Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,027)

Search Parameters:
Keywords = secondary metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12864 KiB  
Article
Gentiana capitata Buch.–Ham. ex D.Don Cell Suspension Culture as a New Source of Isosaponarin and 3,7,8-Trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-β-D-ribopyranosyl-β-D-allopyranoside and Their Effect on PC-12 Cell Viability
by Zuzanna Czarnomska, Michał Markowski, Ewa K. Nawrocka, Wiktor Koźmiński, Agnieszka Bazylko and Wojciech J. Szypuła
Int. J. Mol. Sci. 2024, 25(16), 8576; https://doi.org/10.3390/ijms25168576 - 6 Aug 2024
Abstract
Some species of the Gentianaceae family are a valuable source of secondary metabolites. However, the phytochemical knowledge of some of these species remains insufficient. Therefore, this work focused on the isolation of the two main secondary metabolites in the methanolic extract from a [...] Read more.
Some species of the Gentianaceae family are a valuable source of secondary metabolites. However, the phytochemical knowledge of some of these species remains insufficient. Therefore, this work focused on the isolation of the two main secondary metabolites in the methanolic extract from a Gentiana capitata cell suspension using preparative HPLC and the determination of their structure using UHPLC–DAD–IT–MS/MS and NMR methods. Their content in the methanolic extract was quantified using a previously validated HPLC method. The toxicity of the extract and two isolated compounds was also tested on the PC-12 cell line. The structures of the main secondary metabolites were identified as isosaponarin and 3,7,8-Trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-β-D-ribopyranosyl-β-D-allopyranoside by comparing the UHPLC–DAD–IT–MS/MS and NMR results with the literature data. The content of isosaponarin was determined to be 0.76 ± 0.04%, and the content of 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-β-D-ribopyranosyl-β-D-allopyranoside was found to be 0.31 ± 0.02% in the dry extract. Additionally, a two-fold increase in the viability of the PC-12 cell line was observed compared to the control after treatment with the methanolic extract at a concentration of 500 µg/mL. These results suggest the potential use of G. capitata cell suspension methanolic extract as a new source of isosaponarin and 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-β-D-ribopyranosyl-β-D-allopyranoside, highlighting their lack of toxicity to the PC-12 (rat pheochromocytoma) cell line. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 1040 KiB  
Review
Effects of Dietary Fiber, Phenolic Compounds, and Fatty Acids on Mental Health: Possible Interactions with Genetic and Epigenetic Aspects
by Mariane Lutz, Pablo R. Moya, Sofía Gallorio, Ulises Ríos and Marcelo Arancibia
Nutrients 2024, 16(16), 2578; https://doi.org/10.3390/nu16162578 - 6 Aug 2024
Viewed by 41
Abstract
Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects [...] Read more.
Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects of dietary fiber, phenolic compounds (plant secondary metabolites), and fatty acids on mental health outcomes, with emphasis on their possible interactions with genetic and epigenetic aspects. Prebiotics, through their effects on the gut microbiota, have been associated with modulation in the neuroendocrine response to stress and the facilitation of the processing of positive emotions. Some of the genetic and epigenetic mechanisms include the serotonin neurotransmitter system (TPH1 gene) and the brain-derived neurotrophic factor (inhibition of histone deacetylases). The consumption of phenolic compounds exerts a positive role in neurocognitive domains. The evidence showing the involvement of genetic and epigenetic factors comes mainly from animal models, highlighting the role of epigenetic mechanisms through miRNAs and methyltransferases as well as the effect on the expression of apoptotic-related genes. Long-chain n-3 fatty acids (EPA and DHA) have been mainly related to psychotic and mood disorders, but the genetic and epigenetic evidence is scarce. Studies on the genetic and epigenetic basis of these interactions need to be promoted to move towards a precision and personalized approach to medicine. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Graphical abstract

