 2.1, the additional time to perform a
more accurate integration is still acceptable if users get unbiased results.

Users can further set the relative precision required for the integration. They can even directly
manipulate all settings of Root’s IntegratorOneDim to customise accuracy and speed, e.g. switch
to a 15-point Gauss-Kronrod rule.

Figure 2 shows a fit model that is a sum of three Gaussian distributions and a JohnsonSU
distribution [9] — a typical signal model for analysing charm decays [10]. When RooBinSam-
plingPdf is used, the probability density represented by the PDF is constant in each bin, whereas
it is strongly curved using the original model. The pads at the bottom show pulls3 comparing the
plotted curves evaluated at the bin centres and data points sampled from the model. Due to the
over- or underestimation illustrated in figure 1, strong pulls are observed in figure 2a. Since a fitter
will try to balance the overshoot in the tails of the signal model with the undershoot in the centre, fit
results will be biased. Figure 2b shows that the use of RooBinSamplingPdf eliminates the pulls.

2In environments where Root is used without the GSL, Root’s non-adaptive GaussIntegrator is used.
3“Pull” denotes a residual divided by the standard deviation of a quantity. In this work, this term is used both to

quantify a deviation of model parameters from a theoretical value as well as for comparing a fitted distribution with data.
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(a) Continuous PDF compared to binned data
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(b) PDF wrapped into RooBinSamplingPdf

Figure 2: Comparison of pulls without and with RooBinSamplingPdf [5]. The bottom pads show
pulls that are computed by comparing data counts with the plotted curves evaluated at the bin
centres. In (b), the 𝑦-axis of the pull plot is zoomed 4-fold.

Users have two ways to use this new PDF class. First, they can directly construct an instance
of RooBinSamplingPdf. They pass an observable that defines the desired binning, the continuous
PDF, and (if desired) the relative precision for bin integrals:

RooBinSamplingPdf binSampler("Name", "Plot Label",

binnedObservable, originalPDF,

/*optional integrator precision=*/ 1.E-4);

binSampler.fitTo(data);

Second, RooFit can be instructed to automatically construct instances of RooBinSamplingPdf
before each fit:

pdf.fitTo(data, RooFit::IntegrateBins(<integrator precision>));

The first strategy is most versatile, because users can control which PDFs are transformed, and
which integrators are used. Moreover, plots of RooBinSamplingPdf correctly convey the fact that
a binned fit was used, and pull plots will also benefit from the correction (cf. figure 2).

The second strategy is particularly useful in simultaneous fits with multiple channels, where a
mixture of binned and unbinned fits is used. When RooFit::IntegrateBins(0.) is passed to
the fit instruction, RooFit will apply the correction to all continuous PDFs that are fit to binned
data, but leave unbinned fits unchanged. Passing a non-zero value, the correction will be applied
to all channels, irrespective of whether a binned or unbinned data set is used. This is important
since some fitting frameworks simulate binned fits by creating an “unbinned” data set, where the
coordinates of an entry correspond to a bin centre, and the weight of an entry corresponds to the
bin content. Although this produces the same result as a binned fit, RooFit cannot detect that the
correction discussed in this work needs to be applied, so users need a way to explicitly enable it.

Although the bias in binned fits could also have been corrected for by changing the likelihood
calculation functions in RooFit, adding the new PDF class has advantages:
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• It is not invasive. No changes to RooFit’s fitting algorithms are required. Since the proba-
bility density of RooBinSamplingPdf is constant in each bin, RooFit’s default strategy of
evaluating the function in the centre and multiplying by the bin width is correct even if the
original PDF is curved strongly.

• It is reusable. The same strategy that is used to correct likelihood fits can be used to correct
𝜒2 fits or the computation of 𝜒2 statistics (cf. figure 5, section 3.1).

• It allows for better plotting. Since data are usually plotted in bins, plotting a binned PDF
allows for inspecting differences by eye. When plotting binned data and a continuous PDF,
the viewer would have to estimate the integral of the PDF over a bin. Moreover, the new
class overrides the function RooAbsArg::plotSamplingHint(). This function conveys the
optimal points for plotting a function to RooFit’s plotting routines. If this function would not
be overridden, for example since the correction was implemented in the likelihood functions,
RooFit would employ heuristics to estimate the best vertices for drawing a curve, which can
lead to binning artifacts in the plotted curves.

• It is achieved with a limited computational overhead, which depends on the integrator settings.
Independent of the integration in bins, RooFit needs to ensure that all PDFs are normalised,
which means that they need to be integrated over the fit range. If no analytic integral is known,
numeric integration algorithms are employed, which would typically evaluate a PDF at 64–
256 points. If RooBinSamplingPdf is used, however, no further automatic normalisation
needs to be performed, since the integrals in the bins can be reused to compute the integral
over the fit range. The computational overhead therefore only depends on the integrator
settings of RooBinSamplingPdf, but the integration step that would normally be executed
automatically by RooFit is skipped.

