Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites
- No intervention: Adobe Natural Reserve (ANR), a lack of roads, constructions, and deforestation
- Semi-intervened: Lote 59 (L59) and El Desvío (ED), a few dirt roads, constructions, and deforestation
- Intervened: Miel de Palo (MP) and Malacara (M), with paved roads, constructions, and deforestation.
2.3. Ethical Considerations and Biosecurity Measures
2.4. Capture and Sampling of Wild Mammals
2.5. Sampling of Domestic Mammals
2.6. Molecular Diagnosis of T. cruzi in Mammals
2.7. Capture and Sampling of Triatomines
2.8. Molecular Diagnosis of T. cruzi in Triatomine Insects
2.9. Bloodmeals in Triatomines
3. Results
3.1. Wild Animals
3.2. Domestic Animals
3.3. Triatomines
3.4. Detection of Trypanosoma cruzi
3.5. Bloodmeal Results
3.6. Serological Diagnostics in Humans
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OPS. La Enfermedad de Chagas en las Américas: Análisis de la Situación Actual y Revisión Estratégica de la Agenda Regional. Informe Final, 14-16 de Marzo del 2023, Medellín (Colombia); OPS: Washington, DC, USA, 2023. [Google Scholar]
- Hernández, C.; Aristeu da Rosa, J.; Vallejo, G.A.; Guhl, F.; Ramírez, J.D. Taxonomy, Evolution, and Biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity 2020, 12, 97. [Google Scholar] [CrossRef]
- Noireau, F.; Diosque, P.; Jansen, A.M. Trypanosoma Cruzi: Adaptation to Its Vectors and Its Hosts. Vet. Res. 2009, 40, 26. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.M.; Xavier, S.C.d.C.; Roque, A.L.R. Trypanosoma Cruzi Transmission in the Wild and Its Most Important Reservoir Hosts in Brazil. Parasites Vectors 2018, 11, 502. [Google Scholar] [CrossRef] [PubMed]
- de Arias, A.R.; Monroy, C.; Guhl, F.; Sosa-Estani, S.; Santos, W.S.; Abad-Franch, F. Chagas Disease Control-Surveillance in the Americas: The Multinational Initiatives and the Practical Impossibility of Interrupting Vector-Borne Trypanosoma Cruzi Transmission. Mem. Inst. Oswaldo Cruz 2022, 117, e210130. [Google Scholar] [CrossRef] [PubMed]
- Schofield, C.J.; Galvão, C. Classification, Evolution, and Species Groups within the Triatominae. Acta Trop. 2009, 110, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Carcavallo, R.L.; Martínez, A. Biología, Ecología y Distribución Geográfica de los Triatominos Americanos. pp. 149–200. Available online: https://books.google.com/books/about/Biologia_ecologia_y_distribucion_geograf.html?id=pnYWHQAACAAJ (accessed on 16 April 2024).
- Carcavallo, R.; Canale, D.; Martínez, A. Habitats de Triatominos Argentinos y Zonas Ecológicas Donde Prevalecen. Chagas 1988, 5, 8–17. [Google Scholar]
- Canale, D.M.; Cecere, M.C.; Chuit, R.; Gürtler, R.E. Peridomestic Distribution of Triatoma Garciabesi and Triatoma Guasayana in North-West Argentina. Med. Vet. Entomol. 2000, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Guhl, F.; Ramírez, J.D. Poverty, Migration, and Chagas Disease. Curr. Trop. Med. Rep. 2021, 8, 52–58. [Google Scholar] [CrossRef]
- Guhl, F. Biomedical Research and Its Relationship with the Control of Chagas Disease. Boletín Malariol. Salud Ambient. 2020, 60, 19–29. [Google Scholar]
- Abril, M.; Coto, H.; Weinberg, D.; Coppede, M.; Cejas, R. Housing Improvements with Community Participation to Prevent and Control Chagas Disease in Rural Communities in Southeast Santiago Del Estero, Argentina. Enfermedades Emerg. 2009, 11, 28–33. [Google Scholar]
- Weinberg, D.; Porcasi, X.; Lanfri, S.; Abril, M.; Scavuzzo, C.M. Spatial Analyzes of Triatomine Infestation Indices and Their Association to the Actions of a Chagas Disease Program and Environmental Variables during a 5-Year Intervention Period. Acta Tropica 2018, 188, 41–49. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Ending the Neglect to Attain the Sustainable Development Goals: A Rationale for Continued Investment in Tackling Neglected Tropical Diseases 2021–2030. Available online: https://www.who.int/publications-detail-redirect/9789240052932 (accessed on 5 April 2024).
