Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,857)

Search Parameters:
Keywords = thermal-imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 3209 KiB  
Communication
Phase Mapping Using a Combination of Multi-Functional Scanning Electron Microscopy Detectors and Imaging Modes
by Gang Liu, Yonghua Zhao and Shuai Wang
Metals 2024, 14(8), 899; https://doi.org/10.3390/met14080899 (registering DOI) - 7 Aug 2024
Abstract
Microstructure degradation and phase transformations are critical concerns in nickel-based superalloys during thermal exposure. Understanding the phase transformation mechanism requires the detailed mapping of the distribution of each phase at different degradation stages and in various precipitation sizes. However, differentiating between phases in [...] Read more.
Microstructure degradation and phase transformations are critical concerns in nickel-based superalloys during thermal exposure. Understanding the phase transformation mechanism requires the detailed mapping of the distribution of each phase at different degradation stages and in various precipitation sizes. However, differentiating between phases in large areas, typically on the scale of millimeters and often relying on scanning electron microscopy (SEM) techniques, has traditionally been a challenging task. In this study, we present a novel and efficient phase mapping method that leverages multiple imaging detectors and modes in SEM. This approach allows for the relatively rapid and explicit differentiation and mapping of the distribution of various phases, including MC, M23C6, γ′, and η phases, as demonstrated in a typical superalloy subjected to aging experiments at 800 °C. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

24 pages, 6993 KiB  
Article
Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation
by Giovanni Salvatore Di Bella, Claudia Corradino, Simona Cariello, Federica Torrisi and Ciro Del Negro
Remote Sens. 2024, 16(16), 2879; https://doi.org/10.3390/rs16162879 (registering DOI) - 7 Aug 2024
Abstract
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic [...] Read more.
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic activity. A critical factor influencing VRP estimates is the identification of hotspots in satellite imagery, typically based on intensity. Different satellite sensors employ unique algorithms due to their distinct characteristics. Integrating data from multiple satellite sources, each with different spatial and spectral resolutions, offers a more comprehensive analysis than using individual data sources alone. We introduce an innovative Remote Sensing Data Fusion (RSDF) algorithm, developed within a Cloud Computing environment that provides scalable, on-demand computing resources and services via the internet, to monitor VRP locally using data from various multispectral satellite sensors: the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea and Land Surface Temperature Radiometer (SLSTR), and the Visible Infrared Imaging Radiometer Suite (VIIRS), along with the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI). We describe and demonstrate the operation of this algorithm through the analysis of recent eruptive activities at the Etna and Stromboli volcanoes. The RSDF algorithm, leveraging both spatial and intensity features, demonstrates heightened sensitivity in detecting high-temperature volcanic features, thereby improving VRP monitoring compared to conventional pre-processed products available online. The overall accuracy increased significantly, with the omission rate dropping from 75.5% to 3.7% and the false detection rate decreasing from 11.0% to 4.3%. The proposed multi-sensor approach markedly enhances the ability to monitor and analyze volcanic activity. Full article
(This article belongs to the Special Issue Application of Remote Sensing Approaches in Geohazard Risk)
Show Figures

