Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,152)

Search Parameters:
Keywords = relative humidity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3637 KiB  
Article
Diverging Elevational Patterns of Tree vs. Epiphyte Species Density, Beta Diversity, and Biomass in a Tropical Dry Forest
by Florian A. Werner and Jürgen Homeier
Plants 2024, 13(18), 2555; https://doi.org/10.3390/plants13182555 - 11 Sep 2024
Abstract
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied [...] Read more.
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied the species composition and biomass of epiphytes and trees along an elevation gradient in a tropical dry forest in SW Ecuador. Both life-forms were inventoried on 25 plots of 400 m2 across five elevation levels (550–1250 m). Tree species density and total species richness increased with elevation, whereas basal area and biomass did not show significant trends. Epiphyte species density and richness both increased strongly with elevation, in parallel to biomass. Plot-level compositional changes were similarly strong for both life-forms. We attribute elevational increases in the species richness of trees and epiphytes to increasing humidity, i.e., more mesic growth conditions. We attribute the more pronounced elevational increase in epiphyte biomass, species density, and richness—the latter coupled with a higher degree of nestedness—to the greater moisture dependency of epiphytes and relatively low direct competition for resources. Our study provides a first comparison of elevational trends in epiphyte and tree diversity and biomass for a tropical dry forest. Full article
Show Figures

Figure 1

13 pages, 6403 KiB  
Article
Widely Targeted Metabolomic Analysis Reveals Dynamic Metabolic Changes in Yanbian Cattle during Dry-Aging Process
by Depeng Sun, Baide Mu, Yujia Liu, Changcheng Zhao, Hongmei Li, Juan Wang, Tingyu Li, Guanhao Li and Chunxiang Piao
Foods 2024, 13(18), 2879; https://doi.org/10.3390/foods13182879 - 11 Sep 2024
Abstract
Dry-aging is a postmortem process that can substantially enhance the texture and flavour of beef. This study entailed suspending Yanbian cattle M. gluteus medius in the aging cabinet, maintained at a temperature of 2–4 °C and a relative humidity of 85 ± 5% [...] Read more.
Dry-aging is a postmortem process that can substantially enhance the texture and flavour of beef. This study entailed suspending Yanbian cattle M. gluteus medius in the aging cabinet, maintained at a temperature of 2–4 °C and a relative humidity of 85 ± 5% for 35 days. Throughout this period, samples were systematically collected every 7 days. The widely targeted metabolomic analysis has been used in this investigation to analyse the dynamic changes in Yanbian cattle metabolites during dry-aging. A total of 883 metabolites were identified, with amino acids and their metabolites representing the largest proportion. Multivariate statistical analysis showed that 373 metabolites were identified as differential metabolites that changed significantly during the dry-aging process, including metabolites of amino acids, glycerophospholipids, and nucleotides and their metabolites. Additionally, 308 metabolites exhibited various increasing trends with time in dry-aging. The analysis of KEGG pathway analysis showed that ABC transporters, glycerophospholipid, and arachidonic acid metabolism are the most important metabolic pathways during dry-aging. These findings can guide technological developments in the meat processing sector and provide valuable insights into the metabolic traits and pathways of Yanbian cattle during the dry-aging process. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