15 pages, 4166 KiB  
Article
Mutation Breeding of Monascus to Produce a High Yield of Orange Pigment and Low Citrinin Content Using the ARTP Method
by Chan Zhang, Qing Sun, Le Yang, Arzugul Ablimit, Huijun Dong, Haijiao Wang, Congcong Wang and Chengtao Wang
J. Fungi 2024, 10(8), 553; https://doi.org/10.3390/jof10080553 - 5 Aug 2024
Viewed by 226
Abstract
Monascus is a filamentous fungus with a long history of application in China, which can produce a variety of secondary metabolites, including Monascus red pigments, Monascus orange pigments, Monascus yellow pigments, and citrinin. There is widespread attention being paid to natural pigments because [...] Read more.
Monascus is a filamentous fungus with a long history of application in China, which can produce a variety of secondary metabolites, including Monascus red pigments, Monascus orange pigments, Monascus yellow pigments, and citrinin. There is widespread attention being paid to natural pigments because of their safety. Among the many natural pigments, orange pigment has a wide range of applications because of its unique color, but current production levels in the orange pigment industry are limited to a certain extent due to the insufficiently wide range of sources and low production. In this study, the ARTP mutation was used to obtain a strain with high-yield orange pigment and low citrinin. The strain RS7 was obtained through two-step mutagenesis, and all three pigments were improved to different degrees. The color value of orange pigment was elevated from the original 108 U/mL to 180 U/mL, an increase of 66.7% compared to the original strain, and the citrinin content was reduced by 69%. The result of microscopic morphology showed that RS7 has more wrinkles and is more convex than the R1 strain, but there was little change between the two strains. Therefore, the ARTP mutation influenced the growth and the biosynthesis of pigments in Monascus. In addition, the conditions of ultrasonic extraction of Monascus pigments were optimized using the response surface, and the separation of pigments was achieved with the method of thin-layer chromatography. Pigment stability results showed that the temperature had no significant effect on orange pigment, while tea polyphenol could improve its stability. This study generated a strain with high-yielding orange pigment and could lay a foundation for the future application of Monascus orange pigment in the food industry. Full article
(This article belongs to the Special Issue Monascus spp. and Their Relative Products)
Show Figures

Figure 1

16 pages, 2705 KiB  
Article
Phenolic Compounds Synthesized by Trichoderma longibrachiatum Native to Semi-Arid Areas Show Antifungal Activity against Phytopathogenic Fungi of Horticultural Interest
by Enis-Díaz García, Ana Isabel Valenzuela-Quintanar, Alberto Sánchez-Estrada, Daniel González-Mendoza, Martín Ernesto Tiznado-Hernández, Alma Rosa Islas-Rubio and Rosalba Troncoso-Rojas
Microbiol. Res. 2024, 15(3), 1425-1440; https://doi.org/10.3390/microbiolres15030096 - 5 Aug 2024
Viewed by 233
Abstract
Fungal diseases are a major threat to the horticultural industry and cause substantial postharvest losses. While secondary metabolites from Trichoderma sp. have been explored for their antifungal properties, limited information exists on the phenolic compounds produced by less studied species like Trichoderma longibrachiatum [...] Read more.
Fungal diseases are a major threat to the horticultural industry and cause substantial postharvest losses. While secondary metabolites from Trichoderma sp. have been explored for their antifungal properties, limited information exists on the phenolic compounds produced by less studied species like Trichoderma longibrachiatum. In this study, phenolic compounds were extracted from a liquid culture of T. longibrachiatum using various solvents and methods (conventional and ultrasonic-assisted). Phenolic compounds were quantified by spectrophotometry and identified by high-performance liquid chromatography with diode array detection (HPLC-DAD). The antifungal activity against Alternaria alternata and Fusarium oxysporum was determined by mycelial growth inhibition assays, maximum growth rate (µmax) by the Gompertz equation, and spore germination tests. Although no significant differences (p ≥ 0.05) were found between the extraction methods, the type of solvent significantly influenced the phenolic content (p ≤ 0.05). Extraction with 70% ethanol showed the highest content of phenolic compounds and flavonoids. More than eight phenolic compounds were detected. Further, this is the first report of the phenolics ferulic, chlorogenic and p-coumaric acids identification in T. longibrachiatum, along with flavonoids such as epicatechin and quercetin, among others. The 70% ethanolic extracts notably inhibited the mycelial growth of A. alternata and F. oxysporum, reducing their maximum growth rate by 1.5 and 1.4 mm/h, respectively. Furthermore, p-coumaric and ferulic acids significantly inhibited spore germination of both pathogens, with a minimum inhibitory concentration (MIC) of 1.5 mg/mL and a minimum fungicidal concentration (MFC) of 2 mg/mL. These findings demonstrate the potential of T. longibrachiatum and its phenolic compounds as viable alternatives for biological control in horticulture and postharvest disease management. Full article
Show Figures