Figure 1

13 pages, 7781 KiB  
Article
Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island
by Gregory P. Asner, Nicholas R. Vaughn and Joseph Heckler
Oceans 2024, 5(3), 547-559; https://doi.org/10.3390/oceans5030031 - 5 Aug 2024
Viewed by 269
Abstract
Submarine groundwater discharge (SGD) is a recognized contributor to the hydrological and biogeochemical functioning of coral reef ecosystems located along coastlines. However, the distribution, size, and thermal properties of SGD remain poorly understood at most land–reef margins. We developed, deployed, and demonstrated an [...] Read more.
Submarine groundwater discharge (SGD) is a recognized contributor to the hydrological and biogeochemical functioning of coral reef ecosystems located along coastlines. However, the distribution, size, and thermal properties of SGD remain poorly understood at most land–reef margins. We developed, deployed, and demonstrated an operational method for airborne detection and mapping of SGD using the 200 km coastline of western Hawai‘i Island as a testing and analysis environment. Airborne high spatial resolution (1 m) thermal imaging produced relative sea surface temperature (SST) maps that aligned geospatially with boat-based transects of SGD presence–absence. Boat-based SST anomaly measurements were highly correlated with airborne SST anomaly measurements (R2 = 0.85; RMSE = 0.04 °C). Resulting maps of the relative difference in SST inside and outside of SGD plumes, called delta-SST, revealed 749 SGD plumes in 200 km of coastline, with nearly half of the SGD plumes smaller than 0.1 ha in size. Only 9% of SGD plumes were ≥1 ha in size, and just 1% were larger than 10 ha. Our findings indicate that small SGD is omnipresent in the nearshore environment. Furthermore, we found that the infrequent, large SGD plumes (>10 ha) displayed the weakest delta-SST values, suggesting that large discharge plumes are not likely to provide cooling refugia to warming coral reefs. Our operational approach can be applied frequently over time to generate SGD information relative to terrestrial substrate, topography, and pollutants. This operational approach will yield new insights into the role that land-to-reef interactions have on the composition and condition of coral reefs along coastlines. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

26 pages, 9203 KiB  
Article
Synthesis and Characterisation of Nanocrystalline CoxFe1−xGDC Powders as a Functional Anode Material for the Solid Oxide Fuel Cell
by Laura Quinlan, Talia Brooks, Nasrin Ghaemi, Harvey Arellano-Garcia, Maryam Irandoost, Fariborz Sharifianjazi and Bahman Amini Horri
Materials 2024, 17(15), 3864; https://doi.org/10.3390/ma17153864 - 4 Aug 2024
Viewed by 546
Abstract
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including [...] Read more.
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt–iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO–Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells. Full article
Show Figures

Graphical abstract

27 pages, 9153 KiB  
Review
Recent Advances in Photoacoustic Imaging: Current Status and Future Perspectives
by Huibin Liu, Xiangyu Teng, Shuxuan Yu, Wenguang Yang, Tiantian Kong and Tangying Liu
Micromachines 2024, 15(8), 1007; https://doi.org/10.3390/mi15081007 - 4 Aug 2024
Viewed by 528
Abstract
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that combines high-contrast optical imaging with high-spatial-resolution ultrasound imaging. PAI can provide a high spatial resolution and significant imaging depth by utilizing the distinctive spectroscopic characteristics of tissue, which gives it a wide variety [...] Read more.
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that combines high-contrast optical imaging with high-spatial-resolution ultrasound imaging. PAI can provide a high spatial resolution and significant imaging depth by utilizing the distinctive spectroscopic characteristics of tissue, which gives it a wide variety of applications in biomedicine and preclinical research. In addition, it is non-ionizing and non-invasive, and photoacoustic (PA) signals are generated by a short-pulse laser under thermal expansion. In this study, we describe the basic principles of PAI, recent advances in research in human and animal tissues, and future perspectives. Full article
Show Figures

