Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = thermal dynamic disaster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10282 KiB  
Article
The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf
by Xiaokun Chen, Chao Song and Zhipeng Zhang
Viewed by 542
Abstract
A thermal dynamic disaster in the goaf is one of the most serious coal mine disasters formed by coal spontaneous combustion and gas interweaving. However, the influence of the high-temperature hidden fire source formed in the goaf on the evolution law of thermal [...] Read more.
A thermal dynamic disaster in the goaf is one of the most serious coal mine disasters formed by coal spontaneous combustion and gas interweaving. However, the influence of the high-temperature hidden fire source formed in the goaf on the evolution law of thermal dynamic disasters is not clear, and effective prevention and control measures cannot be taken. Therefore, this paper uses the experimental platform of thermal dynamic disaster in the goaf to study the influence of different fire point positions on the development of thermal dynamic disaster in the goaf through a similar simulation experiment of thermal dynamic disaster evolution in the goaf and analyzes the corresponding relationship between temperature and CO concentration in the upper corner. The results show that under different locations of heat source, the high-temperature heat source of coal spontaneous combustion migrates to the air leakage side with sufficient oxygen supply, and an oxygen-poor circle is formed near the ignition point. Under the action of air leakage flow, CH4 accumulates in the deep part of the goaf on the return air side. Due to the increase in coal, part of CH4 is produced, which leads to the increase in concentration of CH4 at the ignition point. Under the action of different heat sources, the changing trend of concentration of CO and temperature in the return air corner is the same, but the temperature change in the return air corner shows a lag compared with the change in the concentration of CO, so concentration monitoring of CO can reflect the evolution process of the fire field in the goaf more quickly than temperature monitoring. Full article
(This article belongs to the Special Issue Prevention and Control of Mine Fire)
Show Figures

Figure 1

37 pages, 2150 KiB  
Article
Monitoring Slope Movement and Soil Hydrologic Behavior Using IoT and AI Technologies: A Systematic Review
by Md Jobair Bin Alam, Luis Salgado Manzano, Rahul Debnath and Ahmed Abdelmoamen Ahmed
Hydrology 2024, 11(8), 111; https://doi.org/10.3390/hydrology11080111 - 24 Jul 2024
Viewed by 856
Abstract
Landslides or slope failure pose a significant risk to human lives and infrastructures. The stability of slopes is controlled by various hydrological processes such as rainfall infiltration, soil water dynamics, and unsaturated soil behavior. Accordingly, soil hydrological monitoring and tracking the displacement of [...] Read more.
Landslides or slope failure pose a significant risk to human lives and infrastructures. The stability of slopes is controlled by various hydrological processes such as rainfall infiltration, soil water dynamics, and unsaturated soil behavior. Accordingly, soil hydrological monitoring and tracking the displacement of slopes become crucial to mitigate such risks by issuing early warnings to the respective authorities. In this context, there have been advancements in monitoring critical soil hydrological parameters and slope movement to ensure potential causative slope failure hazards are identified and mitigated before they escalate into disasters. With the advent of the Internet of Things (IoT), artificial intelligence, and high-speed internet, the potential to use such technologies for remotely monitoring soil hydrological parameters and slope movement is becoming increasingly important. This paper provides an overview of existing hydrological monitoring systems using IoT and AI technologies, including soil sampling, deploying on-site sensors such as capacitance, thermal dissipation, Time-Domain Reflectometers (TDRs), geophysical applications, etc. In addition, we review and compare the traditional slope movement detection systems, including topographic surveys for sophisticated applications such as terrestrial laser scanners, extensometers, tensiometers, inclinometers, GPS, synthetic aperture radar (SAR), LiDAR, and Unmanned Aerial Vehicles (UAVs). Finally, this interdisciplinary research from both Geotechnical Engineering and Computer Science perspectives provides a comprehensive state-of-the-art review of the different methodologies and solutions for monitoring landslides and slope failures, along with key challenges and prospects for potential future study. Full article
Show Figures