Figure 1

20 pages, 4500 KiB  
Article
Synergistic Biocontrol and Growth Promotion in Strawberries by Co-Cultured Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418
by Wenzhe Li, Yiting Fu, Yanqing Jiang, Jindong Hu, Yanli Wei, Hongmei Li, Jishun Li, Hetong Yang and Yuanzheng Wu
J. Fungi 2024, 10(8), 551; https://doi.org/10.3390/jof10080551 - 5 Aug 2024
Viewed by 272
Abstract
This study aimed to investigate the efficiency of the secondary metabolites (SMs) produced by a co-culture of Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418 in the control of Colletotrichum siamense CM9. A fermentation filtrate of B418 + TW21990 co-culture (BT21) produced a notable [...] Read more.
This study aimed to investigate the efficiency of the secondary metabolites (SMs) produced by a co-culture of Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418 in the control of Colletotrichum siamense CM9. A fermentation filtrate of B418 + TW21990 co-culture (BT21) produced a notable increase in the inhibition rate of CM9 compared to those of TW21990 and B418 monocultures, which reached 91.40% and 80.46% on PDA plates and strawberry leaves, respectively. The BT21 fermentation broth exhibited high control efficiency on strawberry root rot of 68.95% in a pot experiment, which was higher than that in the monocultures and fluazinam treatment. In addition, BT21 treatment promoted strawberry root development, improved antioxidative enzyme activities in the leaves and roots, and enhanced the total chlorophyll content of the strawberry leaves. UHPLC-MS/MS analysis of fermentation filtrates was performed to elucidate SM variations, revealing 478 and 795 metabolites in BT21 co-culture in positive and negative ion modes, respectively. The metabolomic profiles suggested abundant SMs with antagonistic capabilities and growth-promoting effects: 3-(propan-2-yl)-octahydropyrrolo [1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Val)), 3-[(4-hydroxyphenyl)methyl]-octahydropyrrolo[1,2-a]pyrazine-1,4-dione (cyclo(L-Pro-L-Tyr)), 3-indoleacetic acid (IAA), 2-hydroxycinnamic acid, 4-aminobutyric acid (GABA), bafilomycin B1, and DL-indole-3-lactic acid (ILA) were significantly enhanced in the co-culture. Overall, this study demonstrates that a co-culture strategy is efficient for inducing bioactive SMs in T. harzianum and B. vietnamiensis, which could be exploited as a novel approach for developing biocontrol consortia. Full article
Show Figures

Figure 1

24 pages, 4799 KiB  
Article
Identification, Characterization, and Antibacterial Evaluation of Five Endophytic Fungi from Psychotria poeppigiana Müll. Arg., an Amazon Plant
by Sonia Mendieta-Brito, Mahmoud Sayed, Eunjung Son, Dong-Seon Kim, Marcelo Dávila and Sang-Hyun Pyo
Microorganisms 2024, 12(8), 1590; https://doi.org/10.3390/microorganisms12081590 - 5 Aug 2024
Viewed by 241
Abstract
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated [...] Read more.
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated from the leaves of Psychotria poeppigiana Müll. Arg., a plant from the Rubiaceae family, collected in the tropical Amazon region of Bolivia. The endophytic fungi were identified as a Neopestalotiopsis sp., three Penicillium sp., and an Aspergillus sp. through 18S ribosomal RNA sequencing and NCBI-BLAST analysis. Chemical profiling revealed that their extracts obtained by ethyl acetate contained terpenes, flavonoids, and phenolic compounds. In a bioautography study, the terpenes showed high antimicrobial activity against Escherichia coli. Notably, extracts from the three Penicillium species exhibited potent antibacterial activity, with minimum inhibitory concentration (MIC) values ranging from 62.5 to 2000 µg/mL against all three pathogens: Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis (both Gram-positive and Gram-negative bacteria). These findings highlight the potential of these endophytic fungi, especially Penicillium species as valuable sources of secondary metabolites with significant antibacterial activities, suggesting promising applications in medicine, pharmaceuticals, agriculture, and environmental technologies. Full article
Show Figures