22 pages, 6667 KiB  
Article
Assessing the Resilience of Enteric Bacteria in Manure in Response to Changes in Relative Humidity and UV-B Light
by Ingrid M. Leon, Brent W. Auvermann, Kevin Jack Bush, Kenneth Casey, William E. Pinchak, Javier Vinasco, Sara D. Lawhon, Jason K. Smith, Harvey Morgan Scott and Keri N. Norman
Environments 2024, 11(9), 197; https://doi.org/10.3390/environments11090197 - 10 Sep 2024
Viewed by 296
Abstract
Dehydrated manure from agricultural animal feedlots can become aerosolized and may potentially harbor viable antimicrobial-resistant bacteria. Little is known about the dynamics and risk of bacteria in bioaerosols originating from the feedyard environment. Nutrient deficiency, desiccation, UV exposure, temperature, and pH changes can [...] Read more.
Dehydrated manure from agricultural animal feedlots can become aerosolized and may potentially harbor viable antimicrobial-resistant bacteria. Little is known about the dynamics and risk of bacteria in bioaerosols originating from the feedyard environment. Nutrient deficiency, desiccation, UV exposure, temperature, and pH changes can affect bacterial viability. In this study, we investigated the impact of changes in relative humidity (RH) and UV-B exposure on enteric bacterial survival in vitro to simulate environmental conditions in cattle feedyards. Cattle manure samples were placed in two separate chambers with 73% RH and 31% RH, respectively. For the UV-B experiment, samples were placed in a chamber exposed to UV-B (treated) or in a chamber exposed to LED light (control). Samples from both experiments were spiral plated in triplicate onto selective agar media to quantify total aerobic bacteria, E. coli (total and antimicrobial-resistant (AMR)), and Enterococcus spp. (total and AMR). Results showed that enteric bacteria from cattle manure can withstand at least two stress conditions, including low RH levels and UV-B exposure. Moreover, the data revealed that antimicrobial-resistant bacteria can persist in manure under the harsh conditions that may be encountered in a feedyard environment. These findings underscore the need for mitigation strategies in feedlots to minimize the overall risk of bioaerosol formation. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Its Environmental Risk)
Show Figures

Figure 1

21 pages, 5538 KiB  
Article
Investigating the Role of Microclimate and Microorganisms in the Deterioration of Stone Heritage: The Case of Rupestrian Church from Jac, Romania
by Dorina Camelia Ilieș, Andrei-Ionuț Apopei, Cristina Mircea, Alexandru Ilieș, Tudor Caciora, Berdenov Zharas, Lucian Barbu-Tudoran, Nicolaie Hodor, Alexandru Turza, Ana Cornelia Pereș, Thowayeb H. Hassan, Bahodirhon Safarov and Ioan-Cristian Noje
Appl. Sci. 2024, 14(18), 8136; https://doi.org/10.3390/app14188136 - 10 Sep 2024
Viewed by 256
Abstract
Natural stone can undergo disaggregation from various causes, including physical actions such as freeze–thaw cycles, temperature and humidity variations, chemical actions such as the solubilization of minerals by organic and inorganic acids, as well as biological actions due to the colonization of organisms [...] Read more.
Natural stone can undergo disaggregation from various causes, including physical actions such as freeze–thaw cycles, temperature and humidity variations, chemical actions such as the solubilization of minerals by organic and inorganic acids, as well as biological actions due to the colonization of organisms that can produce biocorrosion and biomineralization. This research investigates the impact of microclimatic conditions and microbial activity on the physical and chemical integrity of stone heritage, particularly the biodeterioration caused by fungi in the case of a Romanian rock church. Various analytical techniques were employed, including macroscopic and optical microscopy, Raman spectroscopy, X-ray diffraction, and culture-based identification methods, to characterize the mineral composition and microbial contamination of the rock samples. The analyses revealed that the sandstone consists primarily of quartz (over 90%), muscovite (5–10%), and feldspars. The identified fungi included Cladosporium herbarium, Aspergillus niger, and Mortierella hyalina. The SEM images showed fungal hyphae and spores within the kaolinite–illite matrix, indicating significant microbial colonization and its role in rock deterioration. Additionally, microclimatic data collected over a 12-week period highlighted the substantial fluctuations in temperature and relative humidity within the church, which contribute to the physical and chemical weathering of the stone. This study also noted high levels of particulate matter (PM2.5 and PM10) and volatile organic compounds, which can exacerbate microbial growth and stone decay. The comprehensive analysis underscores the need for targeted preservation strategies that consider both microclimatic factors and microbial colonization to effectively conserve stone heritage sites, ensuring their longevity and structural integrity. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

