Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,825)

Search Parameters:
Keywords = recombination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2012 KiB  
Article
Computational Modeling Study of the Molecular Basis of dNTP Selectivity in Human Terminal Deoxynucleotidyltransferase
by Egor O. Ukladov, Timofey E. Tyugashev and Nikita A. Kuznetsov
Biomolecules 2024, 14(8), 961; https://doi.org/10.3390/biom14080961 (registering DOI) - 7 Aug 2024
Abstract
Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential [...] Read more.
Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP. This study involved molecular dynamics to simulate a potential impact of amino acid substitutions on the enzyme’s selectivity toward dNTPs. It was found that the formation of stable hydrogen bonds between a nitrogenous base and amino acid residues at positions 395 and 456 is crucial for the preferences for dNTPs. A set of single-substitution and double-substitution mutants at these positions was analyzed by molecular dynamics simulations. The data revealed two TdT mutants—containing either substitution D395N or substitutions D395N+E456N—that possess substantially equalized selectivity toward various dNTPs as compared to the wild-type enzyme. These results will enable rational design of TdT-like enzymes with equalized dNTP selectivity for biotechnological applications. Full article
13 pages, 1705 KiB  
Article
Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production
by Carmina Montiel, Oscar Hernández-Meléndez, Susana Marques, Francisco Gírio, João Tavares, Ornella Ontañon, Eleonora Campos and Eduardo Bárzana
Sustainability 2024, 16(16), 6722; https://doi.org/10.3390/su16166722 - 6 Aug 2024
Viewed by 248
Abstract
The study involves the use of commercial cellulase Cellic CTec2 in combination with two in-house xylanases, PxXyn10A (XynA), a recombinant purified enzyme from Paenibacillus xylanivorans A59, and a xylanase enzymatic extract from native Moesziomyces aphidis PYCC 5535T (MaPYCC 5535T), for the enzymatic [...] Read more.
The study involves the use of commercial cellulase Cellic CTec2 in combination with two in-house xylanases, PxXyn10A (XynA), a recombinant purified enzyme from Paenibacillus xylanivorans A59, and a xylanase enzymatic extract from native Moesziomyces aphidis PYCC 5535T (MaPYCC 5535T), for the enzymatic hydrolysis of pretreated blue agave bagasse (BAB) at the high solids load of 20% (w/v). Three different combinations of cellulase and xylanases were evaluated. When Cellic® CTec2 was used at a dosage of 10 FPU/g oven-dried solids (ODS) supplemented with XynA or MaPYCC 5535T at an endo-xylanase dosage of 100 U/g ODS, increases in the xylose yield of 30% and 33%, respectively, were obtained. When applying in-house xylanases alone (at an endo-xylanase dosage of 100 U/g ODS), xylan in BAB was selectively hydrolyzed into xylose with 5% yield with MaPYCC 5535T, while no xylose was detected with XynA. Interestingly, a synergic effect of Cellic® CTec 2 with both xylanases was observed when using a low dosage of 1 FPU/g ODS (allowing for some liquefaction of the reaction mixture), promoting xylose and glucose release by either xylanase. A higher concentration of monomeric sugars was obtained with 10 FPU/g ODS of Cellic® Ctec 2 supplemented with 100 U/g ODS of MaPYCC 5535T, followed by XynA. The improvement in saccharification through the synergistic combination of in-house xylanases and commercial cellulases allows for the obtention of sugar-rich hydrolysates, which enhances the technical sustainability of the process. Hydrolysates were then fermented using recombinant Cellux 4TM yeast to yield 45 g/L ethanol, representing an increase of about 30% with respect to the control obtained with only the commercial cellulase cocktail. The surface modification of agave biomass with the different combinations of enzymes was evidenced by scanning electron microscopy (SEM). Full article
Show Figures

