Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = triatomines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3985 KiB  
Article
One Genome, Multiple Phenotypes: Would Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 (Hemiptera, Triatominae) Be a Valid Species or a Phenotypic Polymorphism of R. neglectus Lent, 1954?
by Fabricio Ferreira Campos, Jader de Oliveira, Jociel Klleyton Santos Santana, Amanda Ravazi, Yago Visinho dos Reis, Laura Marson Marquioli, Cleber Galvão, Maria Tercília Vilela de Azeredo-Oliveira, João Aristeu da Rosa and Kaio Cesar Chaboli Alevi
Diversity 2024, 16(8), 472; https://doi.org/10.3390/d16080472 - 5 Aug 2024
Viewed by 225
Abstract
Species of the Rhodnius genus have a complex taxonomy because the events of phenotypic plasticity and cryptic speciation make it difficult to correctly classify these vectors. During the taxonomic history of the genus, five synonymization events occurred. Additionally, some authors suggest that R. [...] Read more.
Species of the Rhodnius genus have a complex taxonomy because the events of phenotypic plasticity and cryptic speciation make it difficult to correctly classify these vectors. During the taxonomic history of the genus, five synonymization events occurred. Additionally, some authors suggest that R. milesi possibly represent only phenotypic polymorphisms of R. neglectus. Thus, we analyzed the specific status of R. milesi in relation to R. neglectus using phylogenetic studies with the mitochondrial gene cytochrome B and the study of reproductive barriers. The phylogenetic reconstruction grouped R. milesi together with R. neglectus from different localities, demonstrating that these taxa represent the same species based on the phylogenetic species concept. Experimental crosses demonstrate the absence of pre- and postzygotic barriers under laboratory conditions. Additionally, when the hatch rates of crosses are compared to intraspecific crosses, it can be noted that they are high and very similar. Finally, the mortality rate of the hybrids does not indicate hybrid inviability, the absence of chromosome pairing errors does not indicate hybrid sterility, and the proportion between male and female hybrids demonstrates that Haldane’s rule was not acting. Therefore, we perform the formal synonymization of R. milesi with R. neglectus. Full article
Show Figures

Figure 1

23 pages, 1839 KiB  
Review
Genetic Diversity of Trypanosoma cruzi in the United States of America: The Least Endemic Country for Chagas Disease
by Arnau Llovera, Alba Abras, Anna Fernández-Arévalo, Cristina Ballart, Sandra Heras, Carmen Muñoz and Montserrat Gállego
Life 2024, 14(7), 901; https://doi.org/10.3390/life14070901 - 19 Jul 2024
Viewed by 598
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi and endemic in Latin America, has become an emergent health problem in non-endemic countries due to human migration. The United States (US) is the non-Latin American country with the highest CD burden and cannot be considered [...] Read more.
Chagas disease (CD), caused by Trypanosoma cruzi and endemic in Latin America, has become an emergent health problem in non-endemic countries due to human migration. The United States (US) is the non-Latin American country with the highest CD burden and cannot be considered as non-endemic, since triatomine vectors and reservoir animals have been found. Populations of T. cruzi are divided into genetic subdivisions, which are known as discrete typing units (DTUs): TcI to TcVI and TcBat. Autochthonous human T. cruzi infection in the US is sporadic, but it may change due to environmental factors affecting the geographic distribution of triatomines. We aimed to perform a literature review of the genetic diversity of T. cruzi in triatomine vectors and mammalian hosts, including human cases, in the US. The 34 analyzed studies revealed the presence of T. cruzi in 18 states, which was mainly concentrated in Texas, Louisiana and New Mexico. TcI and TcIV were the principal DTUs identified, being TcI the most genotyped (42.4%; 917/2164). This study represents a first attempt to compile the molecular epidemiology of T. cruzi in the US, which is fundamental for predicting the progression of the infection in the country and could be of great help in its future management. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