20 pages, 7483 KiB  
Article
A One-Dimensional Computational Model to Identify Operating Conditions and Cathode Flow Channel Dimensions for a Proton Exchange Membrane Fuel Cell
by Nikolaj Maack Bielefeld, Rasmus Dockweiler Sørensen, Mikkel Jørgensen, Kristoffer Kure and Torsten Berning
Hydrogen 2024, 5(3), 624-643; https://doi.org/10.3390/hydrogen5030033 - 10 Sep 2024
Viewed by 311
Abstract
A one-dimensional computational model has been developed that can be used to identify operating conditions for the cathode side of a proton exchange membrane fuel cell such that both the inlet and outlet relative humidity is equal to 100%. By balancing the calculated [...] Read more.
A one-dimensional computational model has been developed that can be used to identify operating conditions for the cathode side of a proton exchange membrane fuel cell such that both the inlet and outlet relative humidity is equal to 100%. By balancing the calculated pressure drop along the cathode side flow channel with the change in molar composition, inlet conditions for the cathode side can be identified with the goal of avoiding channel flooding. The channel length, height, width and the land-to-channel width ratio are input parameters for the model so that it might be used to dimension the cathode flow field. The model can be used to calculate the limiting current density, and we are presenting unprecedented high values as a result of the high pressure drop along the flow channels. Such high current densities can ultimately result in a fuel cell power density beyond the typical value of 1.0–2.0 W/cm2 for automotive fuel cells. Full article
Show Figures

Figure 1

18 pages, 29841 KiB  
Article
Exacerbation of Hepatic Damage in Endothelial Aquaporin 1 Transgenic Mice after Experimental Heatstroke
by Kaoru Yanagisawa, Kazuyuki Miyamoto, Yoshihiro Wakayama, Satoru Arata, Keisuke Suzuki, Motoyasu Nakamura, Hiroki Yamaga, Takuro Miyazaki, Kazuho Honda, Kenji Dohi and Hirokazu Ohtaki
Biomedicines 2024, 12(9), 2057; https://doi.org/10.3390/biomedicines12092057 - 10 Sep 2024
Viewed by 169
Abstract
Heatstroke induces fluid loss and electrolyte abnormalities owing to high ambient temperature (AT) and relative humidity (RH). Aquaporin 1 (AQP1) is a key protein for water homeostasis; however, its role in heatstroke remains unclear. This study examines endothelial AQP1 in Tie2-Cre/LNL-AQP1 double transgenic [...] Read more.
Heatstroke induces fluid loss and electrolyte abnormalities owing to high ambient temperature (AT) and relative humidity (RH). Aquaporin 1 (AQP1) is a key protein for water homeostasis; however, its role in heatstroke remains unclear. This study examines endothelial AQP1 in Tie2-Cre/LNL-AQP1 double transgenic (dTG) mice with upregulated Aqp1 in endothelial cells. For experimental heatstroke, mice were exposed to 41 °C AT and >99% RH. Blood, brain, kidney, and liver samples were collected 24 h later. Blood was analyzed for electrolytes and tissue damage markers, and organs were examined using morphological and immunohistological staining for 3-nitrotyrosine (3-NT), AQP1, and Iba-1. No difference in Aqp1 expression was observed in the whole brain; however, it was detected in dTG mice after capillary deprivation. AQP1 immunostaining revealed immunoreaction in blood vessels. After heat exposure, wild-type and dTG mice showed electrolyte abnormalities compared with non-heatstroke wild-type mice. Hepatic damage markers were significantly higher in dTG mice than in wild-type mice. Hematoxylin–eosin staining and 3-NT immunoreactivity in the liver indicated hepatic damage. The number of Iba-1-positive cells adherent to hepatic vasculature was significantly higher in dTG mice than in wild-type mice. This study is the first to suggest that endothelial AQP1 contributes to hepatic damage after heatstroke. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

