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Abstract

A search for single top-quark production via flavour-changing neutral current processes from
gluon plus up- or charm-quark initial states in proton–proton collisions at the LHC is presen-
ted. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV
and corresponding to an integrated luminosity of 20.3 fb−1 are used. Candidate events for a
top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal-
and background-like candidates using a neural network. No signal is observed and an upper
limit on the production cross-section multiplied by the t → Wb branching fraction is set.
The observed 95 % CL limit is σqg→t × B(t → Wb) < 3.4 pb and the expected 95 % CL
limit is σqg→t × B(t → Wb) < 2.9 pb. The observed limit can be interpreted as upper limits
on the coupling constants of the flavour-changing neutral current interactions divided by the
scale of new physics κugt/Λ < 5.8 × 10−3 TeV−1 and κcgt/Λ < 13 × 10−3 TeV−1 and on the
branching fractions B(t → ug) < 4.0 × 10−5 and B(t → cg) < 20 × 10−5.
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1 Introduction

The top quark is the most massive elementary particle known, with a mass mtop = 173.3 ± 0.8 GeV [1]
close to the electroweak symmetry breaking scale. This makes it an excellent object with which to test
the Standard Model (SM) of particle physics, as well as to search for phenomena beyond the SM.

At the LHC, top quarks are primarily produced in pairs via the strong interaction. In addition to the
predominant pair-production process, top quarks are produced singly through three different subprocesses
via the weak interaction: the t-channel, which is the dominant process, involving the exchange of a space-
like W boson; the Wt associated production, involving the production of a real W boson; and the s-channel
process involving the production of a time-like W boson.

As a consequence of the large value, which is close to one, of the Vtb element in the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, the predominant decay channel of top quarks is t → Wb. Transitions between
top quarks and other quark flavours mediated by neutral gauge bosons, so-called flavour-changing neutral
currents (FCNC), are forbidden at tree level and suppressed at higher orders in the SM [2]. However,
several extensions to the SM exist that significantly enhance the production rate and hence the branching
fractions, B, of FCNC processes. Examples of such extensions are the quark-singlet model [3–5], two-
Higgs-doublet models with or without flavour conservation [6–11], the minimal supersymmetric standard
model [12–18] or supersymmetry with R-parity violation [19, 20], models with extra quarks [21–23], or
the topcolour-assisted technicolour model [24]. Reviews can be found in Refs. [25] and [26]. Many of
these models allow for enhanced FCNC production rates, e.g. by permitting FCNC interactions at tree
level or introducing new particles in higher-order loop diagrams. The predicted branching fractions for
top quarks decaying to a quark and a neutral boson can be as large as 10−5 to 10−3 for certain regions of
the parameter space in the models mentioned. However, the experimental limits have not excluded any
specific extension of the SM for the process t → qg so far.

Among FCNC top-quark decays of the form t → qX with X = Z,H, γ, g, modes involving a Z boson, a
Higgs boson (H), or a photon (γ) are usually studied directly by searching for final states containing the
corresponding decay particles. However, the mode t → qg, where q denotes either an up quark, u, or a
charm quark, c, is nearly indistinguishable from the overwhelming background of multi-jet production
via quantum chromodynamic (QCD) processes. For the t → qg mode, much better sensitivity can be
achieved by searching for anomalous single top-quark production (qg → t) where a u- or c-quark and a
gluon g, originating from the colliding protons, interact to produce a single top quark. A leading-order
diagram for top-quark production in the qg→ t mode as well as a SM decay of the top quark is shown in
Fig. 1.1

Anomalous FCNC couplings can be described in a model-independent manner using an effective operator
formalism [27], which assumes the SM to be the low-energy limit of a more general theory that is valid at
very high energies. The effects of this theory below a lower energy scale, Λ, are perceived through a set of
effective operators of dimension higher than four. The formalism therefore allows the new physics to be
described by an effective Lagrangian consisting of the SM Lagrangian and a series of higher-dimension
operators, which are suppressed by powers of 1/Λ. The new physics scale, Λ, has a dimension of energy
and is related to the mass cut-off scale above which the effective theory breaks down, hence characterising
the energy scale at which the new physics manifests itself in the theory. A further method for simplifying
the formalism is to only consider operators of interest that have no sizeable impact on physics below the
TeV scale, following Ref. [28].

1 Charge conjugate production and decay modes are implied throughout this paper.
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Figure 1: Leading-order Feynman diagram for FCNC top-quark production in the qg → t mode followed by the
decay of the top quark into a b-quark and a W boson, where the W boson decays into a lepton and a neutrino.

The interest of this paper lies in effective dimension-six operators, which contribute to flavour-changing
interactions in the strong sector; thus no operators with electroweak gauge bosons are considered. In par-
ticular, the operators describing FCNC couplings to a single top quark are of interest here; they describe
strong FCNC vertices of the form qgt and can be written as [29]:

O
i j
uGΦ

= q̄ i
L λ

a σµν u j
R Φ̃ Gaµν ,

where u j
R stands for a right-handed quark singlet, q̄ i

L for a left-handed quark doublet, Gaµν is the gluon
field strength tensor, Φ̃ the charge conjugate of the Higgs doublet, λa are the Gell-Mann matrices and
σµν is the anti-symmetric tensor. The indices (i, j) of the spinors are flavour indices indicating the quark
generation. By requiring a single top quark in the interaction, one of the indices can always be set equal
to 3 while the other index is either 1 or 2. Hence, the remaining fermion field in the interaction is either a
u- or a c-quark. Apart from direct single top-quark production, these operators give rise to interactions of
the form gg→ tq and gq→ tg. The processes considered are a subset of these, where a u-quark, c-quark
or gluon originating from the colliding protons interacts through an s-, t- or u-channel process to produce
a single top quark, either via a (2→ 2) process or without the associated production of additional gluons
or light quarks via a (2→ 1) process.

The corresponding strong FCNC Lagrangian usually is written as [29]:

LS = −gs

∑
q=u,c

κqgt

Λ
q̄ λa σµν ( fq + hqγ5) t Ga

µν + h.c. ,

with the real and positive parameters κgqt (q = u, c) that relate the strength of the new couplings to the
strong coupling strength, gs, and where t denotes the top-quark field. The parameters fq and hq are
real, vector and axial chiral parameters, respectively, which satisfy the relation | fq|2 + |hq|

2 = 1. This
Lagrangian contributes to both the production and decay of top quarks.