Figure 1

22 pages, 6121 KiB  
Article
Climate Characterization and Energy Efficiency in Container Housing: Analysis and Implications for Container House Design in European Locations
by Rafal Damian Figaj, Davide Maria Laudiero and Alessandro Mauro
Energies 2024, 17(12), 2926; https://doi.org/10.3390/en17122926 - 14 Jun 2024
Viewed by 627
Abstract
The present study investigates the energy efficiency of different container house configurations across thirty European locations. By employing Heating Degree Days (HDDs) and Cooling Degree Days (CDDs), the research delves into climatic zone exploration, providing a simplified climatic classification for residential purposes and [...] Read more.
The present study investigates the energy efficiency of different container house configurations across thirty European locations. By employing Heating Degree Days (HDDs) and Cooling Degree Days (CDDs), the research delves into climatic zone exploration, providing a simplified climatic classification for residential purposes and comparing it with the Köppen–Geiger model. The authors use specific hourly climatic data for each location, obtained through dynamic simulations with TRNSYS v.18 software. Initially, the CDDs are calculated by using different base temperatures (comfort temperatures that minimize energy demand) tailored to the specific conditions of each case. Then, the thermal loads of container houses are evaluated in different climatic scenarios, establishing a direct correlation between climatic conditions and the energy needs of these innovative and modular housing solutions. By comparing stacked and adjacent modular configurations in container housing, particularly in post-disaster scenarios, the study underscores the importance of adaptive design to optimize energy efficiency. The analysis conducted by the authors has allowed them to propose a climate characterization model based on HDDs, CDDs, and solar irradiance, obtaining an effective novel correlation with the Köppen–Geiger classification, especially in extreme climates. The present model emerges as a powerful tool for climate characterization in residential applications, offering a new perspective for urban planning and housing design. Furthermore, the results reveal a significant correlation between climate classification and the specific energy needs of container houses, emphasizing the direct influence of regional climatic characteristics on energy efficiency, particularly in small-sized dwellings such as container houses. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings III)
Show Figures

Figure 1

25 pages, 7622 KiB  
Article
Analysis of Height of the Stable Boundary Layer in Summer and Its Influencing Factors in the Taklamakan Desert Hinterland
by Guocheng Yang, Wei Shu, Minzhong Wang, Donglei Mao, Honglin Pan and Jiantao Zhang
Remote Sens. 2024, 16(8), 1417; https://doi.org/10.3390/rs16081417 - 17 Apr 2024
Cited by 1 | Viewed by 839
Abstract
Stable boundary layer height (SBLH) is an important parameter to characterize the characteristics and vertical structure of the nocturnal lower atmosphere at night. The distribution of SBLH has obvious spatial and temporal differences, and there are many meteorological factors affecting the SBLH, but [...] Read more.
Stable boundary layer height (SBLH) is an important parameter to characterize the characteristics and vertical structure of the nocturnal lower atmosphere at night. The distribution of SBLH has obvious spatial and temporal differences, and there are many meteorological factors affecting the SBLH, but at present, there are few quantitative studies on the effects of near-surface meteorological factors on the SBLH in the desert hinterland. This study was based on GPS sounding balloon data, near-surface meteorological observation data, and ERA5 data from Tazhong Station (TZ) in the Taklamakan Desert (TD) collected in July 2017, 2019, and 2021. The variation characteristics of the SBLH and its relationship with near-surface meteorological factors are described. We quantitatively analyzed the degree of influence of near-surface meteorological factors affecting the SBLH and verified it using a model. The study also elucidates the possible formation mechanism of the SBLH in the TD hinterland. The SBLH in the TD hinterland trended upward in July 2017, 2019, and 2021, which is consistent with the changes in meteorological factors, according to the near-surface meteorological observation and ERA5 data. Therefore, we think that an inherent connection exists between near-surface meteorological factors and the SBLH. The results of correlation analysis show that complex internal connections and interactions exist among the meteorological factors near the ground; some thermal, dynamic, and other meteorological factors strongly correlate with the SBLH. Having established the change in SBLH (ΔSBLH) and in major thermal, dynamic, and other meteorological factors (Δ), the linear regression equation between them revealed that near-surface meteorological factors can affect the SBLH. The dynamic factors have a stronger influence on the ΔSBLH than thermal and other factors. The results of model validation based on the variable importance projection (VIP) also confirmed that the SBLH in the TD hinterland is jointly affected by dynamic and thermal factors, but the dynamic factors have a stronger impact. The mechanism through which the SBLH forms is relatively complex. At night, surface radiative cooling promotes the formation of a surface inversion layer, and low-level jets strengthen wind shear, reducing atmospheric stability. The combined effects of heat and dynamics play an important role in dynamically shaping the SBLH. This study helps us with accurately predicting and understanding the characteristics of the changes in and the factors influencing the SBLH in the TD hinterland, providing a reference for understanding the mechanism through which the SBLH forms in this area. At the same time, it provides a scientific basis for regional weather and climate simulation, meteorological disaster defense, air quality forecasting, and model parameterization improvement. Full article
Show Figures