29 pages, 10785 KiB  
Article
Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022
by Christina-Anna Papanikolaou, Alexandros Papayannis, Marilena Gidarakou, Sabur F. Abdullaev, Nicolae Ajtai, Holger Baars, Dimitris Balis, Daniele Bortoli, Juan Antonio Bravo-Aranda, Martine Collaud-Coen, Benedetto de Rosa, Davide Dionisi, Kostas Eleftheratos, Ronny Engelmann, Athena A. Floutsi, Jesús Abril-Gago, Philippe Goloub, Giovanni Giuliano, Pilar Gumà-Claramunt, Julian Hofer, Qiaoyun Hu, Mika Komppula, Eleni Marinou, Giovanni Martucci, Ina Mattis, Konstantinos Michailidis, Constantino Muñoz-Porcar, Maria Mylonaki, Michail Mytilinaios, Doina Nicolae, Alejandro Rodríguez-Gómez, Vanda Salgueiro, Xiaoxia Shang, Iwona S. Stachlewska, Horațiu Ioan Ștefănie, Dominika M. Szczepanik, Thomas Trickl, Hannes Vogelmann and Kalliopi Artemis Voudouriadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(17), 3350; https://doi.org/10.3390/rs16173350 - 9 Sep 2024
Viewed by 323
Abstract
Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one [...] Read more.
Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one in March and one in April, characterized by different dust transport paths. The dust aerosol layers were studied over 18 EARLINET stations, examining aerosol characteristics during March and April in four different regions (M-I, M-II, M-III, and M-IV and A-I, A-II, A-III, and A-IV, respectively), focusing on parameters such as aerosol layer thickness, center of mass (CoM), lidar ratio (LR), particle linear depolarization ratio (PLDR), and Ångström exponents (ÅE). In March, regions exhibited varying dust geometrical and optical properties, with mean CoM values ranging from approximately 3.5 to 4.8 km, and mean LR values typically between 36 and 54 sr. PLDR values indicated the presence of both pure and mixed dust aerosols, with values ranging from 0.20 to 0.32 at 355 nm and 0.24 to 0.31 at 532 nm. ÅE values suggested a range of particle sizes, with some regions showing a predominance of coarse particles. Aerosol Optical Depth (AOD) simulations from the NAAPS model indicated significant dust activity across Europe, with AOD values reaching up to 1.60. In April, dust aerosol layers were observed between 3.2 to 5.2 km. Mean LR values typically ranged from 35 to 51 sr at both 355 nm and 532 nm, while PLDR values confirmed the presence of dust aerosols, with mean values between 0.22 and 0.31 at 355 nm and 0.25 to 0.31 at 532 nm. The ÅE values suggested a mixture of particle sizes. The AOD values in April were generally lower, not exceeding 0.8, indicating a less intense dust presence compared to March. The findings highlight spatial and temporal variations in aerosol characteristics across the regions, during the distinctive periods. From 15 to 16 March 2022, Saharan dust significantly reduced UV-B radiation by approximately 14% over the ATZ station (Athens, GR). Backward air mass trajectories showed that the dust originated from the Western and Central Sahara when, during this specific case, the air mass trajectories passed over GRA (Granada, ES) and PAY (Payerne, CH) before reaching ATZ, maintaining high relative humidity and almost stable aerosol properties throughout its transport. Lidar data revealed elevated aerosol backscatter (baer) and PLDR values, combined with low LR and ÅE values, indicative of pure dust aerosols. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 8901 KiB  
Article
CFD Investigation on Combined Ventilation System for Multilayer-Caged-Laying Hen Houses
by Changzeng Hu, Lihua Li, Yuchen Jia, Zongkui Xie, Yao Yu and Limin Huo
Animals 2024, 14(17), 2623; https://doi.org/10.3390/ani14172623 - 9 Sep 2024
Viewed by 207
Abstract
Mechanical ventilation is an important means of environmental control in multitier laying hen cages. The mainstream ventilation mode currently in use, negative-pressure ventilation (NPV), has the drawbacks of a large temperature difference before and after adjustment and uneven air velocity distribution. To solve [...] Read more.
Mechanical ventilation is an important means of environmental control in multitier laying hen cages. The mainstream ventilation mode currently in use, negative-pressure ventilation (NPV), has the drawbacks of a large temperature difference before and after adjustment and uneven air velocity distribution. To solve these problems, this study designed and analyzed a combined positive and negative-pressure ventilation system for laying hen cages. According to the principle of the conservation of mass to increase the inlet flow in the negative-pressure ventilation system on the basis of the addition of the pressure-wind body-built positive-and-negative-pressure-combined ventilation (PNCV) system, further, computational fluid dynamics (CFD) simulation was performed to analyze the distribution of environmental parameters in the chicken cage zone (CZ) with inlet angles of positive-pressure fans set at 45°, 90°, and 30°. Simulation results showed that the PNCV system increased the average air velocity in the CZ from 0.94 m/s to 1.04 m/s, 1.28 m/s, and 0.99 m/s by actively blowing air into the cage. The maximum temperature difference in the CZ with the PNCV system was 2.91 °C, 1.80 °C, and 3.78 °C, which were all lower than 4.46 °C, the maximum temperature difference in the CZ with the NPV system. Moreover, the relative humidity remained below 80% for the PNCV system and between 80% and 85% for the NPV system. Compared with the NPV system, the PNCV system increased the vertical airflow movement, causing significant cooling and dehumidifying effects. Hence, the proposed system provides an effective new ventilation mode for achieving efficient and accurate environmental control in laying hen cages. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