14 pages, 6730 KiB  
Article
Prevalence and Diversity of Trypanosoma cruzi in Triatomine Vectors and Their Blood Meal Sources from South Central Texas, USA
by Rebecca J. Kilgore, Trina Guerra, Heather Beck, Andrea Villamizar Gomez, Michael R. J. Forstner and Dittmar Hahn
Biology 2024, 13(7), 489; https://doi.org/10.3390/biology13070489 - 30 Jun 2024
Viewed by 867
Abstract
The prevalence of Trypanosoma cruzi was assessed in 117 triatomine insects from central Texas. The qPCR-based results revealed T. cruzi in 59% of the insects (62 adults and eight nymphs), with overall prevalences of T. cruzi of 0% (0/9), 64% (11/17), 58% [...] Read more.
The prevalence of Trypanosoma cruzi was assessed in 117 triatomine insects from central Texas. The qPCR-based results revealed T. cruzi in 59% of the insects (62 adults and eight nymphs), with overall prevalences of T. cruzi of 0% (0/9), 64% (11/17), 58% (10/17), 73% (30/41), and 57% (19/33) for the Bastrop, Caldwell, Gonzales, Guadalupe, and Hays counties, respectively. Analyses of 18S rRNA fragments confirmed T. cuzi in 81% of these samples. Vectors were identified as Triatoma gerstaeckeri (35% of which 65% were positive for T. cruzi), T. sanguisuga (21%, 43% positive), and Paratriatoma leticularia (0.3%, 100% positive). Food sources were recovered from 29% of the insects. Raccoons were 53% of the blood meals (83% positive for T. cruzi), while the remainder came from a variety of sources, including humans (33% positive), house geckos, Eastern woodrats, plain-bellied water snakes (50% positive), hispid cotton rats (0% positive), chickens (100% positive); Asian forest turtles, bison, and pigs (0% positive). The serendipitous detection of blood meal sources at known minimum distances from the collection of the vector insect enabled us to provide several instances where the insect foraging distance was greater than 400 m. These vector foraging distances are novel information that can assist in our understanding of the landscape dynamics for the spread of the pathogen. Full article
Show Figures

Figure 1

20 pages, 24704 KiB  
Article
Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift
by Andrea Gómez-Bravo, Sebastián Cirignoli, Diana Wehrendt, Alejandro Schijman, Cielo M. León, María Flores-Chaves, Javier Nieto, Troy J. Kieran, Marcelo Abril and Felipe Guhl
Insects 2024, 15(7), 471; https://doi.org/10.3390/insects15070471 - 25 Jun 2024
Viewed by 1285
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is a highly complex zoonosis that is present throughout South America, Central America, and Mexico. The transmission of this disease is influenced by various factors, including human activities like deforestation [...] Read more.
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is a highly complex zoonosis that is present throughout South America, Central America, and Mexico. The transmission of this disease is influenced by various factors, including human activities like deforestation and land use changes, which may have altered the natural transmission cycles and their connection to the environment. In this study conducted in the Argentine Chaco region, we examined the transmission dynamics of T. cruzi by collecting blood samples from wild and domestic animals, as well as triatomine bugs from human dwellings, across five sites of varying anthropic intervention. Samples were analyzed for T. cruzi infection via qPCR, and we additionally examined triatomines for bloodmeal analysis via NGS amplicon sequencing. Our analysis revealed a 15.3% infection rate among 20 wild species (n = 123) and no T. cruzi presence in 9 species of domestic animals (n = 1359) or collected triatomines via qPCR. Additionally, we found chicken (34.28%), human (21.59%), and goat (19.36%) as the predominant bloodmeal sources across all sites. These findings suggest that anthropic intervention and other variables analyzed may have directly impacted the spillover dynamics of T. cruzi’s sylvatic cycle and potentially reduced its prevalence in human habitats. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Graphical abstract