Figure 1

22 pages, 12108 KiB  
Review
A Systematic Review of the Potential Influence of Urbanization on the Regional Thunderstorm Process and Lightning Activity
by Tao Shi, Gaopeng Lu, Xiangcheng Wen, Lei Liu and Ping Qi
Atmosphere 2024, 15(3), 374; https://doi.org/10.3390/atmos15030374 - 19 Mar 2024
Viewed by 1160
Abstract
In the context of global climate change, lightning disasters have emerged as a serious environmental factor that restricts the sustainable development of megacities. This paper provides a review of the research on the impact of urbanization on thunderstorm processes and lightning activity, exploring [...] Read more.
In the context of global climate change, lightning disasters have emerged as a serious environmental factor that restricts the sustainable development of megacities. This paper provides a review of the research on the impact of urbanization on thunderstorm processes and lightning activity, exploring various aspects, such as aerosols, urban thermal effects, urban dynamic effects, and building morphology. Despite numerous significant achievements in the study of the impact of air pollutants on lightning activity, there is no consensus on whether aerosols serve to enhance or inhibit lightning activity. The temperature difference between the urban underlying surface and the natural underlying surface could sustain and promote the occurrence and development of convective systems, thus enhancing lightning activity. In terms of urban dynamics, the barrier effect has led to the maximum center of lightning appearing at the edge of a built-up area, which might be associated with factors, such as urban heat island (UHI) intensity, wind speed, synoptic background, and city size. Additionally, the size of a city and the height of the buildings was also an influencing factor on lightning activity. In summary, scholars have made progress in understanding the characteristics and drivers of urban lightning activity in recent years, but there are still some urgent problems that need to be solved: (1) How to analyze, comprehensively, the spatiotemporal patterns of urban lightning activity under different thunderstorm intensity backgrounds? (2) How to conduct analysis to investigate the influence of alterations in the boundary layer structure, water–heat energy balance, and water vapor circulation processes on urban lightning activity in the context of urbanization? (3) How to couple numerical models of different scales to enhance the understanding of the impact of complex underlying surfaces on urban lightning activity? Future studies could investigate the relationship between urbanization and thunderstorm/lightning activity using a combination of observational data, numerical modeling, and laboratory experiments, which holds promise for providing valuable theoretical insights and technical support to enhance the prediction, nowcasting, early warning, and risk assessment of thunderstorms and lightning in urban areas. Full article
Show Figures