20 pages, 39129 KiB  
Article
Cold and Wet Island Effect in Mountainous Areas: A Case Study of the Maxian Mountains, Northwest China
by Beibei He, Donghui Shangguan, Rongjun Wang, Changwei Xie, Da Li and Xiaoqiang Cheng
Forests 2024, 15(9), 1578; https://doi.org/10.3390/f15091578 - 9 Sep 2024
Viewed by 277
Abstract
The Maxian Mountains, characterized by high altitudes and abundant vegetation, create a cooler and more humid environment compared to the surrounding areas, and are highly susceptible to climate change. In order to study the cold and wet island effects in the Maxian Mountains, [...] Read more.
The Maxian Mountains, characterized by high altitudes and abundant vegetation, create a cooler and more humid environment compared to the surrounding areas, and are highly susceptible to climate change. In order to study the cold and wet island effects in the Maxian Mountains, air temperature and relative humidity (RH) were analyzed using meteorological station data. Additionally, spatial variations were examined by retrieving Land Surface Temperature (LST) and the Temperature Vegetation Dryness Index (TVDI) from 2001 to 2021. The most pronounced cold island effect was observed in the mountainous area during summer, mainly in May and July. The most significant wet island effect was observed from March to May, with an average relative humidity difference of 24.72%. The cold island area index, as an indicator of the cold island effect, revealed an increasing trend in the summer cold island effect in recent years. The cooling intensity ranged from 5 to 10 °C, with variations observed between 500 and 1000 m. A 30% increase in wet island effects in summer was observed, with a humidification intensity within a range of 500 m. Geodetector analysis identified vegetation cover as the primary factor affecting the thermal environment in mountainous areas. The increase in vegetation in mountainous areas was identified as the main reason for enhancing the cold and wet island effects. The findings emphasize the role of vegetation in enhancing cold and wet island effects, which is crucial for understanding and preserving mountainous regions. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

19 pages, 2627 KiB  
Article
Energy Efficiency in Seasonal Homes: A Study on the Occupancy, Energy Use, and Renovation of Second Homes in Sweden
by Kristina Mjörnell
Energies 2024, 17(17), 4493; https://doi.org/10.3390/en17174493 - 6 Sep 2024
Viewed by 472
Abstract
The escalating utilisation of second homes has led to an extension in heating periods and, to a certain degree, renovations to elevate the standard, resulting in augmented energy and resource consumption. A comprehensive survey was conducted in Sweden, examining user patterns across different [...] Read more.
The escalating utilisation of second homes has led to an extension in heating periods and, to a certain degree, renovations to elevate the standard, resulting in augmented energy and resource consumption. A comprehensive survey was conducted in Sweden, examining user patterns across different seasons, heating systems, and implemented energy efficiency measures. The results indicate that second homes are occupied for extended periods during the summer season and intermittently throughout the year. Over half of the second homes are heated even when unoccupied, with 12% maintaining a temperature above 16 °C. The predominant heating method is direct electricity (32.2%), followed by heat pumps (29.5%) and stoves (17.5%). A variety of renovations are undertaken, primarily to enhance the standard and technical performance, but also to implement energy efficiency measures such as window replacement, additional insulation, or heat pump installation. Based on the reported user and heating patterns, and the energy renovations carried out, the potential energy savings with different energy renovation strategies were estimated for the Swedish second home stock. The results show that though lowering the temperature when a second home is unoccupied emerges as the most efficient measure, both in terms of cost-effectiveness and climate impact, it needs to be complemented with intermittent heating or dehumidification to ensure that the relative humidity is below critical levels, to avoid the risk of damages caused by, for example, mould growth. Installing a heat pump is the second most energy- and cost-effective measure and has the advantage that the indoor temperature can be maintained at rather high levels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