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to Zoonotic Spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Weinberg, D.; Casale, M.F.; Cejas, R.G.; Hoyos, R.; Periago, M.V.; Segura, E.; Abril, M.C. Chagas Prevention and Control in an Endemic Area from the Argentinian Gran Chaco Region: Data from 14 Years of Uninterrupted Intervention. PLoS Negl. Trop. Dis. 2023, 17, e0011410. [Google Scholar] [CrossRef]
- Erazo, D.; González, C.; Guhl, F.; Umaña, J.D.; Morales-Betancourt, J.A.; Cordovez, J. Rhodnius Prolixus Colonization and Trypanosoma Cruzi Transmission in Oil Palm (Elaeis Guineensis) Plantations in the Orinoco Basin, Colombia. Am. J. Trop. Med. Hyg. 2020, 103, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Periago, M.V.; García, R.; Astudillo, O.G.; Cabrera, M.; Abril, M.C. Prevalence of Intestinal Parasites and the Absence of Soil-Transmitted Helminths in Añatuya, Santiago Del Estero, Argentina. Parasites Vectors 2018, 11, 638. [Google Scholar] [CrossRef]
- Piquer-Rodríguez, M.; Torella, S.; Gavier-Pizarro, G.; Volante, J.; Somma, D.; Ginzburg, R.; Kuemmerle, T. Effects of Past and Future Land Conversions on Forest Connectivity in the Argentine Chaco. Landsc. Ecol. 2015, 30, 817–833. [Google Scholar] [CrossRef]
- OPS Protocolos Para La Vigilancia y Control de Roedores Sinantrópico. Available online: https://iris.paho.org/bitstream/handle/10665.2/50507/protocolosvigilancia_spa.pdf?sequence%20=%201&isAllowed%20=%20y (accessed on 26 April 2024).
- Parmenter, R.R.; Yates, T.L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; et al. Small-Mammal Density Estimation: A Field Comparison of Grid-Based Vs. Web-Based Density Estimators. Ecol. Monogr. 2003, 73, 1–26. [Google Scholar] [CrossRef]
- Dario, M.A.; Furtado, C.; Lisboa, C.V.; de Oliveira, F.; Santos, F.M.; D’Andrea, P.S.; Roque, A.L.R.; Xavier, S.C. das C.; Jansen, A.M. Trypanosomatid Richness Among Rats, Opossums, and Dogs in the Caatinga Biome, Northeast Brazil, a Former Endemic Area of Chagas Disease. Front. Cell. Infect. Microbiol. 2022, 12, 851903. [Google Scholar] [CrossRef] [PubMed]
- Kanda, I. Exotic Animal Formulary, 4th Edition. Can. Vet. J. 2015, 56, 736. [Google Scholar]
- Barquez, R.; Diaz, M. Los Murciélagos de Argentina: Clave de Identificación (Key to the Bats of Argentina); Ediciones Magna: Madison, WI, USA, 2009; ISBN 978-987-05-6762-2. [Google Scholar]
- Wehrendt, D.P.; Gómez-Bravo, A.; Ramirez, J.C.; Cura, C.; Pech-May, A.; Ramsey, J.M.; Abril, M.; Guhl, F.; Schijman, A.G. Development and Evaluation of a Duplex TaqMan qPCR Assay for Detection and Quantification of Trypanosoma Cruzi Infection in Domestic and Sylvatic Reservoir Hosts. Parasites Vectors 2019, 12, 567. [Google Scholar] [CrossRef]