Figure 1

21 pages, 7377 KiB  
Article
A Novel Sample Generation Method for Deep Learning Lithological Mapping with Airborne TASI Hyperspectral Data in Northern Liuyuan, Gansu, China
by Huize Liu, Ke Wu, Dandan Zhou and Ying Xu
Remote Sens. 2024, 16(15), 2852; https://doi.org/10.3390/rs16152852 - 3 Aug 2024
Viewed by 286
Abstract
High-resolution and thermal infrared hyperspectral data acquired from the Thermal Infrared Airborne Spectrographic Imager (TASI) have been recognized as efficient tools in geology, demonstrating significant potential for rock discernment. Deep learning (DL), as an advanced technology, has driven substantial advancements in lithological mapping [...] Read more.
High-resolution and thermal infrared hyperspectral data acquired from the Thermal Infrared Airborne Spectrographic Imager (TASI) have been recognized as efficient tools in geology, demonstrating significant potential for rock discernment. Deep learning (DL), as an advanced technology, has driven substantial advancements in lithological mapping by automatically extracting high-level semantic features from images to enhance recognition accuracy. However, gathering sufficient high-quality lithological samples for model training is challenging in many scenarios, posing limitations for data-driven DL approaches. Moreover, existing sample collection approaches are plagued by limited verifiability, subjective bias, and variation in the spectra of the same class at different locations. To tackle these challenges, a novel sample generation method called multi-lithology spectra sample selection (MLS3) is first employed. This method involves multiple steps: multiple spectra extraction, spectra combination and optimization, lithological type identification, and sample selection. In this study, the TASI hyperspectral data collected from the Liuyuan area in Gansu Province, China, were used as experimental data. Samples generated based on MLS3 were fed into five typical DL models, including two-dimensional convolutional neural network (2D-CNN), hybrid spectral CNN (HybridSN), multiscale residual network (MSRN), spectral-spatial residual network (SSRN), and spectral partitioning residual network (SPRN) for lithological mapping. Among these models, the accuracy of the SPRN reaches 84.03%, outperforming the other algorithms. Furthermore, MLS3 demonstrates superior performance, achieving an overall accuracy of 2.25–6.96% higher than other sample collection methods when SPRN is used as the DL framework. In general, MLS3 enables both the quantity and quality of samples, providing inspiration for the application of DL to hyperspectral lithological mapping. Full article
Show Figures

Figure 1

20 pages, 5138 KiB  
Article
Controlled Porosity of Selective Laser Melting-Produced Thermal Pipes: Experimental Analysis and Machine Learning Approach for Pore Recognition on Pipes Surfaces
by Ivan Malashin, Dmitry Martysyuk, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov, Anton Nisan, Nikolay Novozhilov, Viatcheslav Zelentsov, Aleksey Filimonov and Andrey Galinovsky
Sensors 2024, 24(15), 4959; https://doi.org/10.3390/s24154959 - 31 Jul 2024
Viewed by 301
Abstract
This study investigates the methods for controlling porosity in thermal pipes manufactured using selective laser melting (SLM) technology. Experiments conducted include water permeability tests and surface roughness measurements, which are complemented by SEM image ML-based analysis for pore recognition. The results elucidate the [...] Read more.
This study investigates the methods for controlling porosity in thermal pipes manufactured using selective laser melting (SLM) technology. Experiments conducted include water permeability tests and surface roughness measurements, which are complemented by SEM image ML-based analysis for pore recognition. The results elucidate the impact of SLM printing parameters on water permeability. Specifically, an increase in hatch and point distances leads to a linear rise in permeability, while higher laser power diminishes permeability. Using machine learning (ML) techniques, precise pore identification on SEM images depicting surface microstructures of the samples is achieved. The average percentage of the surface area containing detected pores for microstructure samples printed with laser parameters (laser power (W) _ hatch distance (µm) _ point distance (µm)) 175_ 80_80 was found to be 5.2%, while for 225_120_120, it was 4.2%, and for 275_160_160, it was 3.8%. Pore recognition was conducted using the Haar feature-based method, and the optimal patch size was determined to be 36 pixels on monochrome images of microstructures with a magnification of 33×, which were acquired using a Leica S9 D microscope. Full article
Show Figures