Figure 1

13 pages, 1653 KiB  
Article
Surface Plasmon Resonance Immunosensor for Direct Detection of Antibodies against SARS-CoV-2 Nucleocapsid Protein
by Viktorija Lisyte, Asta Kausaite-Minkstimiene, Benediktas Brasiunas, Anton Popov and Almira Ramanaviciene
Int. J. Mol. Sci. 2024, 25(16), 8574; https://doi.org/10.3390/ijms25168574 (registering DOI) - 6 Aug 2024
Viewed by 269
Abstract
The strong immunogenicity of the SARS-CoV-2 nucleocapsid protein is widely recognized, and the detection of specific antibodies is critical for COVID-19 diagnostics in patients. This research proposed direct, label-free, and sensitive detection of antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SCoV2-rN). Recombinant SARS-CoV-2 nucleocapsid [...] Read more.
The strong immunogenicity of the SARS-CoV-2 nucleocapsid protein is widely recognized, and the detection of specific antibodies is critical for COVID-19 diagnostics in patients. This research proposed direct, label-free, and sensitive detection of antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SCoV2-rN). Recombinant SARS-CoV-2 nucleocapsid protein (SCoV2-rN) was immobilized by carbodiimide chemistry on an SPR sensor chip coated with a self-assembled monolayer of 11-mercaptoundecanoic acid. When immobilized under optimal conditions, a SCoV2-rN surface mass concentration of 3.61 ± 0.52 ng/mm2 was achieved, maximizing the effectiveness of the immunosensor for the anti-SCoV2-rN determination. The calculated KD value of 6.49 × 10−8 ± 5.3 × 10−9 M confirmed the good affinity of the used monoclonal anti-SCoV2-rN antibodies. The linear range of the developed immunosensor was from 0.5 to 50 nM of anti-SCoV2-rN, where the limit of detection and the limit of quantification values were 0.057 and 0.19 nM, respectively. The immunosensor exhibited good reproducibility and specificity. In addition, the developed immunosensor is suitable for multiple anti-SCoV2-rN antibody detections. Full article
Show Figures

Graphical abstract

32 pages, 604 KiB  
Review
Intravenous Idursulfase for the Treatment of Mucopolysaccharidosis Type II: A Systematic Literature Review
by Walla Al-Hertani, Ravi R. Pathak, Obaro Evuarherhe, Gemma Carter, Carolyn R. Schaeffer-Koziol, David A. H. Whiteman and Ekaterina Wright
Int. J. Mol. Sci. 2024, 25(16), 8573; https://doi.org/10.3390/ijms25168573 - 6 Aug 2024
Viewed by 224
Abstract
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare, X-linked disorder caused by deficient activity of the enzyme iduronate-2-sulfatase. Signs and symptoms typically emerge at 1.5–4 years of age and may include cognitive impairment, depending on whether patients have the neuronopathic or [...] Read more.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare, X-linked disorder caused by deficient activity of the enzyme iduronate-2-sulfatase. Signs and symptoms typically emerge at 1.5–4 years of age and may include cognitive impairment, depending on whether patients have the neuronopathic or non-neuronopathic form of the disease. Treatment is available in the form of enzyme replacement therapy (ERT) with recombinant iduronate-2-sulfatase (idursulfase). A systematic literature review was conducted to assess the evidence regarding efficacy, effectiveness, and safety of ERT with intravenous idursulfase for MPS II. Electronic databases were searched in January 2023, and 33 eligible articles were found. These were analyzed to evaluate the effects of intravenous idursulfase and the overall benefits and disadvantages in patient subgroups. Studies showed that intravenous idursulfase treatment resulted in improved short- and long-term clinical and patient-centered outcomes, accompanied by a favorable safety profile. Patients with non-neuronopathic MPS II had more pronounced improvements in clinical outcomes than those with neuronopathic MPS II. In addition, the review identified that improvements in clinical outcomes are particularly apparent if intravenous idursulfase is started early in life, strengthening previous recommendations for early ERT initiation to maximally benefit patients. This review provides a comprehensive summary of our current knowledge on the efficacy of ERT in different populations of patients with MPS II and will help to inform the overall management of the disease in an evolving treatment landscape. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 3706 KiB  
Article
Signal-On Detection of Caspase-3 with Methylene Blue-Loaded Metal-Organic Frameworks as Signal Reporters
by Yaliang Huang, Jiaqiang Wang, Yirui Xu, Jiwen Zhang and Ning Xia
Molecules 2024, 29(15), 3700; https://doi.org/10.3390/molecules29153700 - 5 Aug 2024
Viewed by 207
Abstract
In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal–organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as [...] Read more.
In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal–organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as the nanocarriers to load electroactive MB molecules. Recombinant hexahistidine (His6)-tagged streptavidin (rSA) was attached to the MOFs through the coordination interaction between the His6 tag in rSA and the metal ions on the surface of the MOFs. The acetylated peptide substrate Ac-GDEVDGGGPPPPC was immobilized on the gold electrode. In the presence of caspase-3, the peptide was specifically cleaved, leading to the release of the Ac-GDEVD sequence. A N-terminal amine group was generated and then biotinylated in the presence of biotin-NHS. Based on the strong interaction between rSA and biotin, rSA@MOF@MB was captured by the biotinylated peptide-modified electrode, producing a significantly amplified electrochemical signal. Caspase-3 was sensitively determined with a linear range from 0.1 to 25 pg/mL and a limit of detection down to 0.04 pg/mL. Further, the active caspase-3 in apoptosis inducer-treated HeLa cells was further quantified by this method. The proposed signal-on biosensor is compatible with the complex biological samples and shows great potential for apoptosis-related diagnosis and the screening of caspase-targeting drugs. Full article
(This article belongs to the Special Issue Metal Organic Frameworks (MOFs) for Sensing Applications)
Show Figures