- Britto, C.; Cardoso, M.A.; Wincker, P.; Morel, C.M. A Simple Protocol for the Physical Cleavage of Trypanosoma Cruzi Kinetoplast DNA Present in Blood Samples and Its Use in Polymerase Chain Reaction (PCR)-Based Diagnosis of Chronic Chagas Disease. Mem. Inst. Oswaldo Cruz 1993, 88, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Piron, M.; Fisa, R.; Casamitjana, N.; López-Chejade, P.; Puig, L.; Vergés, M.; Gascón, J.; Gómez i Prat, J.; Portús, M.; Sauleda, S. Development of a Real-Time PCR Assay for Trypanosoma Cruzi Detection in Blood Samples. Acta Trop. 2007, 103, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Norman, F.F.; Pérez-Ayala, A.; Pérez-Molina, J.A.; Flores-Chavez, M.; Cañavate, C.; López-Vélez, R. Lack of Association between Blood-Based Detection of Trypanosoma Cruzi DNA and Cardiac Involvement in a Non-Endemic Area. Ann. Trop. Med. Parasitol. 2011, 105, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Turriago Gómez, B.C.; Vallejo, G.A.; Felipe, G. SEROPREVALENCIA DE Trypanosoma cruzi EN PERROS DE DOS ÁREAS ENDÉMICAS DE COLOMBIA. Rev. Med. 2008, 16, 11–18. [Google Scholar]
- Angulo, V.M.; Esteban, L. New Trap for the Capture of Triatomines in Wild and Peridomestic Habitats. Biomédica 2011, 31, 264–267. [Google Scholar] [CrossRef]
- Lent, H.; Wygodzinsky, P.W. Revision of the Triatominae (Hemiptera, Reduviidae), and Their Significance as Vectors of Chagas’ Disease. Bull. AMNH 1979, 163, 3. [Google Scholar]
- Machado, E.M.; Alvarenga, N.J.; Romanha, A.J.; Grisard, E.C. A Simplified Method for Sample Collection and DNA Isolation for Polymerase Chain Reaction Detection of Trypanosoma Rangeli and Trypanosoma Cruzi in Triatomine Vectors. Mem. Inst. Oswaldo Cruz 2000, 95, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.C.; Torres, C.; Curto, M.d.l.A.; Schijman, A.G. New Insights into Trypanosoma Cruzi Evolution, Genotyping and Molecular Diagnostics from Satellite DNA Sequence Analysis. PLoS Neglected Trop. Dis. 2017, 11, e0006139. [Google Scholar] [CrossRef] [PubMed]
- Moreira, O.C.; Verly, T.; Finamore-Araujo, P.; Gomes, S.A.O.; Lopes, C.M.; de Sousa, D.M.; Azevedo, L.R.; da Mota, F.F.; d’Avila-Levy, C.M.; Santos-Mallet, J.R.; et al. Development of Conventional and Real-Time Multiplex PCR-Based Assays for Estimation of Natural Infection Rates and Trypanosoma Cruzi Load in Triatomine Vectors. Parasites Vectors 2017, 10, 404. [Google Scholar] [CrossRef]
- Duffy, T.; Bisio, M.; Altcheh, J.; Burgos, J.M.; Diez, M.; Levin, M.J.; Favaloro, R.R.; Freilij, H.; Schijman, A.G. Accurate Real-Time PCR Strategy for Monitoring Bloodstream Parasitic Loads in Chagas Disease Patients. PLoS Negl. Trop. Dis. 2009, 3, e419. [Google Scholar] [CrossRef]