Experimental limits on the branching fractions of the FCNC top-quark decay channels have been set by
experiments at the LEP, HERA, Tevatron and LHC accelerators. At present the most stringent upper limits
at 95 % confidence level (CL) for the coupling constants κγqt and κqgt are κγqt/mtop < 0.12 GeV−1 [30]
(ZEUS, HERA) and B(t → qg) < 5.7 × 10−5 (ugt) and B(t → qg) < 2.7 × 10−4 (cgt) [31] (ATLAS,
LHC). In the case of t → qZ, upper limits on the branching fractions of the top-quark decay have been
determined to be B(t → qZ) < 0.05 % [32] (CMS, LHC). Finally, the most stringent limit for the decay
t → qH is measured to be B(t → qH) < 0.79 % [33] (ATLAS, LHC).
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In the allowed region of parameter space for κqgt/Λ, the FCNC production cross-section for single top
quarks is of the order of picobarns, while the branching fraction for FCNC decays is very small, i.e.
below 1 %. Top quarks are therefore reconstructed in the SM decay mode t → Wb. The W boson can
decay into a quark–antiquark pair (W → q1q̄2) or a charged lepton–neutrino pair (W → `ν); only the
latter is considered here. This search targets the signature from the qg → t → W(→ `ν) b process.
Events are characterised by an isolated high-energy charged lepton (electron or muon), missing trans-
verse momentum from the neutrino and exactly one jet produced by the hadronisation of the b-quark.
Events with a W boson decaying into a τ lepton, where the τ decays into an electron or a muon, are also
included. Several SM processes have the same final-state topology and are considered as background to
the FCNC analysis. The main backgrounds are V+jets production (especially in association with heavy
quarks), where V denotes a W or a Z boson, SM top-quark production, diboson production, and multi-jet
production via QCD processes. The studied process can be differentiated from SM single top-quark pro-
duction, which is usually accompanied by additional jets. Furthermore, FCNC production has kinematic
differences from the background processes, such as lower transverse momenta of the top quark.

This paper is organised as follows: Section 2 provides a description of the ATLAS detector. Section 3
gives an overview of the data and Monte Carlo (MC) samples used for the simulation of signal and
expected background events from SM processes. In Sect. 4 the event selection is presented. The methods
of event classification into signal- and background-like events using a neural network are discussed in
Sect. 5 and sources of systematic uncertainty are summarised in Sect. 6. The results are presented in
Sect. 7 and the conclusions are given in Sect. 8.

2 ATLAS detector

The ATLAS detector [34] is a multipurpose collider detector built from a set of sub-detectors, which cover
almost the full solid angle around the interaction point.2 It is composed of an inner tracking detector (ID)
close to the interaction point surrounded by a superconducting solenoid providing a 2 T axial magnetic
field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID consists of a
silicon pixel detector, a silicon microstrip detector providing tracking information within pseudorapidity
|η| < 2.5, and a straw-tube transition radiation tracker that covers |η| < 2.0. The central electromag-
netic calorimeter is a lead and liquid-argon (LAr) sampling calorimeter with high granularity, and is
divided into a barrel region that covers |η| < 1.475 and endcap regions that cover 1.375 < |η| < 3.2.
An iron/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity
range. The endcap and forward regions are instrumented with LAr calorimeters for both the electromag-
netic and hadronic energy measurements, and extend the coverage to |η| = 4.9. The MS covers |η| < 2.7
and consists of three large superconducting toroids with eight coils each, a system of trigger chambers,
and precision tracking chambers.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and
the z-axis is along the beam direction; the x-axis points towards the centre of the LHC ring and the y-axis points upwards.
The pseudorapidity η is defined as η = − ln[tan(θ/2)], where the polar angle θ is measured with respect to the z-axis. The
azimuthal angle, φ, is measured with respect to the x-axis. Transverse momentum and energy are defined as pT = p sin θ and
ET = E sin θ, respectively. The ∆R distance in (η,φ) space is defined as ∆R =

√
(∆η)2 + (∆φ)2.
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3 Data and simulated samples

This analysis is performed using
√

s = 8 TeV proton–proton (pp) collision data recorded by the ATLAS
experiment in 2012. Stringent detector and data quality requirements are applied, resulting in a data
sample with a total integrated luminosity of 20.3 fb−1.

3.1 Trigger requirements

ATLAS employs a three-level trigger system for selecting events to be recorded. The first level (L1) is
built from custom-made hardware, while the second and third levels are software based and collectively
referred to as the high-level trigger (HLT). The datasets used in this analysis are defined by high-pT
single-electron or single-muon triggers [35, 36].

For the L1 calorimeter trigger, which is based on reduced calorimetric information, a cluster in the elec-
tromagnetic calorimeter is required with ET > 30 GeV or with ET > 18 GeV. The energy deposit must
be well separated from other clusters. At the HLT, the full granularity of the calorimeter and tracking
information is available. The calorimeter cluster is matched to a track and the trigger electron candidate
is required to have ET > 60 GeV or ET > 24 GeV with additional isolation requirements.

The single-muon trigger is based on muon candidates reconstructed in the MS. The triggered events
require a L1 muon trigger-chamber track with a 15 GeV threshold on the pT of the track. At the HLT, the
requirement is tightened to pT > 24 GeV with, or 36 GeV without, an isolation criterion.

3.2 Simulated events

Simulated event samples are used to evaluate signal and background efficiencies and uncertainties as well
as to model signal and background shapes.

For the direct production of top quarks via FCNC, MEtop [29] is used for simulating strong FCNC pro-
cesses at next-to-leading order (NLO) in QCD. It introduces strong top-quark FCNC interactions through
effective operators. By comparing kinematic distributions for different FCNC couplings, it has been veri-
fied that the kinematics of the signal process are independent of the a priori unknown FCNC coupling
strength. As a conservative approach, only left-handed top quarks (as in the SM) are produced, and the
decay of the top quark is assumed also to be as in the SM.3 The CT10 [37] parton distribution func-
tion (PDF) sets are used for the generation of the signal events and the renormalisation and factorisation
scales are set to the top-quark mass.

The Powheg-box [38] generator with the CT10 PDF sets is used to generate tt̄ [39] and electroweak single
top-quark production in the t-channel [40], s-channel [41] and Wt-channel [42]. All processes involving
top quarks, including the strong FCNC processes, are produced assuming mtop = 172.5 GeV. The parton
shower and the underlying event are added using Pythia 6.426 [43], where the parameters controlling the
modelling are set to the values of the Perugia 2011C tune [44].