2.1 Time complexity of likelihood calculations

An unbinned fit in RooFit estimates the parameters of a model by maximising the negative loga-
rithmic likelihood, L, defined as

− logL = −
𝑁∑︁
𝑖=1

log 𝑓 (𝑥𝑖 | 𝜽), (2.1)

where 𝑓 (𝑥𝑖 | 𝜽) is the PDF of the model, and the likelihood is a product over 𝑁 observations 𝑥𝑖 . The
term 𝑓 (𝑥𝑖 | 𝜽) is the probability to observe an event 𝑥𝑖 , given the model 𝑓 and parameters 𝜽 . In the
case where the PDF normalisation is a parameter of interest, the extended negative log likelihood
is used

− logL = −𝜇 − 𝑁 log 𝜇 + log 𝑁! −
𝑁∑︁
𝑖=1

log 𝑓 (𝑥𝑖 | 𝜽), (2.2)

where 𝜇 is the expected number of events predicted by the model. The additional terms have a
negligible impact on the time of likelihood computations.4 From equations (2.1) and (2.2), it is

4The constant terms are ignored by RooFit, as they are not needed to find the minimum, the other terms are only
evaluated once.
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evident that the time to compute a log likelihood scales with the number of events in the data set.

𝑇 [unbinned] = 𝑁event · 𝑇 [log 𝑓 (𝑥𝑖 | 𝜽)] = O(𝑁event). (2.3)

Analogously, the likelihood to fit binned data

L =

𝑁bin∏
𝑖=1

𝜇
𝑛𝑖
𝑖
(𝜽)
𝑛𝑖!

· exp (𝜇𝑖 (𝜽)) (2.4)

scales as
𝑇 [binned] = 𝑁bin · 𝑇 [log 𝜇𝑖 (𝜽)] = O(𝑁bin). (2.5)

where 𝑛𝑖 is the number of events observed in bin 𝑖, and 𝜇𝑖 (𝜽) the expected number of events in that
bin. Computing 𝜇 takes roughly the same time as computing one event likelihood in the unbinned
case, because it requires evaluating the model in the bin: 𝑓 (𝑥centre | 𝜽).

By default, RooFit minimises negative log likelihoods using the MIGRAD algorithm of the
MINUIT package [11], and covariance matrices are estimated using the HESSE algorithm. Since
both MIGRAD and HESSE rely on calculating finite differences, their time complexities scale with
the complexity of the likelihood calculations. The speed up when using binned fits is therefore
proportional to 𝑁event/𝑁bin. Despite the fact that 𝑇 [log 𝜇𝑖 (𝜽); bin sampling] ≈ 20 ·𝑇 [log 𝑓 (𝑥𝑖 | 𝜽)]
with our proposed solution and default integrator settings, since 21 points have to be evaluated to
integrate each bin, binned fits are usually invoked for large data sets where 𝑁bin � 𝑁event. Hence,
the solution presented in this paper still offers orders of magnitude speed up compared to unbinned
fits, while eliminating unwanted biases.

3 Validation with realistic pseudo experiments

In order to demonstrate the real-world impact of these biases and the performance of our method,
we perform pseudo experiments using examples representative of LHCb [12] and ATLAS [13]
collaboration analyses.

3.1 LHCb charm example

We demonstrate and evaluate the performance of the default RooFit binned fit method and the
RooBinSamplingPdf using the signal model and data set conditions (yield, number of bins)
from [14]. The PDF models the 𝐷∗+ peak of the decay 𝐷∗+ → 𝐷0(→ 𝐾−𝜋+)𝜋+ and is comprised
of two Gaussian functions and a JohnsonSU distribution. The number of floating parameters is 10.
While the total signal yield is 520 × 106 events, the fit is performed separately in 20 equipopulous
bins of decay time, yielding 26 × 106 events to be fitted in one sample. The number of bins is 160.

For each of the two methods, we generate 104 pseudo experiments using the PDF values
from one of the fits in reference [14]. The generated data set is then fitted using the PDF with
floating parameters. Example fits for each method are shown in figure 3. As in figure 2, the bias
is clearly seen when using the default fit method, while not so when using RooBinSamplingPdf.
For each pseudo experiment and each fit parameter, we compute the difference between the fitted
and generated value, divided by the error on the fitted value. While this quantity is not the exact
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(b) RooBinSamplingPdf

Figure 3: Example of a fit to one pseudo experiment for both methods. The bottom pads show pulls
that are computed by comparing data counts with the plotted curves evaluated at the bin centres.

equivalent of the statistical pull, as we use the generated value and not the expected one, the resulting
distribution is still expected to follow a Gaussian with mean at 0 and standard deviation 1.