- Kieran, T.J.; Gottdenker, N.L.; Varian, C.P.; Saldaña, A.; Means, N.; Owens, D.; Calzada, J.E.; Glenn, T.C. Blood Meal Source Characterization Using Illumina Sequencing in the Chagas Disease Vector Rhodnius Pallescens (Hemiptera: Reduviidae) in Panamá. J. Med. Entomol. 2017, 54, 1786–1789. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C.; Pierson, T.W.; Bayona-Vásquez, N.J.; Kieran, T.J.; Hoffberg, S.L.; Thomas Iv, J.C.; Lefever, D.E.; Finger, J.W.; Gao, B.; Bian, X.; et al. Adapterama II: Universal Amplicon Sequencing on Illumina Platforms (TaggiMatrix). PeerJ 2019, 7, e7786. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C.; Nilsen, R.A.; Kieran, T.J.; Sanders, J.G.; Bayona-Vásquez, N.J.; Finger, J.W.; Pierson, T.W.; Bentley, K.E.; Hoffberg, S.L.; Louha, S.; et al. Adapterama I: Universal Stubs and Primers for 384 Unique Dual-Indexed or 147,456 Combinatorially-Indexed Illumina Libraries (iTru & iNext). PeerJ 2019, 7, e7755. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Teta, P.; Argoitia, A.; Barbero, S.; Campo, D.H.; d’Hiriart, S.; Troyelli, A.; Lucero, S.; Cassini, G. Sistemática De Mamíferos De Argentina: Patrones, Tendencias Y Perspectivas En La Acumulación De Conocimientos. Mastozoología Neotrop. 2021, 28, 514. [Google Scholar] [CrossRef]
- Bernegossi, A.M.; de Souza Borges, C.H.; Sandoval, E.D.P.; Cartes, J.L.; Cernohorska, H.; Kubickova, S.; Vozdova, M.; Caparroz, R.; González, S.; Duarte, J.M.B. Resurrection of the Genus SubuloSmith, 1827 for the Gray Brocket Deer, with Designation of a Neotype. J. Mammal. 2023, 104, 619–633. Available online: https://academic.oup.com/jmammal/article-abstract/104/3/619/6702645 (accessed on 16 April 2024). [CrossRef]
- Ceballos, L.A.; Cardinal, M.V.; Vazquez-Prokopec, G.M.; Lauricella, M.A.; Orozco, M.M.; Cortinas, R.; Schijman, A.G.; Levin, M.J.; Kitron, U.; Gürtler, R.E. Long-Term Reduction of Trypanosoma Cruzi Infection in Sylvatic Mammals Following Deforestation and Sustained Vector Surveillance in Northwestern Argentina. Acta Trop. 2006, 98, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Vaz, V.C.; D’Andrea, P.S.; Jansen, A.M. Effects of Habitat Fragmentation on Wild Mammal Infection by Trypanosoma Cruzi. Parasitology 2007, 134, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Prokopec, G.M.; Spillmann, C.; Zaidenberg, M.; Gürtler, R.E.; Kitron, U. Spatial Heterogeneity and Risk Maps of Community Infestation by Triatoma Infestans in Rural Northwestern Argentina. PLoS Negl. Trop. Dis. 2012, 6, e1788. [Google Scholar] [CrossRef]
- Vianna, E.N.; Souza E Guimarães, R.J.d.P.; Souza, C.R.; Gorla, D.; Diotaiuti, L. Chagas Disease Ecoepidemiology and Environmental Changes in Northern Minas Gerais State, Brazil. Mem. Inst. Oswaldo Cruz 2017, 112, 760–768. [Google Scholar] [CrossRef]
- Alvarado-Otegui, J.A.; Ceballos, L.A.; Orozco, M.M.; Enriquez, G.F.; Cardinal, M.V.; Cura, C.; Schijman, A.G.; Kitron, U.; Gürtler, R.E. The Sylvatic Transmission Cycle of Trypanosoma Cruzi in a Rural Area in the Humid Chaco of Argentina. Acta Trop. 2012, 124, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Ostfeld, R. Biodiversity and the dilution effect in disease ecology. Ecology 2001, 82, 609–619. [Google Scholar] [CrossRef]