Figure 1

28 pages, 6856 KiB  
Article
Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro
by Egor A. Turovsky, Egor Y. Plotnikov and Elena G. Varlamova
Biomedicines 2024, 12(8), 1756; https://doi.org/10.3390/biomedicines12081756 - 5 Aug 2024
Viewed by 299
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In [...] Read more.
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM’s cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression. Full article
(This article belongs to the Special Issue Advanced Research in Neuroprotection)
Show Figures

Figure 1

20 pages, 8083 KiB  
Article
Biochemical and Structural Characterization of a Novel Psychrophilic Laccase (Multicopper Oxidase) Discovered from Oenococcus oeni 229 (ENOLAB 4002)
by Isidoro Olmeda, Francisco Paredes-Martínez, Ramón Sendra, Patricia Casino, Isabel Pardo and Sergi Ferrer
Int. J. Mol. Sci. 2024, 25(15), 8521; https://doi.org/10.3390/ijms25158521 - 5 Aug 2024
Viewed by 257
Abstract
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has [...] Read more.
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments. Full article
Show Figures

Figure 1

13 pages, 724 KiB  
Article
Vaccine Platform Comparison: Protective Efficacy against Lethal Marburg Virus Challenge in the Hamster Model
by Kyle L. O’Donnell, Corey W. Henderson, Hanna Anhalt, Joan Fusco, Jesse H. Erasmus, Teresa Lambe and Andrea Marzi
Int. J. Mol. Sci. 2024, 25(15), 8516; https://doi.org/10.3390/ijms25158516 - 5 Aug 2024
Viewed by 290
Abstract
Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 [...] Read more.
Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions. Full article
(This article belongs to the Special Issue Immunopathology, Vaccine Development and Treatment of Viruses)
Show Figures