26 pages, 9195 KiB  
Article
Fundamental Research on Sustainable Building Design for the Rural Elderly: A Field Study of Various Subjective Responses to Thermal Environments and Comfort Demands during Summer in Xi’an, China
by Wuxing Zheng, Ranran Feng, Yingluo Wang, Teng Shao, David Chow and Lei Zhang
Sustainability 2024, 16(17), 7778; https://doi.org/10.3390/su16177778 - 6 Sep 2024
Viewed by 380
Abstract
Well-designed residential thermal environments that meet the comfort and health needs of elderly individuals can enhance their well-being and decrease associated health risks, which is one of the foundations of sustainable building development. However, limited evidence on thermal response patterns and thermal comfort [...] Read more.
Well-designed residential thermal environments that meet the comfort and health needs of elderly individuals can enhance their well-being and decrease associated health risks, which is one of the foundations of sustainable building development. However, limited evidence on thermal response patterns and thermal comfort needs of rural elderly leads to insufficient support for improving thermal environments. This study was conducted in seven villages in Xi’an, a cold region of China, and both subjective questionnaires of thermal comfort and objective physical environment tests were adopted. Correlations between nine kinds of human subjective responses and thermal environmental parameters were examined. The neutral values of operative temperature, relative humidity, and air velocity were calculated to be 23.9 °C, 63.3%, and 0.28 m/s, respectively. Comfort ranges for temperature, humidity, and air velocity were determined to be ≤29.3 °C (80% acceptability), 43.3–81.0% (80% acceptability), and 0.16–0.41 m/s (90% acceptability). Clothing insulation of rural elderly in summer was relatively higher and less sensitive to temperature shifts. The slope value of the thermal adaptative model was larger, with higher comfort temperatures in warmer environments. These results are the outcome of the prolonged adaptability to the regional climate and the poor indoor thermal environment, as evidenced by lower psychological expectations, higher behavior adjustment, and environmental decisions influenced by household low income. The findings in this study can be used as a basis for the design or improvement of residential thermal environments for rural older adults. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

14 pages, 714 KiB  
Article
Pre-Crop and Residue Management Effects on Photosynthesis Efficiency and Grain Yield of Dryland Wheat Genotypes
by Ramin Lotfi, Saber Golkari, Amin Abbasi, Reza Rahimzadeh, Arash Mohammadzadeh and Mohammad Pessarakli
Crops 2024, 4(3), 426-439; https://doi.org/10.3390/crops4030030 - 6 Sep 2024
Viewed by 278
Abstract
To evaluate dryland wheat genotypes’ performance under different pre-crop and residue managements under dryland conditions, a split–split plot experiment based on the RCB design, with three replications, was conducted for two years (2017–2018 and 2018–2019). The site of the study has a long-term [...] Read more.
To evaluate dryland wheat genotypes’ performance under different pre-crop and residue managements under dryland conditions, a split–split plot experiment based on the RCB design, with three replications, was conducted for two years (2017–2018 and 2018–2019). The site of the study has a long-term average precipitation, temperature, and relative humidity of 376 mm, 9 °C, and 50%, respectively. Wheat–wheat and vetch–wheat cropping systems were considered in the main plots, different wheat and vetch residue levels, including 0, 2, and 4 t ha−1, were located in the subplots, and five dryland wheat genotypes, including Sadra, Hashtroud, Baran, Varan, and Ohadi, were allocated in the sub-sub plots. The results indicated that the leaf chlorophyll content index (CCI) and stomatal conductance (gs) were greater in the vetch–wheat cropping system compared to the wheat monoculture system for all genotypes. The normalized difference vegetation index (NDVI) of the genotypes improved by applying the crop residue. Over two years, the application of crop residues resulted in higher variable fluorescence at the J and I steps, as well as an increase in the photosynthesis performance index (PI). The Varan and Baran genotypes stood out as the superior genotype, exhibiting the highest values in physiological characteristics and grain yield under the application of 4 t ha−1 of vetch residue. The grain-filling rate (GFR) was reduced, while the grain-filling duration (GFD) was increased with increasing the crop residue levels. The enhanced grain yield of the wheat genotypes grown under vetch residue was attributed to factors such as improvement in leave pigments and photosynthetic efficiency, which facilitate longer grain filling duration, with high grain weight. As a result, it is advisable to adopt a vetch–wheat cropping system with a high proportion of crop residue in dryland regions to achieve increased and sustainable wheat production. Full article
Show Figures