Vector-boson production in association with jets (V+jets) is simulated using the multi-leg leading-order
(LO) generator Sherpa 1.4.1 [45] with its own parameter tune and the CT10 PDF sets. Sherpa is used

3 A right-handed top quark would give rise to different angular distributions and hence be easier to separate from SM production.
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not only to generate the hard process, but also for the parton shower and the modelling of the under-
lying event. W+jets and Z+jets events with up to five additional partons are generated. The CKKW
method [46] is used to remove overlap between partonic configurations generated by the matrix element
and by parton shower evolution. Double counting between the inclusive V+n parton samples and samples
with associated heavy-quark pair production is avoided consistently by using massive c- and b-quarks in
the shower.

Diboson events (WW, WZ and ZZ) are produced using Alpgen 2.14 [47] and the CTEQ6L1 PDF sets [48].
The partonic events are showered with Herwig 6.5.20 [49], and the underlying event is simulated with
the Jimmy 4.31 [50] model using the ATLAS Underlying Event Tune 2 [51].

All the generated samples are passed through the full simulation of the ATLAS detector [52] based on
Geant4 [53] and are then reconstructed using the same procedure as for data. The simulation includes
the effect of multiple pp collisions per bunch crossing. The events are weighted such that the average
distribution of the number of collisions per bunch crossing is the same as in data. In addition, scale
factors are applied to the simulated events to take into account small differences observed between the
efficiencies for the trigger, lepton identification and b-quark jet identification. These scale factors are
determined using control samples.

4 Event selection

The expected signature of signal events is used to perform the event selection. Events containing ex-
actly one isolated electron or muon, missing transverse momentum and one jet, which is required to be
identified as a jet originating from a b-quark, are selected.

4.1 Object definition and event selection

Electron candidates are selected from energy deposits (clusters) in the LAr electromagnetic calorimeter
associated with a well-measured track fulfilling strict quality requirements [54]. Electron candidates are
required to satisfy pT > 25 GeV and |ηclus| < 2.47, where ηclus denotes the pseudorapidity of the cluster.
Clusters falling in the calorimeter barrel–endcap transition region, corresponding to 1.37 < |ηclus| < 1.52,
are ignored. High-pT electrons associated with the W-boson decay can be mimicked by hadronic jets
reconstructed as electrons, electrons from the decay of heavy quarks, and photon conversions. Since
electrons from the W-boson decay are typically isolated from hadronic jet activity, backgrounds can be
suppressed by isolation criteria, which require minimal calorimeter activity and only allow low-pT tracks
in an η–φ cone around the electron candidate. Isolation cuts are optimised to achieve a uniform cut
efficiency of 90 % as a function of ηclus and transverse energy, ET. The direction of the electron candidate
is taken as that of the associated track. For the calorimeter isolation a cone size of ∆R = 0.2 is used.
In addition, the scalar sum of all track transverse momenta within a cone of size ∆R = 0.3 around the
electron direction is required to be below a pT-dependent threshold in the range between 0.9 GeV and
2.5 GeV. The track belonging to the electron candidate is excluded from this requirement.

Muon candidates are reconstructed by matching track segments or complete tracks in the MS with tracks
found in the ID [55]. The final candidates are required to have a transverse momentum pT > 25 GeV and
to be in the pseudorapidity region |η| < 2.5. Isolation criteria are applied to reduce background events in
which a high-pT muon is produced in the decay of a heavy-flavour quark. An isolation variable [56] is
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defined as the scalar sum of the transverse momenta of all tracks with pT above 1 GeV, except the one
matched to the muon, within a cone of size ∆Riso = 10 GeV/pT(µ). Muon candidates are accepted if they
have an isolation to pT(µ) ratio of less than 0.05. An overlap removal is applied between the electrons
and the muons, rejecting the event if the electron and the muon share the same ID track.

Jets are reconstructed using the anti-kt algorithm [57] with a radius parameter of 0.4, using topolo-
gical clusters [58] as inputs to the jet finding. The clusters are calibrated with a local cluster weighting
method [59]. Calibrated jets using an energy- and η-dependent simulation-based calibration scheme, with
in situ corrections based on data, are at first required to have pT > 25 GeV and |η| < 2.5. The jet energy
is further corrected for the effect of multiple pp interactions, both in data and in simulated events.

If any jet is within ∆R = 0.2 of an electron, the closest jet is removed, since in these cases the jet and
the electron are very likely to correspond to the same physics object. Remaining electron candidates
overlapping with jets within a distance ∆R < 0.4 are subsequently rejected. To reject jets from pile-up
events, a so-called jet-vertex fraction criterion is applied for jets with pT < 50 GeV and |η| < 2.4: at least
50 % of the scalar sum of the pT of tracks within a jet is required to be from tracks compatible with the
primary vertex4 associated with the hard-scattering collision. The final selected jet is required to have
pT > 30 GeV and must also be identified as a jet originating from a b-quark (b-tagged).

In this analysis, a b-tagging algorithm that is optimised to improve the rejection of c-quark jets is used,
since W+c production is a major background. A neural-network-based algorithm is used, which combines
three different algorithms exploiting the properties of a b-hadron decay in a jet [60]. The chosen working
point corresponds to a b-tagging efficiency of 50 %, when cutting on the discriminant, and a c-quark jet
and light-parton jet mistag acceptance of 3.9 % and 0.07 %, respectively, as measured in tt̄ events [61,
62].

The missing transverse momentum (with magnitude Emiss
T ) is calculated based on the vector sum of energy

deposits in the calorimeter projected onto the transverse plane [63]. All cluster energies are corrected
using the local cluster calibration scheme. Clusters associated with a high-pT jet or electron are further
calibrated using their respective energy corrections. In addition, contributions from the pT of selected
muons are included in the calculation of Emiss

T . Due to the presence of a neutrino in the final state of the
signal process, Emiss

T > 30 GeV is required. Lepton candidates in multi-jet events typically arise from
charged tracks being misidentified as leptons, electrons arising from converted photons and leptons from
c- and b-hadron decays. Such candidates are collectively referred to as fake leptons. As such, the multi-
jet events tend to have low Emiss

T and low W-boson transverse mass,5 mT(W), relative to single top-quark
events. Therefore, an additional requirement on mT(W) is an effective way to reduce this background.
The selection applied is mT(W) > 50 GeV. In order to further suppress the multi-jet background and also
to remove poorly reconstructed leptons with low transverse momentum, a requirement on the transverse
momentum of leptons and the azimuthal angle between the lepton and jet is applied:

p`T > 90 GeV
(
1 −

π − |∆φ(`, jet)|
π − 2

)
. (1)

The parameters of the cut are motivated by the distribution of multi-jet events, obtained in the signal
region, where the simulated backgrounds except the multi-jet contribution are subtracted from data. Al-
most no signal events are removed by this cut. The distribution of the transverse momentum of the lepton
versus the azimuthal angle between the lepton and the jet is shown in Fig. 2.