Figure 1

22 pages, 5975 KiB  
Article
Evaluating Daily Water Stress Index (DWSI) Using Thermal Imaging of Neem Tree Canopies under Bare Soil and Mulching Conditions
by Thayná A. B. Almeida, Abelardo A. A. Montenegro, Rodes A. B. da Silva, João L. M. P. de Lima, Ailton A. de Carvalho and José R. L. da Silva
Remote Sens. 2024, 16(15), 2782; https://doi.org/10.3390/rs16152782 (registering DOI) - 30 Jul 2024
Viewed by 309
Abstract
Water stress on crops can severely disrupt crop growth and reduce yields, requiring the accurate and prompt diagnosis of crop water stress, especially in semiarid regions. Infrared thermal imaging cameras are effective tools to monitor the spatial distribution of canopy temperature (Tc), which [...] Read more.
Water stress on crops can severely disrupt crop growth and reduce yields, requiring the accurate and prompt diagnosis of crop water stress, especially in semiarid regions. Infrared thermal imaging cameras are effective tools to monitor the spatial distribution of canopy temperature (Tc), which is the basis of the daily water stress index (DWSI) calculation. This research aimed to evaluate the variability of plant water stress under different soil cover conditions through geostatistical techniques, using detailed thermographic images of Neem canopies in the Brazilian northeastern semiarid region. Two experimental plots were established with Neem cropped under mulch and bare soil conditions. Thermal images of the leaves were taken with a portable thermographic camera and processed using Python language and the OpenCV database. The application of the geostatistical technique enabled stress indicator mapping at the leaf scale, with the spherical and exponential models providing the best fit for both soil cover conditions. The results showed that the highest levels of water stress were observed during the months with the highest air temperatures and no rainfall, especially at the apex of the leaf and close to the central veins, due to a negative water balance. Even under extreme drought conditions, mulching reduced Neem physiological water stress, leading to lower plant water stress, associated with a higher soil moisture content and a negative skewness of temperature distribution. Regarding the mapping of the stress index, the sequential Gaussian simulation method reduced the temperature uncertainty and the variation on the leaf surface. Our findings highlight that mapping the Water Stress Index offers a robust framework to precisely detect stress for agricultural management, as well as soil cover management in semiarid regions. These findings underscore the impact of meteorological and planting conditions on leaf temperature and baseline water stress, which can be valuable for regional water resource managers in diagnosing crop water status more accurately. Full article
Show Figures

Figure 1

16 pages, 9567 KiB  
Article
Using the Multiple-Sensor-Based Frost Observation System (MFOS) for Image Object Analysis and Model Prediction Evaluation in an Orchard
by Su Hyun Kim, Seung-Min Lee and Seung-Jae Lee
Atmosphere 2024, 15(8), 906; https://doi.org/10.3390/atmos15080906 - 29 Jul 2024
Viewed by 304
Abstract
Accurate frost observations are crucial for developing and validating frost prediction models. In 2022, the multi-sensor-based automatic frost observation system (MFOS), including an RGB camera, a thermal infrared camera, a leaf wetness sensor (LWS), LED lighting, and three glass plates, was developed to [...] Read more.
Accurate frost observations are crucial for developing and validating frost prediction models. In 2022, the multi-sensor-based automatic frost observation system (MFOS), including an RGB camera, a thermal infrared camera, a leaf wetness sensor (LWS), LED lighting, and three glass plates, was developed to replace the naked-eye observation of frost. The MFOS, herein installed and operated in an apple orchard, provides temporally high-resolution frost observations that show the onset, end, duration, persistence, and discontinuity of frost more clearly than conventional naked-eye observations. This study introduces recent additions to the MFOS and presents the results of its application to frost weather analysis and forecast evaluation in an orchard in South Korea. The NCAM’s Weather Research and Forecasting (WRF) model was employed as a weather forecast model. The main findings of this study are as follows: (1) The newly added image-based object detection capabilities of the MFOS helped with the extraction and quantitative comparison of surface temperature data for apples, leaves, and the LWS. (2) The resolution matching of the RGB and thermal infrared images was made successful by resizing the images, matching them according to horizontal movement, and conducting apple-centered averaging. (3) When applied to evaluate the frost-point predictions of the numerical weather model at one-hour intervals, the results showed that the MFOS could be used as a much more objective tool to verify the accuracy and characteristics of frost predictions compared to the naked-eye view. (4) Higher-resolution and realistic land-cover and vegetation representation are necessary to improve frost forecasts using numerical grid models based on land–atmosphere physics. Full article
Show Figures