Figure 1

12 pages, 4481 KiB  
Article
Large-Area Perovskite Solar Module Produced by Introducing Self-Assembled L-Histidine Monolayer at TiO2 and Perovskite Interface
by Hung-Chieh Hsu, Jung-Che Tsao, Cheng-Hsien Yeh, Hsuan-Ta Wu, Chien-Te Wu, Shih-Hsiung Wu and Chuan-Feng Shih
Nanomaterials 2024, 14(15), 1315; https://doi.org/10.3390/nano14151315 - 4 Aug 2024
Viewed by 626
Abstract
Perovskite solar cells have been proven to enhance cell characteristics by introducing passivation materials that suppress defect formation. Defect states between the electron transport layer and the absorption layer reduce electron extraction and carrier transport capabilities, leading to a significant decline in device [...] Read more.
Perovskite solar cells have been proven to enhance cell characteristics by introducing passivation materials that suppress defect formation. Defect states between the electron transport layer and the absorption layer reduce electron extraction and carrier transport capabilities, leading to a significant decline in device performance and stability, as well as an increased probability of non-radiative recombination. This study proposes the use of an amino acid (L-Histidine) self-assembled monolayer material between the transport layer and the perovskite absorption layer. Surface analysis revealed that the introduction of L-Histidine improved both the uniformity and roughness of the perovskite film surface. X-ray photoelectron spectroscopic analysis showed a reduction in oxygen vacancies in the lattice and an increase in Ti4+, indicating that L-Histidine successfully passivated trap states at the perovskite and TiO2 electron transport layer interface. In terms of device performance, the introduction of L-Histidine significantly improved the fill factor (FF) because the reduction in interface defects could suppress charge accumulation and reduce device hysteresis. The FF of large-area solar modules (25 cm2) with L-Histidine increased from 55% to 73%, and the power conversion efficiency (PCE) reached 16.5%. After 500 h of aging tests, the PCE still maintained 91% of its original efficiency. This study demonstrates the significant impact of L-Histidine on transport properties and showcases its potential for application in the development of large-area perovskite module processes. Full article
Show Figures

Graphical abstract

26 pages, 498 KiB  
Review
Structure and Evolution of Ribosomal Genes of Insect Chromosomes
by Vladimir E. Gokhman and Valentina G. Kuznetsova
Insects 2024, 15(8), 593; https://doi.org/10.3390/insects15080593 - 4 Aug 2024
Viewed by 305
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes [...] Read more.
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
9 pages, 1137 KiB  
Article
Development of a Lateral Flow Assay for the Detection of the Hepatitis C Virus Core Antigen
by Erick Joan Vidal-Alcántara, Sonia Hernández Antón, Paloma Rueda, María Belén Yélamos, Julián Gómez, Salvador Resino, Alba Fresco-Taboada and Isidoro Martínez
Pharmaceuticals 2024, 17(8), 1022; https://doi.org/10.3390/ph17081022 - 4 Aug 2024
Viewed by 356
Abstract
Background: Hepatitis C virus (HCV) infection remains a global health challenge, with millions of people affected annually. Current diagnostic methods, reliant on antibody screening and viral RNA detection, are complex, costly, and often inaccessible, particularly in resource-limited settings. Aim: Development of a lateral [...] Read more.
Background: Hepatitis C virus (HCV) infection remains a global health challenge, with millions of people affected annually. Current diagnostic methods, reliant on antibody screening and viral RNA detection, are complex, costly, and often inaccessible, particularly in resource-limited settings. Aim: Development of a lateral flow immunochromatography-based assay for detecting the highly conserved hepatitis C core antigen (HCVcAg). Methods: The assay relies on the interaction of four highly specific and cross-reactive monoclonal antibodies with recombinant HCVcAg from five different genotypes in a double antibody sandwich format. Latex and colloidal gold were evaluated as detector nanoparticles. Results: Extensive evaluation of 32 antibody combinations led to identifying the most sensitive antibody pairs. The chosen assay, named LN17, demonstrated a target sensitivity of 10 ng/strip, with potential clinical implications for detecting HCV. Furthermore, the study examined matrix effects in serum samples, providing valuable insights for future clinical application. Conclusions: The developed assay holds promise as a rapid, cost-effective, and user-friendly tool to enhance accessibility to hepatitis C screening, especially in high-risk populations and resource-limited environments. Full article
(This article belongs to the Special Issue HIV and Viral Hepatitis: Prevention, Treatment and Coinfection)
Show Figures