28 pages, 3843 KiB  
Review
Predictor Variables in the Spread of Chagas Disease in Rural Areas
by Liziana de Sousa Leite, Valéria Christina de Rezende Feres and Paulo Sérgio Scalize
Pathogens 2024, 13(5), 394; https://doi.org/10.3390/pathogens13050394 - 8 May 2024
Viewed by 983
Abstract
Over a hundred years ago after the discovery of Chagas disease (CD) in Brazil, the World Health Organization estimates a number of 6 to 7 million people infected by Trypanosoma cruzi worldwide. Therefore, the goal of this work was to identify variables related [...] Read more.
Over a hundred years ago after the discovery of Chagas disease (CD) in Brazil, the World Health Organization estimates a number of 6 to 7 million people infected by Trypanosoma cruzi worldwide. Therefore, the goal of this work was to identify variables related to the spread of infection by T. cruzi in humans living in rural areas, seeking predictor variables. A systematic review of the literature has been conducted, with a search in the Scopus platform, using the search string “Chagas disease” and “rural”, resulting in 85 valid and analyzed scientific studies (1977 and 2022). Twenty-seven predictor variables have been acquired, and 19 of them have been grouped, such as: socioeconomic and educational, housing, environmental, sanitary, and cultural; and 8 variables related to T. cruzi seropositive individuals. The predictor variables yielded significant results (p-value < 0.05) in 59.5% of the cases (195/328), with a median of 66.7%. In other words, studies relating to 50% of the 27 variables showed significance equal to or greater than 66.7% of the time. The independent variables with the highest proportion of significant data (p-value < 0.05) were Education (87.6%), Intradomicile building (70%), Domestic animals (69.6%), and Triatomines (69.2%) in the households. Some variables reached 100%; however, few articles were found, indicating the need for further research, especially for Sanitation and Culture. It has been concluded that, in the several contexts found, the social vulnerability and lack of information led the individual to living in environments where inhabitability is inadequate, to perform limited work activity and develop habits and behaviors which impair them in an environmental insalubrity situation, favorable to the access of vectors and pathogens of anthropozoonoses such as CD. Full article
(This article belongs to the Special Issue Insects Vectors of Pathogens)
Show Figures

Figure 1

33 pages, 1251 KiB  
Review
Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors—A Review
by Günter A. Schaub
Microorganisms 2024, 12(5), 855; https://doi.org/10.3390/microorganisms12050855 - 25 Apr 2024
Viewed by 1011
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development [...] Read more.
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

42 pages, 895 KiB  
Review
Immune Reactions of Vector Insects to Parasites and Pathogens
by Norman Arthur Ratcliffe, Cicero Brasileiro Mello, Helena Carla Castro, Paul Dyson and Marcela Figueiredo
Microorganisms 2024, 12(3), 568; https://doi.org/10.3390/microorganisms12030568 - 12 Mar 2024
Cited by 2 | Viewed by 1968
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these [...] Read more.
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented. Full article
(This article belongs to the Special Issue Interactions between Parasites/Pathogens and Vectors)
Show Figures

Figure 1

14 pages, 2151 KiB  
Article
Mapping the Silent Threat: A Comprehensive Analysis of Chagas Disease Occurrence in Riverside Communities in the Western Amazon
by Daniela da Silva Paixão, Fernanda Portela Madeira, Adila Costa de Jesus, Hêmilly Caroline da Silva Paixão, Juliana de Souza Almeida Aranha Camargo, Mariane Albuquerque Lima Ribeiro, Leandro José Ramos, Jader de Oliveira, João Aristeu da Rosa, Paulo Sérgio Bernarde, Antonieta Pereira Relvas, Sergio de Almeida Basano, Luis Marcelo Aranha Camargo and Dionatas Ulises de Oliveira Meneguetti
Pathogens 2024, 13(2), 176; https://doi.org/10.3390/pathogens13020176 - 15 Feb 2024
Viewed by 1226
Abstract
Chagas disease (CD) is a typical tropical illness caused by Trypanosoma cruzi. The objective of this study was to assess the prevalence of Chagas disease in communities in two states of the Brazilian Amazon. Data collection occurred in July in the Alto [...] Read more.
Chagas disease (CD) is a typical tropical illness caused by Trypanosoma cruzi. The objective of this study was to assess the prevalence of Chagas disease in communities in two states of the Brazilian Amazon. Data collection occurred in July in the Alto Juruá region of Acre and in December in the communities of Humaitá, Amazonas, in 2019. A total of 477 participants were included in the study. In the communities of Alto Juruá, triatomine collections and analyses of T. cruzi infection were also carried out. All confirmed cases were found in the state of Acre, resulting in a total prevalence of 1.67. Of these eight cases, seven underwent ECG, all of which were concluded as normal by the physician team’s cardiologists. Seventeen triatomine bugs, all belonging to the Rhodnius genus, were captured. The natural infection rate by T. cruzi was 25% in the Nova Cintra community and 66.67% in the Boca do Moa community (Alto Juruá). This research found that more than 1% of the studied population exhibited positive serological results for Chagas disease in the riverine communities during the study period, representing a small portion of cases among those who have not yet been diagnosed. Full article
(This article belongs to the Special Issue Insects Vectors of Pathogens)
Show Figures