Figure 1

17 pages, 7496 KiB  
Article
Construction and Electrothermal Performance Evaluation of a Solar-Powered Emergency Shelter
by Tiangang Lv, Bing Liu, Rujie Liu, Li Zhu, Yujiao Huo and Mingda Ji
Energies 2024, 17(1), 118; https://doi.org/10.3390/en17010118 - 25 Dec 2023
Cited by 1 | Viewed by 875
Abstract
Power outages and poor thermal conditions are common in emergency shelters. In light of this, a novel design for a solar-powered emergency shelter (SPES) with flexible photovoltaics is proposed and investigated in this paper. Firstly, the space and structure of SPES are designed [...] Read more.
Power outages and poor thermal conditions are common in emergency shelters. In light of this, a novel design for a solar-powered emergency shelter (SPES) with flexible photovoltaics is proposed and investigated in this paper. Firstly, the space and structure of SPES are designed based on ergonomic and easy open-and-close requirements. Then, considering the finishing strength of the building and the convenience and economy of the processing design, the construction of solid models using a 1:2 equal scale, and three double-top SPES were developed, in which internal roofs are canvas, polyethylene(PE), and polyvinyl chloride(PVC). Finally, measurements and ANSYS-Fluent simulations are employed for testing the dynamic fluctuation of the electrothermal performance of SPES. It is found that the maximum differences between the inner roof interior side temperature (IRIST) and the outdoor ambient environment temperature (OAET) for Sref, Dsc, Dpe, and Dpvc are 33.3 °C, 32.9 °C, 28.1 °C, and 25.9 °C, respectively, in winter conditions in China cold zone. The optimized design parameters of SPES in Poso City, Indonesia, characterized by equatorial humid climatic conditions, recommended that the air interlayer be 0.2 meters thick and the exhaust air volume be 0.3 m3/s. Mechanical ventilation coupled with evaporative conditioners can further reduce indoor temperatures effectively. This research offers a novel solution to the problems of indoor thermal environments and power outages for post-disaster resettlement. Full article
Show Figures

Figure 1

27 pages, 10064 KiB  
Review
Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention
by Min Hee Kim, Jaeyong Lee and Seung-Jae Lee
Atmosphere 2023, 14(11), 1642; https://doi.org/10.3390/atmos14111642 - 31 Oct 2023
Cited by 1 | Viewed by 3518
Abstract
Hail has long caused extensive damage and economic loss in places inhabited by humans. Climate change is expected to lead to different types of damage due to the geographic characteristics of each continent. Under changing environment, hail is becoming increasingly unstable and is [...] Read more.
Hail has long caused extensive damage and economic loss in places inhabited by humans. Climate change is expected to lead to different types of damage due to the geographic characteristics of each continent. Under changing environment, hail is becoming increasingly unstable and is causing damage that is difficult to repair, making it essential to study the occurrence of hail and hail-damage. Hail formation has been studied at the micro- and macrophysical scales as well as thermal and dynamical scales. Hail forms in various sizes, and the scale of damage varies with size. Hail precipitation occurs suddenly and is localized, making it is difficult to observe and predict. Nonetheless, techniques to measure and forecast hail precipitation are improving in accuracy. Hail-damage management and financial compensation systems are used to mitigate the severe economic losses caused by hail fallen in rural and urban areas. This review most comprehensively considers hail research, focusing on the mechanisms, observation and prediction methods, damage, social compensation systems for hail damage, and hail-disaster prevention, suggesting future study directions briefly. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 4300 KiB  
Article
Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
by Hai Sun, Hong-Yan Zhu, Jie Han, Chun Fu, Mi-Mi Chen and Kun Wang
Materials 2023, 16(12), 4342; https://doi.org/10.3390/ma16124342 - 13 Jun 2023
Cited by 3 | Viewed by 950
Abstract
The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring [...] Read more.
The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning. Full article
Show Figures