4 The primary vertex is defined as the vertex with the largest
∑

p2
T of the associated tracks.

5 The W-boson transverse mass is defined as: mT(W) =

√
2
(
pT(`)Emiss

T − ~pT(`) · ~Emiss
T

)
, where ~pT(`) denotes the transverse
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Figure 2: The transverse momentum of the lepton versus the azimuthal angle between the lepton and the jet. The
colours indicate the number of events in data after the simulated backgrounds except the multi-jet contribution have
been subtracted and before the cut given by Eq. 1 is applied. The solid black line shows the cut.

In addition to the signal region defined by this selection, a control region is defined with the same kin-
ematic requirements, but with a less stringent b-tagging requirement with an efficiency of 85 %, and
excluding events passing the tighter signal-region b-tagging selection. This control region is designed
such that the resulting sample is dominated by W+jets production, which is the dominant background.

4.2 Background estimation

For all background processes except the multi-jet background, the normalisations are estimated by using
Monte Carlo simulation scaled to the theoretical cross-section predictions, using mtop = 172.5 GeV. In
order to check the modelling of kinematic distributions, correction factors to the normalisation of the
W+jets and tt̄ and single-top processes are subsequently determined simultaneously in the context of the
multi-jet background estimation.

The SM single top-quark production cross-sections are calculated to approximate next-to-next-to-leading-
order (NNLO) precision. The production via the t-channel exchange of a virtual W boson has a predicted
cross-section of 87 pb [64]. The cross-section for the associated production of an on-shell W boson and
a top quark (Wt channel) has a predicted value of 22.3 pb [65], while the s-channel production has a
predicted cross-section of 5.6 pb [66]. The resulting weighted average of the theoretical uncertainties
including PDF and scale uncertainties of these three processes is 10 %.

The cross-section of the tt̄ process is normalised to 238 pb, calculated at NNLO in QCD including re-
summation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [67–71] with Top++2.0 [72].
The PDF and αs uncertainties are calculated using the PDF4LHC prescription [73] with the MSTW2008

momentum of the lepton and pT(`) = |~pT(`)|.
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NNLO [74, 75] at 68 % CL, the CT10 NNLO [37, 76], and the NNPDF 2.3 [77] PDF sets, and are added
in quadrature to the scale uncertainty, yielding a final uncertainty of 6 %.

The cross-sections for inclusive W- and Z-boson production are predicted with NNLO precision using
the FEWZ program [78, 79], resulting in a LO-to-NNLO K-factor of 1.10 and an uncertainty of 4 %. The
uncertainty includes the uncertainty on the PDF and scale variations. The scale factor is applied to the
prediction based on the LO Sherpa calculation and the flavour composition is also taken from the MC
samples. The modelling of the transverse momentum of the W boson in the W+jets sample is improved
by reweighting the simulated samples to data in the W+jets-dominated control region.

LO-to-NLO K-factors obtained with MCFM [80] of the order of 1.3 are applied to the Alpgen LO pre-
dictions for diboson production. Since the diboson process is treated together with Z-boson production in
the statistical analysis and the fraction of selected events is only 5 %, the same uncertainties as used for
the Z+jets process are assumed.

Multi-jet events may be selected if a jet is misidentified as an isolated lepton or if the event has a non-
prompt lepton that appears to be isolated. The normalisation of this background is obtained from a fit to
the observed Emiss

T distribution, performed both in the signal and control regions. In order to construct a
sample of multi-jet background events, different methods are adopted for the electron and muon channels.
The ‘jet-lepton’ model is used in the electron channel while the ‘anti-muon’ model is used in the muon
channel [81]. In the jet-lepton model, a shape for the multi-jet background is established using events
from a Pythia dijet sample, which are selected using same criteria as the standard selection, but with a jet
used in place of the electron candidate. Each candidate jet has to fulfil the same pT and η requirements
as a standard lepton and deposit 80–95 % of its energy in the electromagnetic calorimeter. Events with an
electron candidate passing the electron cuts described in Sect. 4.1 are rejected and an event is accepted if
exactly one ‘jet-lepton’ is found. The anti-muon model is derived from collision data. In order to select
a sample that is highly enriched with muons from multi-jet events, some of the muon identification cuts
are inverted or changed, e.g. the isolation criteria are inverted.

To determine the normalisation of the multi-jet background template, a binned maximum-likelihood fit is
performed on the Emiss

T distribution using the observed data, after applying all selection criteria except for
the cut on Emiss

T . Fits are performed separately in two η regions for electrons: in the endcap (|η| > 1.52)
and central (|η| < 1.37) region of the electromagnetic calorimeter, i.e. the transition region is excluded.
For muons, the complete η region is used. The multi-jet templates for both the electrons and the muons
are fitted together with templates derived from MC simulation for all other background processes (top
quark, W+light flavour (LF), W+heavy flavour (HF), Z+jets, dibosons). Acceptance uncertainties are
accounted for in the fitting process in the form of additional constrained nuisance parameters. For the
purpose of these fits, the contributions from W+LF and W+HF, the contributions from tt̄ and single top-
quark production, and the contributions from Z+jets and diboson production are each combined into one
template. The normalisation of the template for Z+jets and diboson production is fixed during the fit, as
its contribution is very small.

The Emiss
T distributions after rescaling the different backgrounds and the multi-jets template to their re-

spective fit results are shown in Fig. 3 for both the electron and the muon channels. The fitted scale factors
for the other templates are close to 1.