Figure 1

17 pages, 3598 KiB  
Review
Oral Chagas Disease in Colombia—Confirmed and Suspected Routes of Transmission
by Norman L. Beatty, Catalina Arango-Ferreira, Lídia Gual-Gonzalez, Sara Zuluaga, Melissa S. Nolan and Omar Cantillo-Barraza
Trop. Med. Infect. Dis. 2024, 9(1), 14; https://doi.org/10.3390/tropicalmed9010014 - 4 Jan 2024
Cited by 3 | Viewed by 4016
Abstract
Chagas disease (CD) remains endemic throughout many regions of Colombia despite implementing decades of vector control strategies in several departments. Some regions have had a significant decrease in vectorial transmission, but the oral ingestion of Trypanosoma cruzi through consumption of contaminated food and [...] Read more.
Chagas disease (CD) remains endemic throughout many regions of Colombia despite implementing decades of vector control strategies in several departments. Some regions have had a significant decrease in vectorial transmission, but the oral ingestion of Trypanosoma cruzi through consumption of contaminated food and drink products is increasingly described. This form of transmission has important public health relevance in Colombia due to an increase in reported acute CD cases and clinical manifestations that often lead to significant morbidity and mortality. Oral CD in Colombia has been associated with the consumption of contaminated fruit juices, such as palm wine, sugar cane, or tangerine juice and water for consumption, or contaminated surfaces where food has been prepared. Another interesting route of oral transmission includes ingestion of unbeknownst infected armadillos’ blood, which is related to a traditional medicine practice in Colombia. Some earlier reports have also implemented consumption of infected bush meat as a source, but this is still being debated. Within the Amazon Basin, oral transmission is now considered the principal cause of acute CD in these regions. Furthermore, new cases of acute CD are now being seen in departments where CD has not been documented, and triatomine vectors are not naturally found, thus raising suspicion for oral transmission. The oral CD could also be considered a food-borne zoonosis, and odoriferous didelphid secretions have been implemented in contaminating the human dwelling environment, increasing the risk of consumption of infectious metacyclic trypomastigotes. In this article, we will discuss the complex transmission dynamics of oral CD in Colombia and further examine the unique clinical manifestations of this route of infection. New insights into the oral transmission of Trypanosoma cruzi are being discovered in Colombia, which can help bring increased awareness and a better understanding of this neglected tropical disease to reduce the burden of CD throughout Latin America. Full article
(This article belongs to the Special Issue Burden of Chagas Disease in the Americas)
Show Figures

Figure 1

21 pages, 2728 KiB  
Review
Metacyclogenesis as the Starting Point of Chagas Disease
by Alessandro Zanard Lopes Ferreira, Carla Nunes de Araújo, Isabela Cunha Costa Cardoso, Karen Stephanie de Souza Mangabeira, Amanda Pereira Rocha, Sébastien Charneau, Jaime Martins Santana, Flávia Nader Motta and Izabela Marques Dourado Bastos
Int. J. Mol. Sci. 2024, 25(1), 117; https://doi.org/10.3390/ijms25010117 (registering DOI) - 21 Dec 2023
Cited by 1 | Viewed by 1196
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular [...] Read more.
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite’s life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions)
Show Figures