- Castañera, M.B.; Lauricella, M.A.; Chuit, R.; Gürtler, R.E. Evaluation of Dogs as Sentinels of the Transmission of Trypanosoma Cruzi in a Rural Area of North-Western Argentina. Ann. Trop. Med. Parasitol. 1998, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Gürtler, R.E.; Kitron, U.; Cecere, M.C.; Segura, E.L.; Cohen, J.E. Sustainable Vector Control and Management of Chagas Disease in the Gran Chaco, Argentina. Proc. Natl. Acad. Sci. USA 2007, 104, 16194–16199. [Google Scholar] [CrossRef] [PubMed]
- Neyra, R.C.; Chu, L.C.; Quispe-Machaca, V.; Ancca-Juarez, J.; Malaga Chavez, F.S.; Mazuelos, M.B.; Naquira, C.; Bern, C.; Gilman, R.H.; Levy, M.Z. The Potential of Canine Sentinels for Reemerging Trypanosoma Cruzi Transmission. Prev. Vet. Med. 2015, 120, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Dueñez, J.; Triana-Chávez, O.; Cantillo-Barraza, O.; Hernández, C.; Ramírez, J.D.; Góngora-Orjuela, A. Molecular and Serological Detection of Trypanosoma Cruzi in Dogs (Canis Lupus Familiaris) Suggests Potential Transmission Risk in Areas of Recent Acute Chagas Disease Outbreaks in Colombia. Prev. Vet. Med. 2017, 141, 1–6. [Google Scholar] [CrossRef]
- Monteiro, F.A.; Weirauch, C.; Felix, M.; Lazoski, C.; Abad-Franch, F. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Adv. Parasitol. 2018, 99, 265–344. [Google Scholar] [CrossRef]
- Samuels, A.M.; Clark, E.H.; Galdos-Cardenas, G.; Wiegand, R.E.; Ferrufino, L.; Menacho, S.; Gil, J.; Spicer, J.; Budde, J.; Levy, M.Z.; et al. Epidemiology of and Impact of Insecticide Spraying on Chagas Disease in Communities in the Bolivian Chaco. PLoS Negl. Trop. Dis 2013, 7, e2358. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, N.; Borrás, R.; Abad-Franch, F. Chagas Disease Vector Control in a Hyperendemic Setting: The First 11 Years of Intervention in Cochabamba, Bolivia. PLoS Negl. Trop. Dis. 2014, 8, e2782. [Google Scholar] [CrossRef]
- Espinoza Echeverria, J.; Rodriguez, A.N.; Cortez, M.R.; Diotaiuti, L.G.; Gorla, D.E. Spatial and Temporal Distribution of House Infestation by Triatoma Infestans in the Toro Toro Municipality, Potosi, Bolivia. Parasites Vectors 2017, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, T.; Gonçalves, R.; Mamani, J.; Courtenay, O.; Bern, C. Chagas Disease in the Bolivian Chaco: Persistent Transmission Indicated by Childhood Seroscreening Study. Int. J. Infect. Dis. 2019, 86, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-de-la-Fuente, A.L.; Fernández, M.d.P.; Piccinali, R.V.; Rodríguez-Planes, L.I.; Duarte, R.; Gürtler, R.E. Occurrence of Domestic and Intrusive Triatomines (Hemiptera: Reduviidae) in Sylvatic Habitats of the Temperate Monte Desert Ecoregion of Argentina. Acta Trop. 2019, 196, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Gurgel-Gonçalves, R. Stronger Control-Surveillance Systems for Vector-Borne Chagas Disease. Mem. Inst. Oswaldo Cruz 2022, 117, e210130chgsb. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.M.; Roque, A.L.R.; Xavier, S.C.C. Trypanosoma Cruzi Enzootic Cycle. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, UK, 2017; pp. 265–282. ISBN 978-0-12-801029-7. [Google Scholar]