Table 1 provides the event yields after the complete event selection for the control and signal regions. The
yields are calculated using the acceptance from MC samples normalised to their respective theoretical
cross-sections including the (N)NLO K-factors, while the number of expected events for the multi-jet
background is obtained from the maximum-likelihood fit. Each event yield uncertainty combines the
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Figure 3: Fitted distributions of the missing transverse momentum Emiss
T for (a) central electrons and (b) muons in

the control region and for (c) central electrons and (d) muons in the signal region. The last histogram bin includes
overflow events and the hatched error bands contain the MC statistical uncertainty combined with the normalisation
uncertainty on the multi-jet background.
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statistical uncertainty, originating from the limited size of the simulation samples, with the uncertainty
on the cross-section or normalisation. The observed event yield in data agrees well with the background
prediction. For comparison, a 1 pb FCNC cross-section would lead to 530 events in the signal region.
The corresponding efficiency for selecting FCNC events is 3.1 %.

Process Control region Signal region

Single top 11 500± 620 14 400± 770
tt̄ 10 700± 650 12 000± 740
W+LF 526 900± 130 000 6 700± 1 900
W+HF 445 200± 240 000 62 100± 34 000
Z+jets 40 000± 9 700 4 990± 1 200
Multi-jet 68 300± 12 000 7 430± 1 300

Total expected 1 100 000± 280 000 107 000± 34 000
Data 1 112 225 108 152

Table 1: Number of observed and expected events in the control and signal region for all lepton categories added
together. The uncertainties shown are derived using the statistical uncertainty from the limited size of the samples
and the uncertainty on the theoretical cross-section only or multi-jet normalisation. The scale factors obtained from
the multi-jet background fit are not applied when determining the expected number of events.

Kinematic distributions in the control region of the identified lepton, reconstructed jet, Emiss
T and mT(W)

are shown in Fig. 4 for the combined electron and muon channels. These distributions are normalised
using the scale factors obtained in the Emiss

T fit to estimate the multi-jet background. Overall, good agree-
ment between the observed and expected distributions is seen. The trends that can be seen in some of the
distributions are covered by the systematic uncertainties.

5 Analysis strategy

As no single variable provides sufficient discrimination between signal and background events and the
separation power is distributed over many correlated variables, multivariate analysis techniques are ne-
cessary to separate signal candidates from background candidates. A neural-network (NN) classifier [82]
that combines a three-layer feed-forward neural network with a preprocessing of the input variables is
used. The network infrastructure consists of one input node for each input variable plus one bias node, an
arbitrary number of hidden nodes, and one output node, which gives a continuous output in the interval
[−1, 1]. The training is performed with a mixture of 50 % signal and 50 % background events, where the
different background processes are weighted according to their number of expected events. Only pro-
cesses from simulated events are considered in the training, i.e. no multi-jet events are used. In order to
check that the neural network is not overtrained, 20 % of the available simulated events are used as a test
sample. Subsequently, the NN classifier is applied to all samples.

The qg→ t → b`ν process is characterised by three main differences from SM processes. Firstly, the pT
distribution of the top quark is much softer than the pT distribution of top quarks produced through SM
top-quark production, since the top quark is produced almost without transverse momentum. Hence, the
W boson and b-quark from the top-quark decay are produced almost back-to-back in the transverse plane.
Secondly, unlike in the W/Z+jets and diboson backgrounds, the W boson from the top-quark decay has a
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Figure 4: Kinematic distributions in the control region for the combined electron and muon channels. All processes
are normalised to the result of the binned maximum-likelihood fit used to determine the fraction of multi-jet events.
Shown are: (a) the transverse momentum and (b) pseudorapidity of the lepton, (c) the transverse momentum and (d)
pseudorapidity of the jet, (e) the missing transverse momentum and (f) W-boson transverse mass. The last histogram
bin includes overflow events and the hatched band indicates the combined statistical and systematic uncertainties,
evaluated after the fit discussed in Section 7.
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high momentum and its decay products tend to have small angles. Lastly, the top-quark charge asymmetry
differs between FCNC processes and SM processes in the ugt channel. In pp collisions, the FCNC
processes are predicted to produce four times more single top quarks than anti-top quarks, whereas in SM
single top-quark production and in all other SM backgrounds this ratio is at most two. Several categories
of variables are considered as potential discriminators between the signal and background processes.
Apart from basic event kinematics such as the mT(W) or HT (the scalar sum of the transverse momenta
of all objects in the final state), various object combinations are considered as well. These include the
basic kinematic properties of reconstructed objects like the W boson and the top quark, as well as angular
distances in η and φ between the reconstructed and final-state objects in the laboratory frame and in the
rest frames of the W boson and the top quark. In order to reconstruct the four-vector of the W boson,
a mass constraint is used. A detailed description of the top-quark reconstruction is given in Ref. [83].
Further, integer variables such as the charge of the lepton are considered.

The ranking of the variables in terms of their discrimination power is automatically determined as part of
the preprocessing step and is independent of the training procedure [84].6 Only the highest-ranking vari-
ables are chosen for the training of the neural network. Each variable is tested beforehand for agreement
between the background model and the distribution of the observed events in the control region. Using
only variables with an a priori defined separation power, 13 variables remain in the network. Table 2
shows a summary of the variables used, ordered by their importance. The probability density of the three
most important discriminating variables for the dominant background processes together with the signal
is displayed in Fig. 5.

The distributions for three of the four most important variables in the control and signal regions are shown
in Fig. 6. The shape of the multi-jet background is obtained using the samples described in Sec. 4.2. The
distribution of p`T is shown in Fig. 4(a) for the control region. The distributions are normalised using the
scale factors obtained in the binned maximum-likelihood fit to the Emiss

T distribution.

Variable Definition

mT(top) Transverse mass of the reconstructed top quark
p`T Transverse momentum of the charged lepton
∆R(top, `) Distance in the η–φ plane between the reconstructed top quark and the charged

lepton
pb-jet

T Transverse momentum of the b-tagged jet
∆φ(top, b-jet) Difference in azimuth between the reconstructed top quark and the b-tagged jet
cos θ(`, b-jet) Opening angle of the three-vectors between the charged lepton and the b-tagged jet
q` Charge of the lepton
mT(W) W-boson transverse mass
η` Pseudorapidity of the charged lepton
∆φ(top,W) Difference in azimuth between the reconstructed top quark and the W boson
∆R(top, b-jet) Distance in the η–φ plane between the reconstructed top quark and the b-tagged jet
ηtop Pseudorapidity of the reconstructed top quark
pW

T Transverse momentum of the W boson

Table 2: Variables used in the training of the neural network ordered by their descending importance.