Figure 1

15 pages, 3302 KiB  
Article
Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli
by Van Thi Thuy Trang, Hoang Thi Hang, Pham Quynh Nhi, Nguyen Thanh Trung, Nhat-Le Bui Dang, Thanh-Lieu Thi Le, Le Thi Cam Nhung, Nguyen Van Nghia, Do Van Can, Hao Van Bui and Loan Le Thi Ngoc
Materials 2024, 17(17), 4393; https://doi.org/10.3390/ma17174393 - 5 Sep 2024
Viewed by 306
Abstract
This work explores a new application of titanium nitride nanoparticles (TiN NPs) as efficient photothermal materials in enhancing the greenhouse effect. We demonstrate that a simple greenhouse using TiN NPs-embedded black paint boasts several advantages in solar drying technology, which are indicated by [...] Read more.
This work explores a new application of titanium nitride nanoparticles (TiN NPs) as efficient photothermal materials in enhancing the greenhouse effect. We demonstrate that a simple greenhouse using TiN NPs-embedded black paint boasts several advantages in solar drying technology, which are indicated by the drying of red chilli. In particular, the greenhouse using TiN NPs significantly improves the drying efficiency, which reduces the mass of red chilli by approximately four times and results in dried chilli with a moisture content of 10% within two days. In addition, by conducting long experiments in various environments, we found that the relative humidity can have a predominant role over the temperature in the solar drying of red chilli and observed that the re-adsorption of moisture can take place during the drying process, which prolongs the drying time and reduces the quality of the dried products. Full article
Show Figures

Figure 1

15 pages, 1389 KiB  
Article
Impact of Harvesting Stages and Postharvest Treatments on the Quality and Storability of Tomato Fruits (Solanum lycopersicum L.) cv. Sangaw
by Bzhwean Anwar Mouhamed and Sidiq Aziz Sidiq Kasnazany
Coatings 2024, 14(9), 1143; https://doi.org/10.3390/coatings14091143 - 5 Sep 2024
Viewed by 316
Abstract
The objective of this study was to evaluate the impact of harvesting stages (turning-color fruit and light red color) and postharvest treatments (distilled water, hot water at 35 °C, 10% Aloe vera, 2% CaCl2, 5% Mint, and 5% Catnip) for [...] Read more.
The objective of this study was to evaluate the impact of harvesting stages (turning-color fruit and light red color) and postharvest treatments (distilled water, hot water at 35 °C, 10% Aloe vera, 2% CaCl2, 5% Mint, and 5% Catnip) for 5 min on the quality and storability of tomato fruits cv. Sangaw stored at 10 ± 1 °C and a relative humidity of 90%–95% for 20 days. Fruit harvested at the turning-color fruit stage presented significantly lower weight loss, greater firmness, and higher amounts of vitamin C, total phenol, and calcium (3.22%, 1118.31 g mm/s, 15.83 mg 100 g−1, 95.49 mg 100 mL−1 FW, and 0.14%, respectively). However, the tomatoes harvested from the light red color fruit stage presented the highest contents of total soluble sugars, total sugars, and lycopene (4.36%, 3.99%, and 41.49 mg kg−1, respectively). Notably, the postharvest treatment of tomato fruits with 2% CaCl2 significantly decreased weight loss and resulted in greater firmness, pH, total sugar, total phenol, and calcium contents (3.90%, 1212.39 g mm/s, 4.83, 3.85%, 95.60 mg 100 mL−1 FW, and 0.18%, respectively) than the control. Hence, coating with 10% Aloe vera resulted in the highest amount of total soluble solids and the highest amount of vitamin C. Tomato picked at the turning-color fruit stage and immersed in 5% Mint significantly lowered the loss of fruit weight, increased the total titratable acidity, and had the lowest content of lycopene. Additionally, the fruits harvested at the same stage and immersed in 2% CaCl2 retained greater firmness, total phenol content, and calcium content. On the other hand, fruits harvested in the light red stage and dipped in 5% Mint presented the highest total soluble sugars and total sugar contents. Finally, the harvested tomato fruits coated with 10% Aloe vera retained a relatively high level of vitamin C, indicating the storage life and quality of the tomato fruits. Full article
(This article belongs to the Special Issue Advanced Coatings and Films for Food Packing and Storage, 2nd Edition)
Show Figures