Figure 1

28 pages, 13162 KiB  
Article
Experimental Investigation on the Influence of Temperature on Coal and Gas Outbursts
by Xiaoqi Wang, Xiaohan Qi, Heng Ma and Shengnan Li
Processes 2023, 11(6), 1687; https://doi.org/10.3390/pr11061687 - 1 Jun 2023
Cited by 1 | Viewed by 1096
Abstract
With the increasing mining depth, the dynamic disaster of coal and gas outbursts in coal mines has become increasingly prominent, and the bursting liability of coal and rock mass in deep coal seam mining is a necessary condition for the occurrence of rock [...] Read more.
With the increasing mining depth, the dynamic disaster of coal and gas outbursts in coal mines has become increasingly prominent, and the bursting liability of coal and rock mass in deep coal seam mining is a necessary condition for the occurrence of rock burst and an important index to measure the failure of coal and rock mass. Thermal damage leads to rock instability and failure, which seriously influences the safe and efficient operation of coal mines. To investigate the effect of thermal damage on the bursting liability of deep coals, the burst tendency index of standard coal was measured after subjecting it to thermal damage at different temperatures. The effects of different thermal damage temperatures on the uniaxial compressive strength index, dynamic failure duration, stiffness ratio index, effective impact energy index, residual energy index change rate, and impact energy velocity of the coal and the influence of the post-peak failure mode of the coal were evaluated. The results revealed that the uniaxial compressive strength of the coal generally decreased with increasing thermal damage temperature. At temperatures above 200 °C, the strength significantly decreased. The comprehensive impact property index indicated that, with increasing thermal impact temperature, the burst tendency first increased up to the peak value at 200 °C and then gradually decreased. With the increase in the thermal damage temperature, the burst tendency decreased and disappeared in the temperature range of 250–300 °C, and the failure mode of the coal changed from brittle failure to brittle plastic failure, and finally ductile failure. The influence of thermal damage on coal bursting liability is studied, which provides a theoretical basis for preventing and controlling coal impact ground pressure hazards. Full article
Show Figures

Figure 1

19 pages, 7393 KiB  
Article
Energy Use and Indoor Environment Performance in Sustainably Designed Refugee Shelters: Three Incremental Phases
by Rojhat Ibrahim, Bálint Baranyai, Haval Abdulkareem and Tamás János Katona
Sustainability 2023, 15(8), 6903; https://doi.org/10.3390/su15086903 - 19 Apr 2023
Cited by 2 | Viewed by 1508
Abstract
Globally, natural and man-made disasters continue to force the displacement of masses of people. Existing studies show that several aspects have not been integrated into constructing refugee camps and shelters to achieve sustainability, such as long lifespan, indoor thermal comfort and air quality, [...] Read more.
Globally, natural and man-made disasters continue to force the displacement of masses of people. Existing studies show that several aspects have not been integrated into constructing refugee camps and shelters to achieve sustainability, such as long lifespan, indoor thermal comfort and air quality, energy efficiency, socio-cultural aspects, integration with local planning and design systems, and environmental impact. This study integrates the above factors in six refugee core shelters, designed based on the Middle Eastern cultural context using locally available sustainable construction materials and techniques. The prototypes are situated on two different building plots, i.e., terraced and end-of-terrace, and undergo three development phases, known as the incremental improvement strategy. The study focuses on their energy and indoor environment performance and provides empirical assessments undertaken using dynamic building simulations. It shows that the adopted approach to design and construction leads to remarkable improvements in their overall performance. Concerning energy use, compared to the base case scenarios built with conventional materials, the proposed prototypes show an opportunity to save energy up to 10,000 kWh per unit per year, equivalent to almost 2500 USD savings in energy bills. This is while achieving accepted level for almost 89–94% of thermal comfort hours and 74–85% predicted mean vote (PMV), respectively. However, the CO2 concentration level remains relatively low, ranging from 29 to 51%. Full article
(This article belongs to the Collection Sustainable Buildings and Energy Performance)
Show Figures