6 The ranking is done according to the correlation to the output.
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Figure 5: Probability densities of the three most important discriminating variables: (a) the transverse mass of the
reconstructed top quark; (b) the transverse momentum of the charged lepton; and (c) the distance in the η–φ plane
between the charged lepton and the reconstructed top quark. The last histogram bin includes overflows.

The resulting neural-network output distributions for the most important background processes and the
signal are displayed in Fig. 7 as probability densities and in Figs. 8(a) and 8(b) normalised to the number
of expected events in the control and signal regions, respectively. Signal-like events have output values
close to 1, whereas background-like events accumulate near −1. Overall, good agreement within system-
atic uncertainties between data and the background processes is observed in both the control and signal
regions.

6 Systematic uncertainties

Systematic uncertainties are assigned to account for detector calibration and resolution uncertainties, as
well as the uncertainties on theoretical predictions. These can affect the normalisation of the individual
backgrounds and the signal acceptance (acceptance uncertainties) as well as the shape of the neural-
network output distribution (shape uncertainties). Quoted relative uncertainties refer to acceptance of the
respective processes unless stated otherwise.

6.1 Object modelling

The effects of the systematic uncertainties due to the residual differences between data and Monte Carlo
simulation, uncertainties on jets, electron and muon reconstruction after calibration, and uncertainties on
scale factors that are applied to the simulation are estimated using pseudo-experiments.

Uncertainties on the muon (electron) trigger, reconstruction and selection efficiency scale factors are
estimated in measurements of Z → µµ (Z → ee and W → eν) production. The scale factor uncertainties
are as large as 5 %. To evaluate uncertainties on the lepton momentum scale and resolution, the same
processes are used [85]. The uncertainty on the charge misidentification acceptances were studied and
found to be negligible for this analysis.

The jet energy scale (JES) is derived using information from test-beam data, LHC collision data and
simulation. Its uncertainty varies between 2.5 % and 8 %, depending on jet pT and η [59]. This includes
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Figure 6: Distributions of three important discriminating variables (except for the transverse momentum of the
lepton): (a) and (d) the top-quark transverse mass in the control and signal regions; (b) and (e) the ∆R between
the lepton and the reconstructed top quark in the control and signal regions; (c) and (f) the ∆φ between the jet and
the reconstructed top quark. All processes are normalised using the scale factors obtained in the binned maximum-
likelihood fit to the Emiss

T distribution. The FCNC signal cross-section is scaled to 50 pb and overlayed on the
distributions in the signal region. The last histogram bin includes overflow events and the hatched band indicates
the combined statistical and systematic uncertainties, evaluated after the fit discussed in Section 7.
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Figure 7: Probability density of the neural-network output distribution for the signal and the most important back-
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Figure 8: Neural-network output distribution (a) in the control region and (b) in the signal region. The shape of the
signal scaled to 50 pb is shown in (b). All background processes are shown normalised to the result of the binned
maximum-likelihood fit used to determine the fraction of multi-jet events. The hatched band indicates the combined
statistical and systematic uncertainties, evaluated after the fit discussed in Section 7.
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uncertainties in the fraction of jets induced by gluons and mismeasurements due to close-by jets. Addi-
tional uncertainties due to pile-up can be as large as 5 %. An additional jet energy scale uncertainty of up
to 2.5 %, depending on the pT of the jet, is applied for b-quark-induced jets due to differences between
light-quark and gluon jets compared to jets containing b-hadrons. Additional uncertainties are from the
modelling of the jet energy resolution and the missing transverse momentum, which accounts for con-
tributions of calorimeter cells not matched to any jets, soft jets, and pile-up. The effect of uncertainties
associated with the jet-vertex fraction is also considered for each jet.

Since the analysis makes use of b-tagging, the uncertainties on the b- and c-tagging efficiencies and the
mistag acceptance [61, 62] are taken into account.

6.2 Multi-jet background

For the multi-jet background, an uncertainty on the estimated multi-jet fractions and the modelling is
included. The systematic uncertainty on the fractions, as well as a shape uncertainty, are obtained by
comparing to an alternative method, the matrix method [81]. The method estimates the number of multi-
jet background events in the signal region based on loose and tight lepton isolation definitions, the latter
selection being a subset of the former. The number of multi-jet events Ntight

fake passing the tight (signal)
isolation requirements can be expressed as:

Ntight
fake =

εfake

εreal − εfake
· (Nlooseεreal − Ntight) ,

where εreal and εfake are the efficiencies for real and fake loose leptons being selected as tight leptons,
Nloose is the number of selected events in the loose sample, and Ntight is the number of selected events
in the signal sample. By comparing the two methods, the uncertainty on the fraction of multi-jet events
is estimated to be 17 %. The shape uncertainty is constructed by comparing the neural-network output
distributions of the jet-lepton and anti-muon samples with the distributions obtained using the matrix
method.

6.3 Monte Carlo generators

Systematic effects from the modelling of the signal and background processes are taken into account by
comparing different generator models and varying the parameters of the event generation. The effect
of parton-shower modelling for the top-quark processes is tested by comparing two Powheg samples
interfaced to Herwig and Pythia, respectively. There are also differences associated with the way in
which double-counted events in the NLO corrections and the parton showers are removed. These are
estimated by comparing samples produced with the MC@NLO method and the Powheg method.

The difference between the top-quark mass used in the simulations and the measured value has negligible
effect on the results.

For the single top-quark processes, variations of initial- and final-state radiation (ISR and FSR) together
with variations of the hard-process scale are studied. The uncertainty is estimated using events generated
with Powheg interfaced to Pythia. Factorisation and renormalisation scales are varied independently by
factors of 0.5 and 2.0, while the scale of the parton shower is varied consistently with the renormalisation
scale using specialised Perugia 2012 tunes [44]. The uncertainty on the amounts of ISR and FSR in the
simulated tt̄ sample is assessed using Alpgen samples, showered with Pythia, with varied amounts of
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initial- and final-state radiation, which are compatible with the measurements of additional jet activity in
tt̄ events [86].

The effect of applying the W-boson pT reweighting was studied and found to have negligible impact on
the shape of the neural-network output distribution and the measured cross-section. Hence no systematic
uncertainty due to this was assigned.

Finally, an uncertainty is included to account for statistical effects from the limited size of the MC
samples.