Figure 1

8 pages, 1245 KiB  
Communication
Predicting Blooming Day of Cut Lily through Wavelength Reflectance Analysis
by Siae Kim and Ae Kyung Lee
Horticulturae 2024, 10(8), 802; https://doi.org/10.3390/horticulturae10080802 - 29 Jul 2024
Viewed by 242
Abstract
Domestic export cut lily flowers are expensive in Japan when they are in bud state that has not yet bloomed and when no leaf yellowing has occurred. Predicting the blooming day of domestic cut lily flowers is essential to increase their commodity value. [...] Read more.
Domestic export cut lily flowers are expensive in Japan when they are in bud state that has not yet bloomed and when no leaf yellowing has occurred. Predicting the blooming day of domestic cut lily flowers is essential to increase their commodity value. Thermal imaging, spectroscopic technologies, and hyperspectral cameras have recently been used for quality prediction. This study uses a hyperspectral camera, reflectance of wavelength, and a support vector machine (SVM) to evaluate the predictability of blooming days of cut lily flowers. While examining spectra at wavelengths of 750–900 nm associated with pollination, the resultant reflectance was over 75% during six to four days before blooming and 30% on a blooming day, indicating a decline in their reflectance toward blooming. Furthermore, SVM classification models based on kernel function revealed that the quadratic SVM had the highest accuracy at 84.4%, while the coarse Gaussian SVM had the lowest accuracy at 34.4%. The most crucial wavelength for the quadratic SVM was 842.3 nm, which was associated with water. The quadratic SVM’s accuracy, verified using the area under the curve (ACU), was above 0.8, showing suitability for spectral classification based on blooming day prediction. Thus, this study shows that hyperspectral imaging can classify spectra based on the blooming day, indicating its potential to predict the blooming day, vase life, and quality of cut lily flowers. Full article
Show Figures

Figure 1

24 pages, 3760 KiB  
Article
Ultrathin Boron Growth onto Nanodiamond Surfaces via Electrophilic Boron Precursors
by Krishna Govindaraju, Tyanna Supreme, Daniel N. Labunsky, Nicole Martin, Juan Miguel Del Rosario, Alana Washington, Ezhioghode O. Uwadiale, Solomon Adjei, Sandra Ladjadj, Cynthia V. Melendrez, Sang-Jun Lee, Maria V. Altoe, Avery Green, Sebastian Riano, Sami Sainio, Dennis Nordlund and Abraham Wolcott
Nanomaterials 2024, 14(15), 1274; https://doi.org/10.3390/nano14151274 - 29 Jul 2024
Viewed by 513
Abstract
Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and [...] Read more.
Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and its chemical reactivity are key in generating new bonds for nucleation and growth of an overlayer material. Oxidized high-pressure high temperature (HPHT) nanodiamonds (NDs) are largely terminated by alcohols that act as nucleophiles to initiate covalent bond formation when an electrophilic reactant is available. In this work, we demonstrate a templated synthesis of ultrathin boron on ND surfaces using trigonal boron compounds. Boron trichloride (BCl3), boron tribromide (BBr3), and borane (BH3) were found to react with ND substrates at room temperature in inert conditions. BBr3 and BCl3 were highly reactive with the diamond surface, and sheet-like structures were produced and verified with electron microscopy. Surface-sensitive spectroscopies were used to probe the molecular and atomic structure of the ND constructs’ surface, and quantification showed the boron shell was less than 1 nm thick after 1–24 h reactions. Observation of the reaction supports a self-terminating mechanism, similar to atomic layer deposition growth, and is likely due to the quenching of alcohols on the diamond surface. X-ray absorption spectroscopy revealed that boron-termination generated midgap electronic states that were originally predicted by density functional theory (DFT) several years ago. DFT also predicted a negative electron surface, which has yet to be confirmed experimentally here. The boron-diamond nanostructures were found to aggregate in dichloromethane and were dispersed in various solvents and characterized with dynamic light scattering for future cell imaging or cancer therapy applications using boron neutron capture therapy (BNCT). The unique templating mechanism based on nucleophilic alcohols and electrophilic trigonal precursors allows for covalent bond formation and will be of interest to researchers using diamond for quantum sensing, additive manufacturing, BNCT, and potentially as an electron emitter. Full article
(This article belongs to the Special Issue Nanodiamond Applications: From Biomedicine to Quantum Optics)
Show Figures