Figure 1

18 pages, 12663 KiB  
Article
Analysis and Research on Experimental Process of Water Thermal Migration of Freeze–Thaw Cracked Rock Based on Particle Tracking Method and Thermal Imaging Technology
by Gengshe Yang, Chong Liu and Hui Liu
Sustainability 2023, 15(7), 5658; https://doi.org/10.3390/su15075658 - 23 Mar 2023
Cited by 2 | Viewed by 1495
Abstract
In high-altitude and cold regions, external dynamic geological processes, such as glacial melting and other processes are intense, which frequently results in surface dynamic geological processes, such as slope collapse, landslides, debris flows, and ice avalanches along the route. For high and steep [...] Read more.
In high-altitude and cold regions, external dynamic geological processes, such as glacial melting and other processes are intense, which frequently results in surface dynamic geological processes, such as slope collapse, landslides, debris flows, and ice avalanches along the route. For high and steep slopes in high-altitude regions containing controlled fractures, the key is to grasp the water-heat process and the evolution of the frost heaving force induced by it within the fractures. This can then lead to the exploration of the multi-phase and multi-field damage propagation, and a disaster mechanism within the fractures under repeated freezing and thawing. The visual tracking of the water-heat migration process within the fractured rock mass is helpful in observing the evolution process of frost-heaving force and providing a theoretical basis for the frost-heaving mechanism. First, research on particle tracking, thermal imaging tests, and image processing technology was conducted to demonstrate that particle tracking and thermal imaging techniques can track the freezing front within the rock fractures and the migration of liquid water inside the rock. Then, by selecting fluorescent particles and improving the observation window and using a waterproof insulation cardboard, the development of a visualization device system for the water-heat migration process was achieved, allowing the tracking of the water-heat migration process. The results of the verification test showed that under freezing and thawing conditions, the experimental device could effectively track the temporal and spatial changes of water-heat migration inside and outside the rock fractures and monitor the real-time changes of the freezing front. Reliable experimental results were obtained, which provided a visual record of the water-heat migration and water-ice phase transition within the fractured rock mass during the freezing and thawing process. Combining thermal imaging technology with the real-time recording of the motion rate of fluorescent particles, this experiment described the movement speed of the freezing front and the convection of free water within the fractures in rock water-heat migration, which is of significant importance for the study of the frost-heaving force under the influence of water-heat migration. Full article
Show Figures

Figure 1

25 pages, 33950 KiB  
Article
Analysis of UAV Thermal Soaring via Hawk-Inspired Swarm Interaction
by Adam Pooley, Max Gao, Arushi Sharma, Sachi Barnaby, Yu Gu and Jason Gross
Biomimetics 2023, 8(1), 124; https://doi.org/10.3390/biomimetics8010124 - 17 Mar 2023
Cited by 2 | Viewed by 2179
Abstract
A swarm of unmanned aerial vehicles (UAVs) can be used for many applications, including disaster relief, search and rescue, and establishing communication networks, due to its mobility, scalability, and robustness to failure. However, a UAV swarm’s performance is typically limited by each agent’s [...] Read more.
A swarm of unmanned aerial vehicles (UAVs) can be used for many applications, including disaster relief, search and rescue, and establishing communication networks, due to its mobility, scalability, and robustness to failure. However, a UAV swarm’s performance is typically limited by each agent’s stored energy. Recent works have considered the usage of thermals, or vertical updrafts of warm air, to address this issue. One challenge lies in a swarm of UAVs detecting and taking advantage of these thermals. Inspired by hawks, a swarm could take advantage of thermals better than individuals due to the swarm’s distributed sensing abilities. To determine which emergent behaviors increase survival time, simulation software was created to test the behavioral models of UAV gliders around thermals. For simplicity and robustness, agents operate with limited information about other agents. The UAVs’ motion was implemented as a Boids model, replicating the behavior of flocking birds through cohesion, separation, and alignment forces. Agents equipped with a modified behavioral model exhibit dynamic flocking behavior, including relative ascension-based cohesion and relative height-based separation and alignment. The simulation results show the agents flocking to thermals and improving swarm survival. These findings present a promising method to extend the flight time of autonomous UAV swarms. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Graphical abstract