6.4 Parton distribution functions

Systematic uncertainties related to the parton distribution functions are taken into account for all samples
using simulated events. The events are reweighted according to each of the PDF uncertainty eigen-
vectors or replicas and the uncertainty is calculated following the recommendation of the respective PDF
group [73]. The final PDF uncertainty is given by the envelope of the estimated uncertainties for the CT10
PDF set, the MSTW2008 PDF set and the NNPDF 2.3 PDF set.

6.5 Theoretical cross-section normalisation

The theoretical cross-sections and their uncertainties are given in Sect. 4.2 for each background process.
Since the single top-quark t-, Wt-, and s-channel processes are grouped together in the statistical analysis,
their uncertainties are added in proportion to their relative fractions, leading to a combined uncertainty of
10 %.

A cross-section uncertainty of 4 % is assigned for the W/Z+(0 jet) process, while ALPGEN parameter
variations of the factorisation and renormalisation scale and the matching parameter consistent with ex-
perimental data yield an uncertainty on the cross-section ratio of 24 %. For W+HF production, a conser-
vatively estimated uncertainty on the HF fraction of 50 % is added. This uncertainty is also applied to the
combined Z+jets and diboson background.

6.6 Luminosity

The uncertainty on the measured luminosity is estimated to be 2.8 %. It is derived from beam-separation
scans performed in November 2012, following the same methodology as that detailed in Ref. [87].

7 Results

In order to estimate the signal content of the selected sample, a binned maximum-likelihood fit to the
complete neural-network output distributions in the signal region is performed. Including all bins of the
neural-network output distributions in the fit has the advantage of making maximal use of all signal events
remaining after the event selection, and, in addition, allows the background acceptances to be constrained
by the data.
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The signal rates, the rate of the single top-quark and tt̄ background and the rate of the W+HF background
are fitted simultaneously. The event yields of the multi-jet background, the W+LF and the combined
Z+jets/diboson background are not allowed to vary in the fit, but instead are fixed to the estimates given
in Table 1.

No significant rate of FCNC single top-quark production is observed. An upper limit is set using hy-
pothesis tests. The compatibility of the data with the signal hypothesis, which depends on the coupling
constants, and the background hypothesis is evaluated by performing a frequentist hypothesis test based
on pseudo-experiments, corresponding to an integrated luminosity of 20.3 fb−1. Two hypotheses are
compared: the null hypothesis, H0, and the signal hypothesis, H1, which includes FCNC single top-quark
production. For both scenarios, ensemble tests, i.e. large sets of pseudo-experiments, are performed. Sys-
tematic uncertainties are included in the pseudo-experiments using variations of the signal acceptance,
the background acceptances and the shape of the neural-network output distribution due to all sources of
uncertainty described in the previous section.

To distinguish between the two hypotheses, the so-called Q value is used as a test statistic. It is defined
as the ratio of the likelihood function L, evaluated for the different hypotheses:

Q = −2 ln

L
(
βFCNC = 1

)
L
(
βFCNC = 0

)  , (2)

where βFCNC is the scale factor for the number of events expected from the signal process for an assumed
production cross-section. Systematic uncertainties are included by varying the predicted number of events
for the signal and all background processes in the pseudo-experiments.

The CLs method [88] is used to derive confidence levels (CL) for a certain value of Qobs and Qexp. A
particular signal hypothesis H1, determined by given coupling constants κugt/Λ and κcgt/Λ, is excluded
at the 95 % CL if a CLs < 0.05 is found. The observed 95 % CL upper limit on the anomalous FCNC
single top-quark production cross-section multiplied by the t → Wb branching fraction, including all
uncertainties, is 3.4 pb, while the expected upper limit is 2.9+1.9

−1.2 pb.

To visualise the observed upper limit in the neural-network output distribution, the FCNC signal process
scaled to 3.4 pb stacked on top of all background processes is shown in Fig. 9.

The total uncertainty is dominated by the jet energy resolution uncertainty, the modelling of Emiss
T and

the uncertainty on the normalisation and the modelling of the multi-jet background. A summary of all
considered sources and their impact on the expected upper limit is shown in Table 3.

Using the NLO predictions for the FCNC single top-quark production cross-section [89, 90] and assuming
B(t → Wb) = 1, the upper limit on the cross-section can be interpreted as a limit on the coupling constants
divided by the scale of new physics: κugt/Λ < 5.8 × 10−3 TeV−1 assuming κcgt/Λ = 0, and κcgt/Λ <

13 × 10−3 TeV−1 assuming κugt/Λ = 0. Distributions of the upper limits on the coupling constants for
combinations of cgt and ugt channels are shown in Fig. 10(a).

Limits on the coupling constants can also be interpreted as limits on the branching fractions using B(t →
qg) = C

(
κqgt/Λ

)2
, where C is calculated at NLO [91]. Upper limits on the branching fractions B(t →

ug) < 4.0 × 10−5, assuming B(t → cg) = 0 and B(t → cg) < 20 × 10−5, assuming B(t → ug) = 0, are
derived and presented in Fig. 10(b).
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Figure 9: (a) Neural-network output distribution in the signal region and (b) in the signal region with neural network
output above 0.1. In both figures the signal contribution scaled to the observed upper limit is shown. The hatched
band indicates the total posterior uncertainty as obtained from the limit calculation.
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Figure 10: (a) Upper limit on the coupling constants κugt and κcgt and (b) on the branching fractions B(t → ug) and
B(t → cg). The shaded band shows the one standard deviation variation of the expected limit.
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Source Expected 95 % CL upper limit Change in the upper limit
[pb] [%]

Normalisation & MC statistics 1.5 -

Multi-jets normalisation and modelling 1.8 25

Luminosity 1.5 5

Lepton identification 1.5 3
Electron energy scale 1.6 8
Electron energy resolution 1.5 4
Muon momentum scale 1.5 1
Muon momentum resolution 1.5 5

Jet energy scale 1.6 8
Jet energy resolution 1.9 32
Jet reconstruction efficiency 1.5 4
Jet vertex fraction scale 1.5 3

b-tagging efficiency 1.5 3
c-tagging efficiency 1.5 4
Mistag acceptance 1.5 2

Emiss
T modelling 1.9 34

PDF 1.5 5
Scale variations 1.5 2
MC generator (NLO subtraction method) 1.6 8
Parton shower modelling 1.5 5