Graphical abstract

31 pages, 3086 KiB  
Review
Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review
by Zengyi Zhang and Zhenru Shu
Energies 2024, 17(15), 3731; https://doi.org/10.3390/en17153731 - 29 Jul 2024
Viewed by 434
Abstract
The wind energy sector is experiencing rapid growth, marked by the expansion of wind farms and the development of large-scale turbines. However, conventional manual methods for wind turbine operations and maintenance are struggling to keep pace with this development, encountering challenges related to [...] Read more.
The wind energy sector is experiencing rapid growth, marked by the expansion of wind farms and the development of large-scale turbines. However, conventional manual methods for wind turbine operations and maintenance are struggling to keep pace with this development, encountering challenges related to quality, efficiency, and safety. In response, unmanned aerial vehicles (UAVs) have emerged as a promising technology offering capabilities to effectively and economically perform these tasks. This paper provides a review of state-of-the-art research and applications of UAVs in wind turbine blade damage detection, operations, and maintenance. It encompasses various topics, such as optical and thermal UAV image-based inspections, integration with robots or embedded systems for damage detection, and the design of autonomous UAV flight planning. By synthesizing existing knowledge and identifying key areas for future research, this review aims to contribute insights for advancing the digitalization and intelligence of wind energy operations. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

20 pages, 4991 KiB  
Article
An Innovative Thermal Imaging Prototype for Precise Breast Cancer Detection: Integrating Compression Techniques and Classification Methods
by Khaled S. Ahmed, Fayroz F. Sherif, Mohamed S. Abdallah, Young-Im Cho and Shereen M. ElMetwally
Bioengineering 2024, 11(8), 764; https://doi.org/10.3390/bioengineering11080764 - 29 Jul 2024
Viewed by 625
Abstract
Breast cancer detection at an early stage is crucial for improving patient survival rates. This work introduces an innovative thermal imaging prototype that incorporates compression techniques inspired by mammography equipment. The prototype offers a radiation-free and precise cancer diagnosis. By integrating compression and [...] Read more.
Breast cancer detection at an early stage is crucial for improving patient survival rates. This work introduces an innovative thermal imaging prototype that incorporates compression techniques inspired by mammography equipment. The prototype offers a radiation-free and precise cancer diagnosis. By integrating compression and illumination methods, thermal picture quality has increased, and the accuracy of classification has improved. Essential components of the suggested thermography device include an equipment body, plates, motors, pressure sensors, light sources, and a thermal camera. We created a 3D model of the gadget using the SolidWorks software 2020 package. Furthermore, the classification research employed both cancer and normal images from the experimental results to validate the efficacy of the suggested system. We employed preprocessing and segmentation methods on the obtained dataset. We successfully categorized the thermal pictures using various classifiers and examined their performance. The logistic regression model showed excellent performance, achieving an accuracy of 0.976, F1 score of 0.977, precision of 1.000, and recall of 0.995. This indicates a high level of accuracy in correctly classifying thermal abnormalities associated with breast cancer. The proposed prototype serves as a highly effective tool for conducting initial investigations into breast cancer detection, offering potential advancements in early-stage diagnosis, and improving patient survival rates. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Imaging)
Show Figures