Figure 1

13 pages, 916 KiB  
Article
Experimental Hybrids of the Triatoma brasiliensis Species Complex Show Higher Susceptibility to the Trypanosoma cruzi Infection Than Their Parentals
by Nathália Correia, Letícia Paschoaletto, Carolina Reigada, Teresa Cristina Monte Gonçalves, Carlos José de Carvalho Moreira and Jane Costa
Microorganisms 2023, 11(12), 2850; https://doi.org/10.3390/microorganisms11122850 - 24 Nov 2023
Viewed by 1024
Abstract
The Triatoma brasiliensis species complex is a monophyletic group encompassing two subspecies and six species. Recently, a hybrid zone of members of this complex was recorded in the state of Pernambuco. Questions concerning the capability of the hybrids to become infected with Trypanosoma [...] Read more.
The Triatoma brasiliensis species complex is a monophyletic group encompassing two subspecies and six species. Recently, a hybrid zone of members of this complex was recorded in the state of Pernambuco. Questions concerning the capability of the hybrids to become infected with Trypanosoma cruzi have been raised. This study aimed to compare the susceptibility of Triatoma b. brasiliensis, Triatoma juazeirensis, and their experimental hybrids to infection with T. cruzi. We infected the parentals and their experimental hybrids (obtained through reciprocal crosses) through artificial feeding with citrated rabbit blood, to which the TcI 0354 strain of T. cruzi had been added. The insects were weighed before and after feeding on the rabbit blood, and then they were dissected on the 10th, 20th, and 30th day after infection. Both the hybrids and the parentals remained infected throughout the experiment. The parasite was mostly found in the epimastigote form. The number of epimastigotes was significantly lower in the stomach and small intestine of T. juazeirensis than in the hybrids or in T. b. brasiliensis. A significantly higher percentage of metacyclic trypomastigotes was detected in the small intestine and rectum of the hybrids. Hybrids demonstrated higher susceptibility to the TcI 0354 strain than their parentals, opening up new avenues to be investigated. Full article
(This article belongs to the Special Issue Advances in Trypanosoma Infection)
Show Figures

Figure 1

17 pages, 4526 KiB  
Article
Differential Spreading of Microsatellites in Holocentric Chromosomes of Chagas Disease Vectors: Genomic and Evolutionary Implications
by Francisco Panzera, Ángeles Cuadrado, Pablo Mora, Teresa Palomeque, Pedro Lorite and Sebastián Pita
Insects 2023, 14(9), 772; https://doi.org/10.3390/insects14090772 - 19 Sep 2023
Viewed by 1085
Abstract
This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from [...] Read more.
This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from the two principal tribes: Triatomini and Rhodniini. Three main hybridization patterns were identified: strong signals in specific chromosomal regions, dispersed signals dependent on microsatellite abundance and the absence of signals in certain chromosomal regions or entire chromosomes. Significant variations in hybridization patterns were observed between Rhodniini and Triatomini species. Rhodniini species displayed weak and scattered hybridization signals, indicating a low abundance of microsatellites in their genomes. In contrast, Triatomini species exhibited diverse and abundant hybridization patterns, suggesting that microsatellites are a significant repetitive component in their genomes. One particularly interesting finding was the high abundance of GATA repeats, and to a lesser extent AG repeats, in the Y chromosome of all analyzed Triatomini species. In contrast, the Y chromosome of Rhodniini species did not show enrichment in GATA and AG repeats. This suggests that the richness of GATA repeats on the Y chromosome likely represents an ancestral trait specific to the Triatomini tribe. Furthermore, this information can be used to elucidate the evolutionary relationships between Triatomini and other groups of reduviids, contributing to the understanding of the subfamily’s origin. Overall, this study provides a comprehensive understanding of the composition and distribution of microsatellites within Triatominae genomes, shedding light on their significance in the evolutionary processes of these species. Full article
(This article belongs to the Special Issue Comparative Cytogenetics and Molecular Systematics of Insects)
Show Figures