- Zingales, B.; Bartholomeu, D.C. Trypanosoma Cruzi Genetic Diversity: Impact on Transmission Cycles and Chagas Disease. Mem. Inst. Oswaldo Cruz 2022, 117, e210193. [Google Scholar] [CrossRef] [PubMed]
- Chemisquy, A.; Martin, G.M. Didelphis Albiventris. Categorización 2019 de los Mamíferos de Argentina Según su Riesgo de Extinción; Lista Roja de los mamíferos de Argentina: Ciudad Autónoma de Buenos Aires, Argentina, 2019. [Google Scholar]
- Enriquez, G.F.; Bua, J.; Orozco, M.M.; Macchiaverna, N.P.; Otegui, J.A.A.; Argibay, H.D.; Fernández, M.D.P.; Gürtler, R.E.; Cardinal, M.V. Over-Dispersed Trypanosoma Cruzi Parasite Load in Sylvatic and Domestic Mammals and Humans from Northeastern Argentina. Parasites Vectors 2022, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Orozco, M.M.; Enriquez, G.F.; Alvarado-Otegui, J.A.; Cardinal, M.V.; Schijman, A.G.; Kitron, U.; Gürtler, R.E. New Sylvatic Hosts of Trypanosoma Cruzi and Their Reservoir Competence in the Humid Chaco of Argentina: A Longitudinal Study. Am. J. Trop. Med. Hyg. 2013, 88, 872–882. [Google Scholar] [CrossRef]
- Orozco, M.M.; Enriquez, G.F.; Cardinal, M.V.; Piccinali, R.V.; Gürtler, R.E. A Comparative Study of Trypanosoma Cruzi Infection in Sylvatic Mammals from a Protected and a Disturbed Area in the Argentine Chaco. Acta Trop. 2016, 155, 34–42. [Google Scholar] [CrossRef]
- Rabinovich, J.; Schweigmann, N.; Yohai, V.; Wisnivesky-Colli, C. Probability of Trypanosoma Cruzi Transmission by Triatoma Infestans (Hemiptera: Reduviidae) to the Opossum Didelphis Albiventris (Marsupialia: Didelphidae). Am. J. Trop. Med. Hyg. 2001, 65, 125–130. [Google Scholar] [CrossRef]
- Schweigmann, N.J. Aspectos Ecológicos de una Población Santiagueña de la Comadreja Overa (Didelphis albiventris) en Relación con la Transmisión del Trypanosoma cruzi. Ph.D. Thesis, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina, 1994. [Google Scholar]
- Wisnivesky-Colli, C.; Schweigmann, N.J.; Alberti, A.; Pietrokovsky, S.M.; Conti, O.; Montoya, S.; Riarte, A.; Rivas, C. Sylvatic American Trypanosomiasis in Argentina. Trypanosoma Cruzi Infection in Mammals from the Chaco Forest in Santiago Del Estero. Trans. R. Soc. Trop. Med. Hyg. 1992, 86, 38–41. [Google Scholar] [CrossRef]
Sampling Site | Number of Surveillance and Control Cycles | Sanitary Improvement of Human Habitat | Diagnostic and Treatment Operations |
---|---|---|---|
ED | Start in 2005 Total of cycles: 17 | Done Between 2005 and 2007 | Done 2017–2019 |
MP | Start in 2006 Total of cycles: 18 | Done Between 2005 and 2006 | Done 2016–2019 |
L59 | Start in 2016 Total of cycles: 4 | Done Between 2018 and 2018 | Done In 2019 |
M | Start in 2019 Total of cycles: 1 | In process | Done In 2019 |