Figure 1

17 pages, 2205 KiB  
Article
Variation Analysis of Starch Properties in Tartary Buckwheat and Construction of Near-Infrared Models for Rapid Non-Destructive Detection
by Liwei Zhu, Fei Liu, Qianxi Du, Taoxiong Shi, Jiao Deng, Hongyou Li, Fang Cai, Ziye Meng, Qingfu Chen, Jieqiong Zhang and Juan Huang
Plants 2024, 13(15), 2155; https://doi.org/10.3390/plants13152155 - 3 Aug 2024
Viewed by 271
Abstract
Due to the requirements for quality testing and breeding Tartary buckwheat (Fagopyrum tartaricum Gaerth), it is necessary to find a method for the rapid detection of starch content in Tartary buckwheat. To obtain samples with a continuously distributed chemical value, stable Tartary [...] Read more.
Due to the requirements for quality testing and breeding Tartary buckwheat (Fagopyrum tartaricum Gaerth), it is necessary to find a method for the rapid detection of starch content in Tartary buckwheat. To obtain samples with a continuously distributed chemical value, stable Tartary buckwheat recombinant inbred lines were used. After scanning the near-infrared spectra of whole grains, we employed conventional methods to analyze the contents of Tartary buckwheat. The results showed that the contents of total starch, amylose, amylopectin, and resistant starch were 532.1–741.5 mg/g, 176.8–280.2 mg/g, 318.8–497.0 mg/g, and 45.1–105.2 mg/g, respectively. The prediction model for the different starch contents in Tartary buckwheat was established using near-infrared spectroscopy (NIRS) in combination with chemometrics. The Kennard–Stone algorithm was used to split the training set and the test set. Six different methods were used to preprocess the spectra in the wavenumber range of 4000–12,000 cm−1. The Competitive Adaptive Reweighted Sampling algorithm was then used to extract the characteristic spectra, and the prediction model was built using the partial least squares method. Through a comprehensive analysis of each parameter of the model, the best model for the prediction of each nutrient was determined. The correlation coefficient of calibration (Rc) and the correlation coefficient of prediction (Rp) of the best models for total starch and amylose were greater than 0.95, and the Rc and Rp of the best models for amylopectin and resistant starch were also greater than 0.93. The results showed that the NIRS-based prediction model fulfilled the requirement for the rapid determination of Tartary buckwheat starch, thus providing an effective technical approach for the rapid and non-destructive testing of starch content in the food science and agricultural industry. Full article
(This article belongs to the Special Issue Applications of Spectral Techniques in Plant Physiology)
Show Figures

Figure 1

15 pages, 3638 KiB  
Article
Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation
by Gowthami Palanisamy, Mrunal Bhosale, Sahil S. Magdum, Sadhasivam Thangarasu and Tae-Hwan Oh
Polymers 2024, 16(15), 2213; https://doi.org/10.3390/polym16152213 - 2 Aug 2024
Viewed by 247
Abstract
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An [...] Read more.
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron–hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2 and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance. Full article
Show Figures