Figure 1

20 pages, 4199 KiB  
Article
Porphyrin Photosensitizers into Polysaccharide-Based Biopolymer Hydrogels for Topical Photodynamic Therapy: Physicochemical and Pharmacotechnical Assessments
by Andreea Mihaela Burloiu, Emma Adriana Ozon, Adina Magdalena Musuc, Mihai Anastasescu, Radu Petre Socoteanu, Irina Atkinson, Daniela C. Culita, Valentina Anuta, Ioana Andreea Popescu, Dumitru Lupuliasa, Dragoș Paul Mihai, Cerasela Elena Gîrd and Rica Boscencu
Gels 2024, 10(8), 499; https://doi.org/10.3390/gels10080499 - 27 Jul 2024
Viewed by 329
Abstract
Photodynamic therapy (PDT) is an emerging treatment modality that utilizes light-sensitive compounds, known as photosensitizers, to produce reactive oxygen species (ROS) that can selectively destroy malignant or diseased tissues upon light activation. This study investigates the incorporation of two porphyrin structures, 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin [...] Read more.
Photodynamic therapy (PDT) is an emerging treatment modality that utilizes light-sensitive compounds, known as photosensitizers, to produce reactive oxygen species (ROS) that can selectively destroy malignant or diseased tissues upon light activation. This study investigates the incorporation of two porphyrin structures, 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2.) and 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1.), into hydroxypropyl cellulose (HPC) hydrogels for potential use in topical photodynamic therapy (PDT). The structural and compositional properties of the resulting hydrogels were characterized using advanced techniques such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-Visible (UV-Vis) spectroscopy, and fluorescence spectroscopy. FTIR spectra revealed a slight shift of the main characteristic absorption bands corresponding to the porphyrins and their interactions with the HPC matrix, indicating successful incorporation and potential hydrogen bonding. XRD patterns revealed the presence of crystalline domains within the HPC matrix, indicating partial crystallization of the porphyrins dispersed within the amorphous polymer structure. TGA results indicated enhanced thermal stability of the HPC–porphyrin gels compared to 10% HPC gel, with additional weight loss stages corresponding to the thermal degradation of the porphyrins. Rheological analysis showed that the gels exhibited pseudoplastic behavior and thixotropic properties, with minimal impact on the flow properties of HPC by P2.1., but notable changes in viscosity and shear stress with P2.2. incorporation, indicating structural modifications. AFM imaging revealed a homogeneous distribution of porphyrins, and UV-Vis and fluorescence spectroscopy confirmed the retention of their photophysical properties. Pharmacotechnical evaluations showed that the hydrogels possessed suitable mechanical properties, optimal pH, high swelling ratios, and excellent spreadability, making them ideal for topical application. These findings suggest that the porphyrin-incorporated HPC hydrogels have significant potential as effective therapeutic agents for topical applications. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

18 pages, 5428 KiB  
Article
Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)
by Mariusz Ptak, Senlin Zhu, Teerachai Amnuaylojaroen, Huan Li, Katarzyna Szyga-Pluta, Sun Jiang, Li Wang and Mariusz Sojka
Remote Sens. 2024, 16(15), 2753; https://doi.org/10.3390/rs16152753 - 27 Jul 2024
Viewed by 312
Abstract
Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in [...] Read more.
Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in reconstructing water temperature arise from the selection of an appropriate methodology, and overcoming them involves the proper selection of input data and choosing the optimal modeling approach. This study employed the air2water model and Landsat satellite imagery to reconstruct the water temperature of Lake Miedwie (the fifth largest in Poland), for which field observations conducted by the Institute of Meteorology and Water Management—National Research Institute ended in the late 1980s. The approach based on satellite images in this case yielded less accurate results than model analyses. However, it is important to emphasize the advantage of satellite images over point measurements in the spatial interpretation of lake thermal conditions. In the studied case, due to the lake’s shape, the surface water layer showed no significant thermal contrasts. Based on the model data, long-term changes in water temperature were determined, which historically (1972–2023) amounted to 0.20 °C per decade. According to the adopted climate change scenarios by the end of the 21st century (SSP245 and SSP585), the average annual water temperature will be higher by 1.8 °C and 3.2 °C, respectively. It should be emphasized that the current and simulated changes are unfavorable, especially considering the impact of temperature on water quality. From an economic perspective, Lake Miedwie serves as a reservoir of drinking water, and changes in the thermal regime should be considered in the management of this ecosystem. Full article
(This article belongs to the Special Issue Remote Sensing and GIS in Freshwater Environments)
Show Figures

Figure 1

Back to TopTop