Order/Species | Study Sites | Total Number of Specimens from Each Captured Species | ||||
---|---|---|---|---|---|---|
Miel de Palo | Malacara | Lote 59 | El Desvío | Natural Reserve | ||
Didelphimorphia | ||||||
Thylamys pulchellus | 1 | 1 | ||||
Cingulata | ||||||
Chaetophractus vellerosus | 1 | 1 | ||||
Chaetophractus villosus | 4 | 4 | 3 | 1 | 12 | |
Tolypeutes matacus | 1 | 3 | 4 | |||
Dasypus hybridus | 1 | 1 | ||||
Carnivora | ||||||
Leopardus geoffroyi | 1 | 1 | ||||
Lycalopex gymnocercus | 1 | 1 | 1 | 3 | ||
Conepatus chinga | 1 | 2 | 4 | 3 | 10 | |
Cetartiodactyla | ||||||
Mazama gouazoubira | 1 | 1 | ||||
Chiroptera | ||||||
Desmodus rotundus | 7 | 7 | ||||
Tadarida brasiliensis | 1 | 1 | ||||
Promops nasutus | 18 | 18 | ||||
Eptesicus cf. furinalis | 24 | 24 | ||||
Myotis spp. | 12 | 15 | 27 | |||
Rodentia | ||||||
Graomys chacoensis | 1 | 1 | 2 | |||
Akodon toba | 3 | 4 | 7 | |||
Rattus rattus | 1 | 1 | ||||
Galea leucoblephara | 1 | 1 | 1 | 3 | ||
Lagostomus maximus | 1 | 4 | 5 | |||
Lagomorpha | ||||||
Lepus europaeus | 1 | 1 | ||||
Total number of captured species per site | 8 | 10 | 6 | 5 | 6 | - |
Total number of captured samples per site | 59 | 19 | 18 | 10 | 23 | 129 |
Species (% of Census Population Sampled) | Study Sites | Total Number of Specimens from Each Species | |||
---|---|---|---|---|---|
Miel de Palo | Malacara | Lote 59 | El Desvío | ||
Canis lupus familiaris (100%) | 161 | 71 | 23 | 102 | 357 |
Felis sylvestris catus (50%) | 21 | 14 | 5 | 22 | 63 |
Capra aegagrus hircus (10%) | 252 | 73 | 21 | 152 | 498 |
Ovis orientalis aries (20%) | 75 | 31 | 24 | 35 | 165 |
Bos primigenius Taurus (25%) | 73 | 22 | 24 | 41 | 160 |
Sus scrofa domestica (50%) | 25 | 29 | 4 | 22 | 80 |
Equus ferus caballus (25%) | 21 | 5 | 9 | 13 | 48 |
Equus africanus asinus (25%) | 11 | 1 | 1 | 0 | 13 |
E. a. asinus × E. f. caballus (50%) | 2 | 1 | 1 | 0 | 4 |
Total of sampled animals per site | 641 | 247 | 112 | 387 | 1388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Bravo, A.; Cirignoli, S.; Wehrendt, D.; Schijman, A.; León, C.M.; Flores-Chaves, M.; Nieto, J.; Kieran, T.J.; Abril, M.; Guhl, F. Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift. Insects 2024, 15, 471. https://doi.org/10.3390/insects15070471
Gómez-Bravo A, Cirignoli S, Wehrendt D, Schijman A, León CM, Flores-Chaves M, Nieto J, Kieran TJ, Abril M, Guhl F. Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift. Insects. 2024; 15(7):471. https://doi.org/10.3390/insects15070471
Chicago/Turabian StyleGómez-Bravo, Andrea, Sebastián Cirignoli, Diana Wehrendt, Alejandro Schijman, Cielo M. León, María Flores-Chaves, Javier Nieto, Troy J. Kieran, Marcelo Abril, and Felipe Guhl. 2024. "Zoonotic Cycle of American Trypanosomiasis in an Endemic Region of the Argentine Chaco, Factors That Influenced a Paradigm Shift" Insects 15, no. 7: 471. https://doi.org/10.3390/insects15070471