13 pages, 3586 KiB  
Article
A Study on the Propagation Trend of Underground Coal Fires Based on Night-Time Thermal Infrared Remote Sensing Technology
by Xiaomin Du, Dongqi Sun, Feng Li and Jing Tong
Sustainability 2022, 14(22), 14741; https://doi.org/10.3390/su142214741 - 9 Nov 2022
Cited by 4 | Viewed by 1635
Abstract
Underground coal fires in coal fields endanger the mine surface ecological environment, endanger coal resources, threaten mine safety and workers’ health, and cause geological disasters. The study of methods by which to monitor the laws that determine the way underground coal fires spread [...] Read more.
Underground coal fires in coal fields endanger the mine surface ecological environment, endanger coal resources, threaten mine safety and workers’ health, and cause geological disasters. The study of methods by which to monitor the laws that determine the way underground coal fires spread is helpful in the safe production of coal and the smooth execution of fire extinguishing projects. Based on night-time ASTER thermal infrared images of 2002, 2003, 2005 and 2007 in Huangbaici and Wuhushan mining areas in the Wuda coalfield, an adaptive-edge-threshold algorithm was used to extract time-series for underground coal fire areas. A method of time-series dynamic analysis for geometric centers of underground coal fire areas was proposed to study the propagation law and development trend of underground coal fires. The results indicate that, due to the effective prevention of the external influences of solar irradiance, topographic relief and land cover, the identification accuracy of coal fires via the use of a night-time ASTER thermal infrared image was higher by 7.70%, 13.19% and 14.51% than that of the daytime Landsat thermal infrared image in terms of producer accuracy, user accuracy and overall accuracy, respectively. The propagation direction of the geometric center of the time-series coal fire areas can be used to represent the propagation direction of underground coal fires. There exists a linear regression relationship between the migration distance of the geometric center of coal fire areas and the variable-area of coal fires in adjacent years, with the correlation coefficient reaching 0.705, which indicates that the migration distance of the geometric center of a coal fire area can be used to represent the intensity variation of underground coal fires. This method can be applied to the analysis of the trends of underground coal fires under both natural conditions and human intervention. The experimental results show that the Wuda underground coal fires spread to the southeast and that the area of the coal fires increased by 0.71 km2 during the period of 2002–2003. From 2003 to 2005, Wuda’s underground coal fires spread to the northwest under natural conditions, and the area of coal fires decreased by 0.30 km2 due to the closure of some small coal mines. From 2005 to 2007, due to increased mining activities, underground coal fires in Wuda spread to the east, south, west and north, and the area of coal fires increased dramatically by 1.76 km2. Full article
(This article belongs to the Special Issue Geographic Information Science for the Sustainable Development)
Show Figures

Figure 1

16 pages, 6145 KiB  
Article
Impact Assessment of Morphology and Layout of Zones on Refugees’ Affordable Core Shelter Performance
by Rojhat Ibrahim, Sara Elhadad, Bálint Baranyai and Tamás János Katona
Sustainability 2022, 14(18), 11452; https://doi.org/10.3390/su141811452 - 13 Sep 2022
Cited by 3 | Viewed by 1429
Abstract
The number of migrants increases globally due to natural disasters, global warming, and war conflicts. Inefficient and unsustainable construction approaches for migrant shelters have resulted from improper planning and design systems regarding lifespan, materials and techniques, and socio-cultural aspects. Therefore, the study aim [...] Read more.
The number of migrants increases globally due to natural disasters, global warming, and war conflicts. Inefficient and unsustainable construction approaches for migrant shelters have resulted from improper planning and design systems regarding lifespan, materials and techniques, and socio-cultural aspects. Therefore, the study aim has an incentive to assess the impact of the morphological, siting, and layout of zones and shelters for the long-term displacement prototypes considering sustainability concepts from social context, affordability, adaptability, low-impact construction materials, and techniques. Furthermore, applying the dynamic simulation IDA ICE 4.8 tool was cardinal to justify the comprehensive reported outcomes based on the bottom-up construction method after assessing energy and thermal comfort performance in seven cases. The energy performance assessment regarding heating reveals the superiority of the compact layout plan system, while the open-layout plan system is superior for electric cooling assessment. Concerning thermal comfort performance for the number of accepted hours category, the open-layout plan system is superior. Fanger indicators for thermal comfort assessment demonstrated the superiority of the horizontal-compact layout plan scheme. The carbon dioxide (CO2) concentration level assessment shows that the open-yard layout cases have better results than other systems. To conclude, sustainable prototypes for displaced people should involve several aspects such as lifespan, socio-cultural and affordability, thermal performance and energy-efficient, and environmental impact. The beneficiaries from the methods and the results of this study would be firstly the Syrian refugees in the Middle East context, then various places and involved people affected by the displacement issue globally. Full article
(This article belongs to the Collection Sustainable Buildings and Energy Performance)
Show Figures