Figure 1

16 pages, 4616 KiB  
Article
Effectiveness of Systemic Insecticide Dog Treatment for the Control of Chagas Disease in the Tropics
by Edem Fiatsonu, Aniruddha Deka and Martial L. Ndeffo-Mbah
Biology 2023, 12(9), 1235; https://doi.org/10.3390/biology12091235 - 13 Sep 2023
Viewed by 1169
Abstract
Chagas disease, caused by Trypanosoma cruzi and transmitted by triatomines, can lead to severe cardiac issues and mortality in many mammals. Recent studies have shown that systemic insecticide treatment of dogs is highly effective in killing triatomines. Here, we assessed the impact of [...] Read more.
Chagas disease, caused by Trypanosoma cruzi and transmitted by triatomines, can lead to severe cardiac issues and mortality in many mammals. Recent studies have shown that systemic insecticide treatment of dogs is highly effective in killing triatomines. Here, we assessed the impact of dog treatment on T. cruzi transmission. We developed a mathematical model of T. cruzi transmission among triatomines, dogs, humans, and rodents. We used the model to evaluate the impact of dog treatment regimens on T. cruzi transmission dynamics to determine their effectiveness in reducing T. cruzi infection among hosts. We show that a 3-month treatment regimen may reduce T. cruzi incidence among humans by 59–80% in a high transmission setting, and 26–82% in a low transmission setting. An annual treatment may reduce incidence among humans by 49–74% in a high transmission setting, and by 11–76% in a low transmission setting. However, dog treatment may substantially increase T. cruzi prevalence among dogs if dog consumption of dead triatomines increases. Our model indicates that dog treatment may reduce T. cruzi infections among humans, but it may increase infections in dogs. Therefore, a holistic approach targeting different hosts is necessary for Chagas elimination. Full article
Show Figures

Figure 1

23 pages, 7931 KiB  
Systematic Review
Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review
by Olivia A. Reynoso-Ducoing, Berenice González-Rete, Elsa Díaz, Frida N. Candelas-Otero, J. Antonio López-Aviña, Margarita Cabrera-Bravo, Martha I. Bucio-Torres, Elia Torres-Gutiérrez and Paz María Salazar-Schettino
Pathogens 2023, 12(9), 1124; https://doi.org/10.3390/pathogens12091124 - 2 Sep 2023
Cited by 1 | Viewed by 2115
Abstract
Chagas disease is caused by the hemoflagellate protozoan Trypanosoma cruzi. The main transmission mechanism for the parasite in endemic areas is contact with the feces of an infected triatomine bug. Part of the life cycle of T. cruzi occurs in the digestive tract [...] Read more.
Chagas disease is caused by the hemoflagellate protozoan Trypanosoma cruzi. The main transmission mechanism for the parasite in endemic areas is contact with the feces of an infected triatomine bug. Part of the life cycle of T. cruzi occurs in the digestive tract of triatomines, where vector and parasite engage in a close interaction at a proteomic–molecular level. This interaction triggers replication and differentiation processes in the parasite that can affect its infectivity for the vertebrate host. With the aim of compiling and analyzing information from indexed publications on transcripts, proteins, and glycoproteins in the guts of fasting, fed, and T. cruzi-infected triatomines in the period 2000–2022, a systematic review was conducted following the PRISMA guidelines. Fifty-five original research articles retrieved from PubMed and ScienceDirect were selected; forty-four papers reported 1–26,946 transcripts, and twenty-one studies described 1–2603 peptides/proteins. Full article
(This article belongs to the Special Issue West Nile Virus and Other Zoonotic Infections)
Show Figures

Figure 1

19 pages, 10581 KiB  
Review
What Do You Need to Know before Studying Chagas Disease? A Beginner’s Guide
by José A. De Fuentes-Vicente, Nancy G. Santos-Hernández, Christian Ruiz-Castillejos, Eduardo E. Espinoza-Medinilla, A. Laura Flores-Villegas, Mariana de Alba-Alvarado, Margarita Cabrera-Bravo, Adriana Moreno-Rodríguez and Dolores G. Vidal-López
Trop. Med. Infect. Dis. 2023, 8(7), 360; https://doi.org/10.3390/tropicalmed8070360 - 10 Jul 2023
Cited by 9 | Viewed by 3937
Abstract
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research [...] Read more.
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information. Full article
(This article belongs to the Special Issue Advances in Chagas Disease Control)
Show Figures

Figure 1

Back to TopTop