Figure 1

10 pages, 2781 KiB  
Article
Interface and Size Effects of Amorphous Si/Amorphous Silicon Oxynitride Multilayer Structures on the Photoluminescence Spectrum
by Chao Song, Jie Song and Xiang Wang
Coatings 2024, 14(8), 977; https://doi.org/10.3390/coatings14080977 - 2 Aug 2024
Viewed by 302
Abstract
A room-temperature photoluminescence (PL) study of amorphous Si/amorphous silicon oxynitride multilayer films prepared by plasma-enhanced chemical vapor deposition is reported. The PL peak position can be tuned from 800 nm to 660 nm by adjusting the oxygen/nitride ratio in the a-SiOxN [...] Read more.
A room-temperature photoluminescence (PL) study of amorphous Si/amorphous silicon oxynitride multilayer films prepared by plasma-enhanced chemical vapor deposition is reported. The PL peak position can be tuned from 800 nm to 660 nm by adjusting the oxygen/nitride ratio in the a-SiOxNy:H sublayer. The Fourier transform infrared (FTIR) absorption spectra indicate that the shift of the PL peak position is accompanied by an increase in the Si-O-Si absorption peak’s intensity, which induces the structural disorder at the interface, resulting in an increase in band gap energy. The effects of size on the photoluminescence spectrum have been studied. As a result, it has been observed that the addition of oxygen atoms introduces a large number of localized states at the interface, causing a blue shift in the emission peak position. With an increase in oxygen atoms, the localized states tend to saturate, and the quantum phenomenon caused by the a-Si sublayer becomes more pronounced. It is found that, as the thickness of the a-Si sublayer decreases, the increase in the [O/N] ratio is more likely to cause an increase in disordered states, leading to a decrease in luminescence intensity. For a-Si/a-SiOxNy:H samples with thinner a-Si sublayers, an appropriate value of [O/N] is required to achieve luminescence enhancement. When the value of [O/N] is one, the enhanced luminescence is obtained. It is also suggested that the PL originates from the radiative recombination in the localized states’ T3- level-related negatively charged silicon dangling bond in the band tail of the a-Si:H sublayer embedded in an a-Si/a-SiOxNy:H multilayer structure. Full article
Show Figures

Figure 1

13 pages, 3288 KiB  
Article
Identification of the Biotransformation Pathways of a Potential Oral Male Contraceptive, 11β-Methyl-19-Nortestosterone (11β-MNT) and Its Prodrugs: An In Vitro Study Highlights the Contribution of Polymorphic Intestinal UGT2B17
by Namrata Bachhav, Dilip Kumar Singh, Diana L. Blithe, Min S. Lee and Bhagwat Prasad
Pharmaceutics 2024, 16(8), 1032; https://doi.org/10.3390/pharmaceutics16081032 - 2 Aug 2024
Viewed by 385
Abstract
11β-Methyl-19-nortestosterone dodecylcarbonate (11β-MNTDC) is a prodrug of 11β-MNT and is being considered as a promising male oral contraceptive candidate in clinical development. However, the oral administration of 11β-MNTDC exhibits an ~200-fold lower serum concentration of 11β-MNT compared to 11β-MNTDC, resulting in the poor [...] Read more.
11β-Methyl-19-nortestosterone dodecylcarbonate (11β-MNTDC) is a prodrug of 11β-MNT and is being considered as a promising male oral contraceptive candidate in clinical development. However, the oral administration of 11β-MNTDC exhibits an ~200-fold lower serum concentration of 11β-MNT compared to 11β-MNTDC, resulting in the poor bioavailability of 11β-MNT. To elucidate the role of the first-pass metabolism of 11β-MNT in its poor bioavailability, we determined the biotransformation products of 11β-MNT and its prodrugs in human in vitro models. 11β-MNT and its two prodrugs 11β-MNTDC and 11β-MNT undecanoate (11β-MNTU) were incubated in cryopreserved human hepatocytes (HHs) and subjected to liquid chromatography–high resolution tandem mass spectrometry analysis, which identified ten 11β-MNT biotransformation products with dehydrogenated and glucuronidation (11β-MNTG) metabolites being the major metabolites. However, 11β-MNTG formation is highly variable and prevalent in human intestinal S9 fractions. A reaction phenotyping study of 11β-MNT using thirteen recombinant UDP-glucuronosyltransferase (UGT) enzymes confirmed the major role of UGT2B17 in 11β-MNTG formation. This was further supported by a strong correlation (R2 > 0.78) between 11β-MNTG and UGT2B17 abundance in human intestinal microsomes, human liver microsomes, and HH systems. These results suggest that 11β-MNT and its prodrugs are rapidly metabolized to 11β-MNTG by the highly polymorphic intestinal UGT2B17, which may explain the poor and variable bioavailability of the drug. Full article
(This article belongs to the Special Issue Advances in ADME for Drug Discovery)
Show Figures

Figure 1

Back to TopTop