Figure 1

21 pages, 6073 KiB  
Article
Influence of the Culture Conditions on Camellia sinensis Cell Cultures
by Pilar Esteban-Campos, Pilar Vela, Raquel Rodríguez-Solana, José Ignacio López-Sánchez, Carmen Salinero and Efrén Pérez-Santín
Foods 2024, 13(15), 2461; https://doi.org/10.3390/foods13152461 - 4 Aug 2024
Viewed by 406
Abstract
Since the last century, it has been shown that dedifferentiated cells of Camellia sinensis can produce catechins and other secondary metabolites under in vitro conditions, with potential applications in the cosmetic, pharmaceutical and food industries. In this work, cell suspension cultures of a [...] Read more.
Since the last century, it has been shown that dedifferentiated cells of Camellia sinensis can produce catechins and other secondary metabolites under in vitro conditions, with potential applications in the cosmetic, pharmaceutical and food industries. In this work, cell suspension cultures of a C. sinensis cell line (LSC-5Y) were established in a liquid medium in order to optimize the biomass productivity, catechin monomer (GC, EGC, C, EC, CG, and ECG) and alkaloid (TB and CAF) productivity. The following factors were evaluated: concentration of growth regulators (BA and IBA), inoculum size, age of the cell line, light exposure, and effect of biotic elicitors (MeJA and extracts of Ciborinia camelliae). GC, EGC, and ECG increased approximately 1.80-fold when the auxin IBA concentration was increased from 0.1 to 2.0 mg/L. In addition, better productivity of EGC, C, EC, and CAF was achieved by using inoculum densities between 50 and 100 g/L. Although lower inoculum densities (25 g/L) showed a higher growth rate (0.20 d−1), the use of inoculum densities higher than 25 g/L favors a 2–4-fold increase in total catechin (TC) productivity, with maximum productivity being reached after 21 days of culture. However, the cell line showed instability in TC productivity: in the short term (in three successive subcultures), the coefficient of variation was 32.80%, and catechin production capacity was 2.5 years with maximum productivity at 0.5 years. Finally, it was observed that ethanol, used as an elicitor solvent, has a strong elicitor effect capable of increasing the accumulation of catechins up to 5.24 times compared to the treatment without an elicitor. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

15 pages, 2735 KiB  
Article
Identification of Secondary Metabolites by UHPLC-ESI-HRMS/MS in Antifungal Strain Trichoderma harzianum (LBAT-53)
by Giselle Hernández, Amaia Ponce de la Cal, Yuset Louis, Yamilé Baró Robaina, Yamilet Coll, Iraida Spengler and Yaneris Mirabal-Gallardo
J. Fungi 2024, 10(8), 547; https://doi.org/10.3390/jof10080547 - 3 Aug 2024
Viewed by 278
Abstract
Trichoderma spp. are filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced have obtained special attention since they possess attractive chemical structures with a broad spectrum of biological activities. In Cuba, the species of Trichoderma [...] Read more.
Trichoderma spp. are filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced have obtained special attention since they possess attractive chemical structures with a broad spectrum of biological activities. In Cuba, the species of Trichoderma have been commercially applied for the control of several phytopathogens to protect agricultural crops, but few studies have been carried out to detect and characterize the production of metabolites with biological activity. The strain Trichoderma harzianum LBAT-53 was subjected to an antifungal in vitro assay against Fusarium oxysporum f.sp. cubense by dual culture and volatile metabolite assays and fermented in PDB under constant agitation conditions. The ethyl acetate crude extract was obtained by liquid–liquid extraction. The fungal extract was investigated for the composition of secondary metabolites through chemical screening and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in negative ionization mode. As a result, LBAT-53 showed antagonistic activity in vitro (Class 2) against the pathogen evaluated in direct confrontation (76.9% of inhibition in 10 days) and by volatile metabolites (<40% in 7 days). Furthermore, seven low-molecular-weight phenolic compounds, including chrysophanol, phomarin, endocrocin, and trichophenol A, among others, were identified using UHPLC-ESI-MS/MS. This study is the first work on the characterization of secondary metabolites produced by the commercially applied strain LBAT-53, which is a promising source of bioactive compounds. These results provide a better understanding of the metabolism of this fungus, which is widely used in Cuba as biopesticides in agriculture pest control. Full article
Show Figures

Figure 1

69 pages, 1576 KiB  
Review
Polyphenols: Secondary Metabolites with a Biological Impression
by Ecem Bolat, Sümeyye Sarıtaş, Hatice Duman, Furkan Eker, Emir Akdaşçi, Sercan Karav and Anna Maria Witkowska
Nutrients 2024, 16(15), 2550; https://doi.org/10.3390/nu16152550 - 3 Aug 2024
Viewed by 407
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution [...] Read more.
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols. Full article
(This article belongs to the Special Issue Natural Products and Health: 2nd Edition)
Show Figures