All systematic uncertainties 2.9 -

Table 3: The effect of a single systematic uncertainty in addition to the cross-section normalisation and MC statist-
ical uncertainties alone (top row) on the expected 95 % CL upper limits on the anomalous FCNC single top-quark
production qg→ t → b`ν. The relative change quoted in the third column is with respect to the expected limit with
normalisation and MC statistical uncertainties only.
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8 Conclusion

A search for anomalous single top-quark production via strong flavour-changing neutral currents in pp
collisions at the LHC is performed. Data collected by the ATLAS experiment in 2012 at a centre-of-mass
energy

√
s = 8 TeV, and corresponding to an integrated luminosity of 20.3 fb−1 are used. Candidate

events for which a u- or c-quark interacts with a gluon to produce a single top quark are selected. To
discriminate between signal and background processes, a multivariate technique using a neural network is
applied. The final statistical analysis is performed using a frequentist technique. As no signal is seen in the
observed output distribution, an upper limit on the production cross-section is set. The expected 95 % CL
limit on the production cross-section multiplied by the t → bW branching fraction isσqg→t×B(t → bW) <
2.9 pb and the observed 95 % CL limit is σqg→t × B(t → Wb) < 3.4 pb. Upper limits on the coupling
constants divided by the scale of new physics κugt/Λ < 5.8 × 10−3 TeV−1 and κcgt/Λ < 13 × 10−3 TeV−1

and on the branching fractions B(t → ug) < 4.0 × 10−5 and B(t → cg) < 20 × 10−5 are derived from the
observed limit. These are the most stringent limits published to date.
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L. Mijović21, G. Mikenberg172, M. Mikestikova127, M. Mikuž75, M. Milesi88, A. Milic30, D.W. Miller31,
C. Mills46, A. Milov172, D.A. Milstead146a,146b, A.A. Minaenko130, Y. Minami155, I.A. Minashvili65,
A.I. Mincer110, B. Mindur38a, M. Mineev65, Y. Ming173, L.M. Mir12, T. Mitani171, J. Mitrevski100,
V.A. Mitsou167, A. Miucci49, P.S. Miyagawa139, J.U. Mjörnmark81, T. Moa146a,146b, K. Mochizuki85,
S. Mohapatra35, W. Mohr48, S. Molander146a,146b, R. Moles-Valls21, R. Monden68, K. Mönig42,
C. Monini55, J. Monk36, E. Monnier85, J. Montejo Berlingen12, F. Monticelli71, S. Monzani132a,132b,
R.W. Moore3, N. Morange117, D. Moreno162, M. Moreno Llácer54, P. Morettini50a, D. Mori142,
M. Morii57, M. Morinaga155, V. Morisbak119, S. Moritz83, A.K. Morley150, G. Mornacchi30,
J.D. Morris76, S.S. Mortensen36, A. Morton53, L. Morvaj103, M. Mosidze51b, J. Moss143,
K. Motohashi157, R. Mount143, E. Mountricha25, S.V. Mouraviev96,∗, E.J.W. Moyse86, S. Muanza85,

35



R.D. Mudd18, F. Mueller101, J. Mueller125, R.S.P. Mueller100, T. Mueller28, D. Muenstermann49,
P. Mullen53, G.A. Mullier17, J.A. Murillo Quijada18, W.J. Murray170,131, H. Musheghyan54, E. Musto152,
A.G. Myagkov130,ab, M. Myska128, B.P. Nachman143, O. Nackenhorst54, J. Nadal54, K. Nagai120,
R. Nagai157, Y. Nagai85, K. Nagano66, A. Nagarkar111, Y. Nagasaka59, K. Nagata160, M. Nagel101,
E. Nagy85, A.M. Nairz30, Y. Nakahama30, K. Nakamura66, T. Nakamura155, I. Nakano112,
H. Namasivayam41, R.F. Naranjo Garcia42, R. Narayan31, D.I. Narrias Villar58a, T. Naumann42,
G. Navarro162, R. Nayyar7, H.A. Neal89, P.Yu. Nechaeva96, T.J. Neep84, P.D. Nef143, A. Negri121a,121b,
M. Negrini20a, S. Nektarijevic106, C. Nellist117, A. Nelson163, S. Nemecek127, P. Nemethy110,
A.A. Nepomuceno24a, M. Nessi30,ac, M.S. Neubauer165, M. Neumann175, R.M. Neves110, P. Nevski25,
P.R. Newman18, D.H. Nguyen6, R.B. Nickerson120, R. Nicolaidou136, B. Nicquevert30, J. Nielsen137,
N. Nikiforou35, A. Nikiforov16, V. Nikolaenko130,ab, I. Nikolic-Audit80, K. Nikolopoulos18,
J.K. Nilsen119, P. Nilsson25, Y. Ninomiya155, A. Nisati132a, R. Nisius101, T. Nobe155, M. Nomachi118,
I. Nomidis29, T. Nooney76, S. Norberg113, M. Nordberg30, O. Novgorodova44, S. Nowak101,
M. Nozaki66, L. Nozka115, K. Ntekas10, G. Nunes Hanninger88, T. Nunnemann100, E. Nurse78, F. Nuti88,
B.J. O’Brien46, F. O’grady7, D.C. O’Neil142, V. O’Shea53, F.G. Oakham29,d, H. Oberlack101,
T. Obermann21, J. Ocariz80, A. Ochi67, I. Ochoa78, J.P. Ochoa-Ricoux32a, S. Oda70, S. Odaka66,
H. Ogren61, A. Oh84, S.H. Oh45, C.C. Ohm15, H. Ohman166, H. Oide30, W. Okamura118, H. Okawa160,
Y. Okumura31, T. Okuyama66, A. Olariu26a, S.A. Olivares Pino46, D. Oliveira Damazio25,
E. Oliver Garcia167, A. Olszewski39, J. Olszowska39, A. Onofre126a,126e, K. Onogi103, P.U.E. Onyisi31,r,
C.J. Oram159a, M.J. Oreglia31, Y. Oren153, D. Orestano134a,134b, N. Orlando154, C. Oropeza Barrera53,
R.S. Orr158, B. Osculati50a,50b, R. Ospanov84, G. Otero y Garzon27, H. Otono70, M. Ouchrif135d,
F. Ould-Saada119, A. Ouraou136, K.P. Oussoren107, Q. Ouyang33a, A. Ovcharova15, M. Owen53,
R.E. Owen18, V.E. Ozcan19a, N. Ozturk8, K. Pachal142, A. Pacheco Pages12, C. Padilla Aranda12,
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