We thus fit the obtained distribution with a Gaussian function and study the mean and standard
deviation. The results are shown in figure 4. It is clear that when using the default method, large
biases are present in almost all fitted parameters. Contrary, for the RooBinSamplingPdf, the
fitted parameters show no discernible bias. The plots of the standard deviation show that the error
estimation is reliable for all parameters when using RooBinSamplingPdf, and all but one for the
default method.

As an additional cross-check, we examine the distribution of 𝜒2 values obtained from the
fits of the pseudo experiments. The number of degrees of freedom is the number of bins minus
the number of free parameters in the fit, i.e. 150, so the obtained distribution is compared to the
theoretical 𝜒2 distribution for 150 degrees of freedom. The results are shown in figure 5. We can
observe that when using RooBinSamplingPdf, the obtained distribution matches reasonably well
the theoretical one, while for the default binned fit method, it is very different.

In the above described studies, the number of bins was taken as that reported in reference [14].
Figure 6 shows plots of the mean and width of the Gaussian distribution, fitted to the ratio of the
difference between the generated and fitted values and the error of the fitted value (analogue to
figure 4), for different binnings using RooBinSamplingPdf. It can be concluded that a different
choice of binning does not affect the performance of the RooBinSamplingPdf.
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Figure 4: Mean (top) and width (bottom) of the pull of various fit parameters (𝑥-axis), with respect
to the generated and fitted values, for both methods. The blue dashed lines in (a) and (b) are at the
same values to serve as visualisation aid.
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Figure 5: Comparison of the theoretical 𝜒2 distribution with NDOF = 150 and the empirical
distributions obtained from fits to pseudo experiments for both methods. While the standard
method results in very high values of 𝜒2, the values with RooBinSamplingPdf follow the theoretical
distribution.
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Figure 6: Mean and width of the pulls of various fit parameters (𝑥-axis), with respect to the
generated and fitted values, for different choices of binning using RooBinSamplingPdf.
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Figure 7: An example pseudo experiment generated by the baseline mode. The data set (black) is
generated by a model (blue) which consists of a DSCB signal and a combinatorial background.

3.2 LHCb beauty example

In this section, we explore in more detail the effects of the bias with regard to signal width, number
of signal events and number of bins, using a model with a signal PDF similar to typical beauty
meson decays at LHCb and a combinatorial background model.

The signal is a Double Sided Crystal Ball (DSCB) function [15], with a Gaussian core of
mean 𝜇gauss = 5366.79 MeV (corresponding to the 𝐵0

𝑠 rest mass) and width 𝜎gauss = 20 MeV. The
combinatorial background is an exponential function with a slope of 𝑏slope = −2 × 10−3 MeV−1.
The baseline model has 1 × 106 signal events and 1.5 × 105 background events within a mass
window of 4900–5900 MeV. A plot of the typical data set generated by this model is shown in
figure 7.

We study the bias as a function of signal width, the number of signal events, and the number of
bins. At a given bin width, broader signal distributions are expected to be less biased than narrower
ones. Similarly, fits to the same signal distribution with narrower bin widths are expected to be less
biased than fits with wider bins.
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Figure 8: Mean pull of 𝜎gauss in dependence of 𝜎truth
gauss (top) and 𝑁bins (bottom) with the default

method (left) and RooBinSamplingPdf (right).
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Figure 9: The bias of 𝜎gauss against 𝑁 truth(signal) (black) is well modelled by 𝐴
√︁
𝑁 (signal) (red).

The results are shown in figure 8. As we can see, the pull bias in 𝜎gauss increases as 𝜎truth
gauss

decreases and as 𝑁bins decreases. The 𝜎gauss bias is plotted as a function of 𝑁 truth(signal) in figure 9.
Interestingly, the bias is well modelled as 𝐴

√︁
𝑁 (signal). This proves that the absolute bias remains

unchanged with respect to 𝑁 truth(signal), but it is the 1√
𝑁 (signal)

uncertainty scaling that amplifies
the pull bias in 𝜎gauss.

– 9 –



100 150 200
M [GeV]

10

20

30

310×

E
ve

nt
s 

/ (
 5

 G
eV

 ) Expected data

Signal

Background

Figure 10: The default signal-plus-background expected distribution fitted with the RooBinSam-
plingPdf integration. Expected data points are shown as black points, whereas the resulting fitted
model consists of the signal (orange) stacked on top of the background (cyan).