Figure 1

18 pages, 1876 KiB  
Article
Phenolic Compounds in Different Stages of Ontogenesis in Chrysanthemum—A Potential for Thrips-Resistance Characterisation
by Sina Alexandra Rogge, Susanne Neugart, Monika Schreiner and Rainer Meyhöfer
Horticulturae 2024, 10(8), 822; https://doi.org/10.3390/horticulturae10080822 - 3 Aug 2024
Viewed by 177
Abstract
A number of studies have indicated the potential role of secondary metabolites, referred to as ‘resistance factors’, in plant defence against insect pests. Nevertheless, it remains unclear which metabolites serve as predictors of resistance in chrysanthemum cultivars against thrips. In the present study, [...] Read more.
A number of studies have indicated the potential role of secondary metabolites, referred to as ‘resistance factors’, in plant defence against insect pests. Nevertheless, it remains unclear which metabolites serve as predictors of resistance in chrysanthemum cultivars against thrips. In the present study, the phenolic compounds of chrysanthemum leaves at different ontogenetic stages were analysed using high-performance liquid chromatography (HPLC). Furthermore, the relative epidermal flavonol contents in the leaves were quantified using the Dualex® Scientific 4 sensor, and the suitability of this non-destructive method for the rapid discrimination of resistance levels was evaluated. The results demonstrated that the most notable discrepancies in phenolic metabolite profiles were observed in the older leaves and the vegetative state of the chrysanthemum plants. Multiple discriminant analysis was conducted using HPLC-analysed metabolites to predict the importance of metabolites in resistant, susceptible, or highly susceptible plants in the vegetative stage. The results demonstrated that multiple metabolites, rather than a single metabolite, are responsible for thrips resistance in chrysanthemum. However, the relative flavonol content did not reflect the HPLC-analysed flavonoid glycosides or hydroxycinnamic acid derivatives, indicating that the Dualex® sensor is not a suitable device for determining resistance levels in chrysanthemums. Testing is required to extend and analyse the results in greater depth. Full article
Show Figures

Figure 1

15 pages, 4994 KiB  
Article
A Transcriptome Analysis of Poncirus trifoliata, an Aurantioideae Species Tolerant to Asian Citrus Psyllid, Has Identified Potential Genes and Events Associated with Psyllid Resistance
by Xinyou Wang, Haoran Ji, Leijian Zhong, Wei Zeng, Zhigang Ouyang and Ruimin Li
Insects 2024, 15(8), 589; https://doi.org/10.3390/insects15080589 - 2 Aug 2024
Viewed by 257
Abstract
Citrus huanglongbing (HLB) is a devastating disease for citrus production, largely caused by the Asian citrus psyllid (ACP). Poncirus trifoliata exhibits high resistance to ACP; however, this resistance is weakened when C. sinensis is co-cultivated. This study aimed to identify the differentially expressed [...] Read more.
Citrus huanglongbing (HLB) is a devastating disease for citrus production, largely caused by the Asian citrus psyllid (ACP). Poncirus trifoliata exhibits high resistance to ACP; however, this resistance is weakened when C. sinensis is co-cultivated. This study aimed to identify the differentially expressed genes (DEGs) during ACP feeding and to uncover potential ACP resistance genes in P. trifoliata. In comparison to independent cultivation, 1247 and 205 DEGs were identified in P. trifoliata when co-cultivated with C. sinensis after 7 and 14 days, respectively. Analysis of enriched Gene Ontology categories revealed that DEGs were significantly associated with the cell wall, glucometabolic activities, and secondary metabolites. Additionally, these genes were found to be involved in phytohormone signaling, cell wall metabolism, redox state homeostasis, and secondary metabolites, as well as a number of transcription factor genes (TFs). Furthermore, we examined the impact of the ACP feeding factor on the gene expression patterns in P. trifoliata. Results showed an increase in the JA signaling pathway and various TFs. The RNA-seq results were verified using reverse transcription quantitative PCR. Our findings shed light on the molecular basis of ACP resistance in P. trifoliata and identified potential genes associated with this resistance. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 5078 KiB  
Review
Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies
by Yan Hu, Yijian Wu, Jiayi Song, Maomao Ma, Yunzhu Xiao and Bin Zeng
Bioengineering 2024, 11(8), 783; https://doi.org/10.3390/bioengineering11080783 - 2 Aug 2024
Viewed by 449
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps [...] Read more.
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