Figure 1

23 pages, 9961 KiB  
Article
Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model
by Wei Shan, Chengcheng Zhang, Ying Guo and Lisha Qiu
Remote Sens. 2022, 14(13), 3185; https://doi.org/10.3390/rs14133185 - 2 Jul 2022
Cited by 11 | Viewed by 2073
Abstract
Under the influence of climate change and human activities, the southern boundary of the permafrost region in Northeast China, which is located at the southern edge of the permafrost area of Eurasia, has moved north, the surface temperature has increased, and the thickness [...] Read more.
Under the influence of climate change and human activities, the southern boundary of the permafrost region in Northeast China, which is located at the southern edge of the permafrost area of Eurasia, has moved north, the surface temperature has increased, and the thickness of the frozen layer has decreased. At present, there is a lack of classification standards or a map of the thermal state of permafrost that can reflect the dynamic change characteristics of permafrost in Northeast China. A vegetation impact factor consisting of normalized difference vegetation index and forest canopy closure was introduced into MODIS LST products, in order to improve the applicability of products in Northeast China. Based on the improved MODIS LST data, this study analyzed the distribution and change of the mean annual surface temperature and the surface frost number (SFnc) from 2003 to 2019. SFnc was used as the standard to classify the thermal state of permafrost, and a map of the thermal state distribution and changes of permafrost in Northeast China, with a spatial resolution of 1 km, was produced. Compared with the observation data of meteorological stations and field monitoring data, the reliability of classification results was nearly 95%. The map showed that there was no area of extremely stable permafrost (SFnc ≥ 0.667), the area of stable permafrost (0.55 ≤ SFnc< 0.667) changed from 14.9 × 104 km2 to 6.5 × 104 km2, the SFnc reduced from 0.564 to 0.557, the area of semi-stable permafrost (0.51 < SFnc < 0.55) changed from 17.68 × 104 km2 to 17.77 × 104 km2, the SFNc reduced from 0.529 to 0.528, and the area of transitional or unstable permafrost (0.49 ≤ SFnc ≤ 0.51) changed from 8.67 × 104 km2 to 9.56 × 104 km2. The thermal state of permafrost decreased and the distribution of stable permafrost shrank, due to continuous rising air temperature. The overall change characteristics of the thermal state distribution of permafrost were that the southern boundary of the permafrost region moved northward, the regional permafrost thermal state decreased, and there was an increased region of semi-stable, transitional or unstable permafrost from the frozen soil thawed at the edge of the permafrost region with higher stability. The permafrost region in Northeast China has lush vegetation, and the continuous degradation of permafrost will change the vegetation growth environment and affect the global carbon cycle process. This work will provide important data support for climate change feedback, natural disaster process research, and an early warning and prevention of terrestrial ecosystem response in the permafrost region of Eurasia. Full article
Show Figures

Figure 1

Back to TopTop