3.3 ATLAS example

The adoption of RooBinSamplingPdf functionalities finds extensive application in analyses carried
out by the ATLAS Collaboration. In fact, some ATLAS analyses rely on analytic models and binned
likelihood fits, see for example 𝐻 → 𝜇𝜇 [16]. The absence of RooBinSamplingPdf forced many
physics analyses to rely on very small bin widths, as the bias shown in figure 2a becomes negligible
with bin size orders of magnitude smaller than the resolution in the characteristic structures of the
considered fit observable.

However, analyses based on a mixture of pure analytic models and template PDFs from
simulation may not be able to accommodate a full parameterisation of the fit model. Recent
ATLAS studies of the inclusive boosted 𝐻 → 𝑏�̄� production at high Higgs-boson transverse
momentum [17] exploit the new class, object of this paper. The preliminary version of the work
discussed in Ref. [18] was completed before the presented RooFit developments and is, therefore,
taken as a natural field of application for the RooBinSamplingPdf class. This example supplements
studies shown in sections 3.1 and 3.2, as the signal-to-background ratio is much smaller and an
analytic model is exploited to describe the background only, inducing an indirect bias in the signal
extraction.

The model consists of a linear sum of the “background” and “signal” models. The background
is described by means of a polynomial exponential PDF model of the form:

𝑓𝑁

(
𝑥

��� ®𝜃 )
= exp

(
𝑁∑︁
𝑖=1

𝜃𝑖𝑥
𝑖

)
,

where 𝑁 = 4, 𝑥 = (𝑀 − 150)/80, with 𝑀 the fit observable, and 𝜃𝑖 are fit parameters. A fit range of
[70,230] is taken for 𝑀 , resulting in [-1,1] for 𝑥. The following model parameter values are taken:
®𝜃 = (−0.7,−0.05,−0.1, 0.05). The signal shape is fixed and modelled via a Gaussian centred at
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𝑀 = 91 with a standard deviation of 𝜎 = 8.5. The default signal fraction ( 𝑓sig), total number
of events (𝑁ev) and of bins (𝑁bins) are 0.015, 5 × 105 and 32, respectively. Figure 10 shows the
resulting falling background spectrum with a “𝑍-like” resonance on top.

The bias in the extracted fit parameters is dependent on the global and local statistical accuracy
and is, therefore, studied as a function of the available statistics over the whole fit range (𝑁ev) and
in each fit bin (𝑁bins). For each value of 𝑁ev and 𝑁bins a thousand data sets are generated through
Poisson-sampling of the expected distribution, and fitted with both the default method and the
RooBinSamplingPdf.

The pull for the fit parameters with respect to the generated and fitted values, expected to be
centred around 𝜇 = 0 with a standard deviation of 𝜎 = 1, is fitted with a Gaussian function. The
dependence of the bias in all of the fit parameters is shown in figures 11 and 12 for six values of
𝑁bins and five values of 𝑁ev, respectively. It is evident that a default binned fit induces significant
biases, unless a large 𝑁bins or a small 𝑁ev is assumed. In fact, expected biases smoothly decrease
as a function of the increasing (decreasing) 𝑁bins (𝑁ev). Sometimes, as for example looking at 𝑓sig
for 𝑁bins = 16, the estimate of the fit-parameter standard deviation may be biased, too. On the
contrary, when exploiting the RooBinSamplingPdf, the estimate of fit-parameter central values and
standard deviations appears robust on a large ensemble of 𝑁bins and 𝑁ev values. Small deviations
with very small 𝑁bins or very large 𝑁ev, see for instance 𝑁ev = 50 × 106 in figure 12, and the
RooBinSamplingPdf may be recovered by requiring higher integration precision.

4 Conclusions and future work

Currently, all PDFs are integrated numerically, even if analytic integrals are known to RooFit. This
can be changed should the need arise. Furthermore, the method is restricted to one-dimensional
PDFs. Similarly, this can be extended to multi-dimensional PDFs if necessary.
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Figure 11: Mean and standard deviation of the pull as a function of 𝑁bins from a Gaussian fit for
various fit parameters with respect to the generated and fitted values. Fits are performed with the
default (left) and RooBinSamplingPdf (right) methods. A thousand data sets are generated and
fitted for each value of 𝑁bins.
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Figure 12: Mean and standard deviation of the pull as a function of 𝑁ev from a Gaussian fit for
various fit parameters with respect to the generated and fitted values. Fits are performed with the
default (left) and RooBinSamplingPdf (right) methods. A thousand data sets are generated and
fitted for each value of 𝑁ev. The 𝑥-axis is shown in logarithmic scale.
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