Figure 1

18 pages, 2011 KiB  
Article
Influence of Climatic Parameters and Plant Morphological Characters on the Total Anthocyanin Content of Purple Maize (Zea mays L., PMV-581) Cob Core
by Víctor Soto-Aquino, Severo Ignacio-Cárdenas, Anghelo Jhosepp Japa-Espinoza, Ulda Campos-Félix, Juanita Ciriaco-Poma, Alex Campos-Félix, Benancio Pantoja-Medina and Juan Z. Dávalos-Prado
Agronomy 2024, 14(9), 2021; https://doi.org/10.3390/agronomy14092021 - 5 Sep 2024
Viewed by 271
Abstract
In this work, the inter-relationship among 10 morphological characters, 8 climatic parameters and the content of total anthocyanins in the cob core of PMV 581 purple maize, cultivated and produced in three different places in Huanuco–Peru region, has been reported. This study of [...] Read more.
In this work, the inter-relationship among 10 morphological characters, 8 climatic parameters and the content of total anthocyanins in the cob core of PMV 581 purple maize, cultivated and produced in three different places in Huanuco–Peru region, has been reported. This study of morphological characters was carried out using standard descriptors, both for the plant and the cob. Data on climatic parameters were obtained from three meteorological stations near the test locations. The total anthocyanin content (Acy), expressed as the glucoside-3-cyanidin concentration, has been determined by the differential pH method. From the statistical treatment of the data obtained, the following descriptors were found to be the most representative, given that they are poorly correlated with each other, but in general, depending on the localities: i/ (morphological) grain weight per cob GWC, plant length PL and cob core weight CCW; ii/ (climatic) minimum temperature Tmin, wind speed v and relative humidity RH. Between both types of descriptors, the best correlations occur for (CCW vs. Tmin) and (GWC vs. v). On the other hand, the total anthocyanin content Acy correlates very well with the CCW and Tmin descriptors. So, the highest concentration of Acy (684.2 mg/100 g) and also the highest CCW (38.6 g/cob) have been obtained in cobs of Winchuspata (W-Q), the coldest (Tmin = 7.89 °C) of the considered localities. On the contrary, the lowest concentration of Acy (603.7 mg/100 g) and also the lowest CCW 25.4 g/cob) have been obtained in cobs of Pistaloli (P-SA), the warmest (Tmin = 19.96 °C) of the three locations. The highest GWC value (139.4 g/cob) has been obtained in cobs of Marabamba (M-Y) where the wind speed v (4.13 m/s) was the highest of the locations considered. On the contrary, the lowest value of GWC (79.6 g/cob) has been obtained for cobs of Pistaloli (P-SA) where v was the lowest (1.19 m/s). In this context, it is important to propose studies on climatic variations’ impact on different crop cycles, investigating how different agronomic management practices and the use of genetic identification/expression tools can optimize the anthocyanin production of purple maize, in order to facilitate the selection of new varieties for specific climatic conditions. Full article
Show Figures

Figure 1

Back to TopTop