14 pages, 1877 KiB  
Article
Evaluation of Resistance Induction Promoted by Bioactive Compounds of Pseudomonas aeruginosa LV Strain against Asian Soybean Rust
by André Riedi Barazetti, Mickely Liuti Dealis, Kawany Roque Basso, Maria Clara Davis Silva, Leonardo da Cruz Alves, Maria Eugênia Alcântara Parra, Ane Stéfano Simionato, Martha Viviana Torres Cely, Arthur Ladeira Macedo, Denise Brentan Silva and Galdino Andrade
Microorganisms 2024, 12(8), 1576; https://doi.org/10.3390/microorganisms12081576 - 2 Aug 2024
Viewed by 347
Abstract
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield [...] Read more.
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield around the world. The objective of this paper was to evaluate the application of secondary metabolites produced by Pseudomonas aeruginosa LV strain from the semi-purified fraction F4A in soybean plants to induce plant resistance against P. pachyrhizi in field conditions. The experimental design was performed in randomized blocks with three replicates using two F4A doses (1 and 10 μg mL−1) combined or not with fungicides (Unizeb Gold® or Sphere Max®). The control treatment, with Uni + Sph, saponins, flavonoids, and sphingolipids, showed higher intensities in the plants. In contrast, plants treated with the F4A fraction mainly exhibited fatty acid derivatives and some non-identified compounds with nitrogen. Plants treated with Sphere Max®, with or without F4A10, showed higher intensities of glycosylated flavonoids, such as kaempferol, luteolin, narigenin, and apigenin. Plants treated with F4A showed higher intensities of genistein and fatty acid derivatives. These increases in flavonoid compound biosynthesis and antioxidant properties probably contribute to the protection against reactive oxygen species (ROS). Full article
(This article belongs to the Special Issue Research on Natural Products against Pathogens)
Show Figures

Figure 1

7 pages, 1732 KiB  
Article
Cytotoxicity of Benzofuran-Containing Simplified Viniferin Analogues
by Salvatore Princiotto, Cecilia Pinna, Luce Micaela Mattio, Francesca Annunziata, Giovanni Luca Beretta, Andrea Pinto and Sabrina Dallavalle
Pharmaceuticals 2024, 17(8), 1012; https://doi.org/10.3390/ph17081012 - 1 Aug 2024
Viewed by 242
Abstract
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, [...] Read more.
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, as well as its analogue pterostilbene, characterized by an increased metabolic stability and significant pharmacological activities. To study the potential anticancer activity of other stilbenoids, a home-made collection of resveratrol dimers and simplified analogues was tested on melanoma A375, non-small cell lung cancer H460 and PC3 prostate cancer cell lines. The structural determinants responsible for the antiproliferative activity have been highlighted. Moreover, to investigate the DNA damage ability of the selected molecules, the expression of the γ-H2AX after compound exposure was evaluated. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 1990 KiB  
Article
Analysis of Ginkgo biloba Root Exudates and Inhibition of Soil Fungi by Flavonoids and Terpene Lactones
by Yawen Wang, Yanbing Jiang, Ximeng Liu, Yadi Chen, Qingxia Zhang, Li Wang and Weixing Li
Plants 2024, 13(15), 2122; https://doi.org/10.3390/plants13152122 - 1 Aug 2024
Viewed by 262
Abstract
Ginkgo biloba is abundant in secondary metabolites, including flavonoids and terpenoids. While the majority of research has focused on the role of these compounds in disease resistance, their specific contribution to pathogen defense has been rarely explored. In this study, we collected root [...] Read more.
Ginkgo biloba is abundant in secondary metabolites, including flavonoids and terpenoids. While the majority of research has focused on the role of these compounds in disease resistance, their specific contribution to pathogen defense has been rarely explored. In this study, we collected root exudates from hydroponically cultivated ginkgo seedlings and conducted a metabolomic analysis. We identified several primary metabolites mainly comprising amino acids and nucleotides, while secondary metabolites consisted of various compounds, including bioactive compounds such as flavonoids and terpenoids. Focusing on the secondary metabolites with relatively higher abundance in the exudates, we selected a mixture of flavonoids and terpenoids for in vitro inhibition experiments against two soil-borne fungal pathogens, Fusarium oxysporum f. sp. cucumerinum that causes cucumber wilt and Rhizoctonia solani AG-8 that causes wheat root rot. The results indicated that the growth rate of both fungus cells was significantly reduced with the increasing concentration of the flavonoid and terpenoid mixture extracted from ginkgo and was completely inhibited at a concentration of 5 mg/mL. Further experiments revealed that this mixture of flavonoids and terpenoids had a destructive effect on the cellular structure of both fungi, thereby reducing cell viability and achieving an antifungal effect. These findings provide a foundation for further research into the use of ginkgo extracts in biological control. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop